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rates taken so high that further increasing them produced no visifite One well-known way to do this is to take an orthonormal bésis

changes in the figure. As can be seen, thg obtained in that way {¢:,...,é~} for H and use the Fourier coefficienfés, ¢x)} 1, to
turns from a well-behaved function for the values= 1.5, 2.5 into a represent. This approach is simple and works reasonably well in many
quite irregularly behaved one whérapproacheg or 3. cases. However, one can also consider a more general type of expansion

where the orthonormal basis is replaced by a so-called dictionalty.for
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Abstract—The purpose of this correspondence is to generalize a result In Section I1, we provide conditions for a solutionof the problem

by Donoho and Huo and Elad and Bruckstein on sparse representations of L.
signals in a union of two orthonormal bases folR™. We consider general minimize [Jo|
(redundant) dictionaries for R™, and derive sufficient conditions for having . . . . .
unique sparse representations of signalsin suchdictionaries.Thespecialcasetc_’ b_e indeed the unique 59|Ut|0n1 Wm’_‘ﬁ T < _1_ and an g.rbltrary
where the dictionary is given by the union ofL. > 2 orthonormal bases for ~ dictionaryD. We put a special emphasis on sufficient conditions of the
RY isstudiedinmore detail. Inparticular,itis provedthatthe resultof Donoho type||o]lo < f(D) and prove a sufficient condition far € {0, 1}

; 0 . .
and Huo, concerning the replacement of the” optimization problem with ) #(D) = (1+ 1/M(D))/2 where
a linear programming problem when searching for sparse representations,
has an analog for dictionaries that may be highly redundant. M(D) := maf/( gx. g (4)

subject tos = Do 3)

Index Terms—DPictionaries, Grassmannian frames, linear programming,
mutually incoherent bases, nonlinear approximation, sparse representa-

tions is the coherenceof the dictionary. The special case whdeis the

union of . > 2 bases is studied in Section lll, leading to explicit suf-
ficient conditions forr = 0 with

£(D) = (1/2 + 2(;7_1» /M (D)

|. INTRODUCTION

We consider vectors (also referred to as signalgyis R" (resp.,

TN . ) - . .
H=C"). The goal is to find an efficient representation of a signal and forr € {0,1} with
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In the casel = 2 we simply recover the main result from [2], and forsimply replace strict inequalities with large ones. To prove the result
L < 6 we obtain a condition that iess restrictivehan the condition for P, (S, D) > 1/2, itis sufficient to take some € Ker (D) so that

for arbitrary dictionaries. In Section |V, we construct highly redundant
dictionaries where the results of the present correspondence give fairly

relaxed conditions for (1) and (2) to have a unique solution.

Il. SPARSE(™ REPRESENTATIONS(O < 7 < 1

Any vectors € H has (pqssibly many) representations= Do
with coefficient vectory € R® (resp.,« € C¥).

Definition 2: Thesupport of a coefficient vecton = (ay) € R
(resp.,C™) is

S(a) = {k, ap # 0}. ®)
Thekernel of the dictionary will play a special role
Ker (D) := {«,Dx =0} (6)
as well as the integer quantity (callspgarkof the dictionary in [3])
Z(D):= _ min _lz]p. ™

z€Ker (D), z#0

By refining ideas from [2] we have the following lemma.

Lemma 1: Let D be a (possibly redundant) dictionary afd C
{1,..., K} asetofindexes. Fdr < v < 1 define
> lwel”
kes

P.(S,D):= max —_—
( o z€Ker (D), z#0 Z |Tk|
I\»

8)

where we use the conventiofi = 0 andz® = 1,2 # 0.
1) If P,(S,D) < 1/2 then, for alla such thatS(«) C S, « isthe
uniquesolution to the problem (3) with := D«q.
2) If P-(S,D) = 1/2 then, for alla such thatS(a) C S, aisa
solution to the problem (3) with := Da.

3) If P.(S,D) > 1/2 there existsy such thatS(«) C S andj
such that|3||- < ||| andDo = Dj.

> laxl” >

keS

and to consider fok € S, a; := —x4, Bk := 0 and fork ¢ S,
ay =0, 3 1= 2. Because: = 3 — « € Ker (D) one easily checks
thatD3 = Da. Obviously
= Z [ |”
k

SIBT =D el <D el
k

k¢S kes
andS(a) C S. O

Lemma 1 will be most useful to look for sufficient conditions on
S that ensure uniqueness of the spargésixpansion, i.e., conditions
such thatP- (S, D) < 1/2. Of particular interest are sufficient condi-
tions that take the form

if card (S) < f(D), thenP,(S, D) < 1/2 9)

which correspond to uniqueness results of the form
if [|o|lo < f(D), thena is the unique solution t63).

The following lemma shows that such conditions are intimately related
to the sparkZ (D). We denote by«] the smallest integer not smaller
thanz, i.e.,[z] — 1 < = < [z].
Lemma 2:
1) If |allo < Z(D)/2,thena is the unique solution to (1). In other
words, (9) holds forr = 0 with f(D) = Z(D)/2.
2) If (9) holds true for som@ < 7 < 1 with somef(D), then it
holds true with the same constaf{tD) for 7 = 0.
3) If (9) holds true forr = 0 with somef (D), thenf(D) <

[Z(D)/2].
Proof: For anyS we observe that
Py(S, D) < . card(S) < card(S)
z€Ker(D),z#£0 ”il,’”() A

Proof: The lemma was used without being stated explicitly irThe first statement immediately follows.

[1] and [2], in the special case = 1 and with D a union of two

The second statement is almost trivial. Assuming that condition (9)

orthonormal bases. The proof follows the same steps as in [1] and [2plds true withr and f, we know that whefla|jo < f, forall 3 # o

Under the assumptioR, (S, D) < 1/2 andS(«) C S, what we need
to prove is that for al € Ker(D),

Z | + wp|” > Z || .
k k
This is equivalent to showing
Z lee|” + Z (|ozk + ap]” = |ak]” ) > 0.
k¢S keS

For0 <t <1, we have the quasi-triangle inequaljat-b|™ < |a|” +
|b|™, from which we can derive the inequality+y|™ — |3 > — |y|”.
It is thus sufficient to prove that for all € Ker (D)

S ol = X bl > 0
k¢S kes
or equivalently

> el <

keSs

Sl
k

But this is exactly the assumptidd- (S, D) < 1/2. To prove the re-

such thatD3 = Da we have||3||- > |laf|-. Assumeg satisfies
Dj = Da and||8|lo < [|a|lo: then in particulad|Gllo < f so3 is
alsothe unique minimizer of the sant& problem, hencej} = «. It
follows thate is indeed the unique minimizer of tlé problem.
To conclude, let us prove the third statement. By definition, there

existsr € Ker (D) such that|z||c = Z. We can split its suppof§ ()

into two disjoint setsS; and.S. of same cardinality?/2 = [Z/2] (if

Z is even) or with

card (S1)=(Z —-1)/2 and card(S2) =(Z+1)/2=1[Z/2]

(if Z is odd). ObviouslyPs(S2, D) > 1/2, hence (9) cannot hold true
for 7 = 0 with f > card (S2) = [Z/2]. d

There are two consequences of this lemma. The first one is that we
need to estimat& (D). The second is that if we are able to prove that
(9) holds for somé& < 7 < 1 with some constanf (D), then it will
also hold forr = 0 with the same constant. This fact will be extensively
used to find sufficient conditions so that a solution to theproblem
also solves uniquely th€ problem.

In [1] and [2], the case oD = [B;, B,] was considered where
B, and B, are two orthonormal matrices corresponding to or-

sult for P, (S, D) = 1/2 we copy the above line of arguments andhonormal bases. Donoho and Huo proveduacertainty principle
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Z([B,,B.]) > 1+ 1/M [1, Theorem VII.3] and obtained the Ill. SPARSEREPRESENTATIONS INUNIONS OF BASES
sufficient condition (9) forr € {0, 1} with We now switch to the special case Bfa union of L orthonormal
1 bases,i.eD = [By,...,B,]whereB, is an orthonormal matri¥, <
f([B1. B2]) = 5(1 +1/M(D)). 10) < L. First, we concentrate on getting a result of the type (9)fer

0. This will correspond to getting a sharper generalized uncertainty

Elad and Bruckstein improved the uncertainty principle by getting [%’rinciple by getting a lower bound o#(D)

Theorem 11Z([B., B2]) > 2/M. Thus, they obtained the sufficient

condition (9) forr = 0 with the less restrictive constant Lemma 3: Let D be a union ofZ. orthonormal bases. Let
él?l
([B1, B2]) = 1/M (D). ,
#(1B1. Ba]) /M(D) (11) z=|...| € Ker(D)
Eventually, Elad and Bruckstein used another technique to obtain con- xt

dition (9) for7 = 1 (and, thus, forr = 0) with with 2! € RY (resp..C") and assume + 0. Then
F([B:,Ba)) = (V2 - 1/2)/M(D) ~ 0.914/M (D). (12) g )
Feuer and Nemirovsk i Z L+ M(D)]"llo =toh 4n
y [4] recently proved that the above constant is =1

essentially the best one to get condition (9) foe= 1, in particular it Consequently
cannot be replaced with the less restrictive constant (11).

Next we show that the result with the most restrictive of the con- 7(D) > (1 i 1 ) 1 _ (18)
stants, that is, (10), extends to the case of arbitrary dictionaries. In the - L-1/M(D)
next section, we will consider results for dictionaries built by taking
the union ofL > 2 orthonormal bases.

Proof: Becauser € Ker (D), for every! we haveBz' =

o _ — Y Bya"  henceg! = — v B By 2" . DenotingX' € RN
Theorem 1: For any dictionary, if the vector having as entries the absolute values of those of the original
1 vectorz!, we have for all: € Ker (D) andl << L
[|e]lo < 5(1 +1/M(D)) (13) ,
X'<MD)- Y X - 1w (19)
thena is the (unique) solution to both tHé and thef* minimization Ul

problems.
Proof: As already noticed, we will just need to show that (9
holds forr = 1 with f := (1 4+ 1/M)/2.
Considerr € Ker (D). For everyk we have
y 1 . 1 0o -1
oge == wwgw (L MIIX o) - [1IX M < MIX o - D NX 1

G

herely € R" is a column vector with all entries equal to one.
or each/, summing over the nonzero coordinatesXf we obtain
IX' < MIX o - pT [IX"||:. It follows that

k!'#k
. . ) ) hence
hence, taking the inner product of both hand sides with|zi| <

M(D) - Yy, x| . It follows that 1] M|z |o

LS T M Ml 1
(14 M) - |oe] < M - ||l (14) l
, oS Summing ovet we obtairi|«||; < (32, 24lzllo_).||x||; from which
Summing ovek € S we getPi(S. D) - [|z]li < =M ), s0 e get ( LMl Ho)
Pi(5.D) < % <172 LMl
: 14 Mll2lllo =7
as soon asard (S) < (1 +1/M)/2. d

This is easily rewrittenZ,":1 g(M||2"|o) € L — 1 with g(y) =

Note that the above line of arguments can be modified slightly t1c1>/(1 + y) and gives (17). By the convexity af and the fact that

prove that for arbitrary dictionaries we have the generalized uncertainmu”(J _ ZL M|« lo, we haveg(M|l«llo/L) < (L — 1)/L
o Mzllo = S, Ml2'lo, Mz < _
principle henceM ||z||o > £+ and (18) follows. O

Z(D)>1+4+1/M(D). (15) Notice that forL = 2 the condition (17) can be rewritten
VilEtloll#2]le > 1/M asin [2, Theorem 1]. There are examples of
Notice that, as soon as the dictionary contains an orthonormal basis pafts of bases witlf = 2/M, so the generalized uncertainty principle
an additional unit vector, the value 8f is at least /+/N . To see that, (18) is sharp foll = 2. ForL > 3 itis an open problem whether there
let us assume, without loss of generality, that the orthonormal basigst examples of. orthonormal bases for whichf Z is arbitrarily
corresponds to the firsV" vectors ofD. By close tol + 1/(L — 1). Using (18) together with Lemma 2 we have

N the following corollary.

D Wgntn, 90 = llgvll* = 1 Corollary 1: Let D be a union ofL orthonormal bases. If

k=1

_ ‘ 1 1 1 20
we see thatax;_, [(gn+1.gx)° > 1/N, hence the inequality llallo < 5t 2(L—1) ) M(D) (20)

M(D) > 1/VN. (16) then the unique solution to thH& problem isa.
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For L = 2, we find again the least restrictive condition (11) of Elagnd
and Bruckstein. As we increase the numbeof bases while keeping I
M constant (yve will see in Section IV that itis indeed possible to have Z 1§(az)X’ — Z AR (25)
uptoL = N + 1 orthonormal bases with perfect separatioh = =
1/V/'N, for N a power of two), Condition (20) gets more and more
restrictive. It is only natural that we have to pay a price for increasingherel x € R" is a vector with all entries equal to one ahd € R
the redundancy of the dictionary. For small enough valueB,qR0) is a vector with ones on the index se&nd zeroes elsewhere. Thus, it
is less restrictive than (13). Fdr > 1 + 1/M, however, the bound is sufficient to show that under the condition (22) and the constraints
in Corollary 1 becomes more restrictive than the general result froi@3)—(24) andX' > 0 we have
Theorem 1, so the latter should be used in this case. r

Let us now consider thé' minimization problem with unions of ;
orthonormal bases. For pairs of bases, the general result of Theorem X1, X

1 was improved in [2] to get the less restrictive sufficient conditiorﬂ dasin(2l b lacina th i . 24 with
lalle < (V2 — 0.5)/M(D). The authors in [2] indeed proved a et us proceed as in [2]: by replacing the equality constraints (24) wit

stronger result which can be stated as follows: if we denote twq inequalities, we now hav_e a classical linear programming problem,
which can be put into canonical form

keS(x)

B

&

5
TM‘

—
[}

B

b

A
Do =

a]
o= |:a2] min1 :=minC'Z subjecttoAZ > B, Z >0
prima.
with o' € RY (resp.C™)andK; := ||o'||o,! = 1,2, then a sufficient with
condition to ensuré’; (S(a), D) < 1/2 is that !
2M?*(D)K Ky + M(D)max(K,,K,) —1<0.  (21) Z=1...
: . : Xt
Next we generalize this result to a unionlbbases.
T _
Theorem 2: Let D be a union ofL. orthonormal bases. Denote C7 = [l s =Lsgan)]
ot - —In  Milyygx ... ... M1yxnT
‘T QL M1nxn Iy M1nxn
with o' € RY (resp.,C"). Without loss of generality, we can assume 4 —
that the baseB; have been numbered so thiat!||o < --- < [la]lo. : . —In M1nxn
If M1yxn . oo Milnxwn —In
— < 22 _1T _1T
T3 Moy < 201 % Mlja'[lo) (22) L —1% 15

1>2
and

thena is the (unique) solution to th€ minimization problem. . . .
Proof: We follow [2, proof of Theorem 3] and start similarly to B® =[0.1y,....0.1x,1, ~1].
the proof of Lemma 3. Consider

) What we need to prove isinpima1 > — 1. The dual linear program-

x ming problem is
z=|...| €Ker(D) " "

) max := max B~ U subjecttcA" U < C,U >0

with #' € RV (resp.,C™). For everyl we have and we know [5] thatnaxgua1 = minprimal, S0 the desired result will
. v be obtained if we can prove that there exists séme 0 that satisfies
B! = =3 Bua ATU < CandB"U > —1/2.
i We will look for such al/ in a parametric form
hence, o . .
U' = lé(oq). . a‘Llé—(uL), b, (]

l j : T v
£r = — B[ Bl/.[' .

= with a;,b,¢ > 0. Noticing thatBT U = b — ¢, the goal will be to

chooseu;, b, ¢ so thath — ¢ > —1/2 andA” U < C.

DenotingX' € R the vector having as entries the absolute values Straightforward computations show that the conditdnl’ < C'is
of those of the original vectar’, we have for all: € Ker (D) and equivalent to the inequalities far< 1 < L

1<1<L

X' <M(D) Y 1nxn X" 3 (= Olnt Minsn | 3 arTfe | + (1= a)lgan < 0.
= = U#1
. . o
wherel xx v is an N -by-N' matrix with all entries equal to one. By BY the equalityl x x x 15 = card (5)1x this becomes

definition, X' also satisfiest’ > 0. In addition, for allz € Ker (D) , v I [ T
with ”'77”1 _ EIL:1 ||TI||1 — 1, we have (b—(ﬁ—i—f\f%:(l,lln(y ||0)1N—fu(l,[||(}: ||01N—|—(1—(l,l)15(01) <0

L
Z 10x! =1 (24) Where we used the fact thid'||o := card (S(a')). Denotingy™ =
— ’ max(y,0) andy~ = min(y,0), the positive and negative parts of



3324 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 49, NO. 12, DECEMBER 2003

y € R, the constraint is eventually expressed,ffo£ [ < L such that Proof: Denotingy; := M]||o'||o andy = (y:)%,, condition (22)
le!]lo # 0, as can be rewritten

b—c+ *MZZ/“I’HO"NHO < Mai||a'|jo + (a1 = 1) (26) g(y) = i Y1 1 1

1121-1—;1/1 214y —

. l _ . . .
The constraint for all such thaf|a'||o = 0 (if there is any) is For anye > 0 consider the sefl. := {y |y > 0.5, yi = ¢} and

b—c+ MY avfa’ o < 0. let us compute
I/
. . . G(c) := sup g(y).
Now that the constraints have been established, let us byild and yEH,
c. We definea; = 1 when||o'|lo = 0 and use a “threshold” pa-

Using Lagrange multipliers, we know that aplythat corresponds to an

rameterd to definea;(8) = 8/||a'|lo whenl < ||&!]lo < 6 and . ’ . .
‘ — ] , ] { > extremum ofy under the constraint, y; = ¢ will satisfy the equalities
a(f) = (1+M6)/(1 + Mlja'llo) whenla'llo > 6. Letus also %, "~ "\ " 57 7T T R e +yi) 72 = A,

define=(8) := 3=, a/(#)||a'[lo. One can check case-by-case that foPy; 7 )
all g, when||a’||0 # 0, the constraint (26) becomes while for2 < 1 < L, this corresponds tol + y;)~* = A. Looking
at the second partial derivatives gfve easily check that all extrema
b—c+ MX(0) < M6. (27)  are indeed maxima. The only maximum that satisfies the additional

S o
If there is some value dffor which ||o||o = 0, the associated con- constrainty; 2 0 is given by

straint is stronger and becomes yr :,\*1/2/\/5 —-1
b—c+ MS(8) < 0. (28) yi =" -1 12,
Obviously, (27) (resp., (28)) can always be satisfied by taking and we can check thaf < y3 = --- = y. Let us express as a
g(8)T ande = —g(#)~ with g(#) := M(# —S(6)) (resp.,g(#) := function ofc. By using the constraint we get
—MX(0)). * —1/2
ForU = U(#) built in this parametric form{/(4) satisfies the con- c=D i =2 (1/ﬁ+ (- 1)) -
straints/ > 0 andAU < C', andwe have3” U (9) = ¢(#). Thus, the !
problem is now whether and it follows that
mgtxg(e) > —1/2. (29) V214 yi) = 14yl =2 = (L+0)(1/V2+(L-1)).
Let us deal first with the case whejte’'||o # 0 for all I. It is easy Then we get by direct computations
. 1 . ,
to check that a(y") = [(L—l)(ﬁc+ﬁ—2)—1/ﬁ]
o o) = = 2 —elo 1 1 arpary) VAL
B 1+ Mlla'flo™ ’

so the conditiorG(¢) = g(y*) < 0 is equivalent ta L — 1)(v/2¢ +

so the theorem is proved. Simple (but tedious) computations Wou\[ = 2) < 1/V2 thatis,
show that indeedhaxy g(#) = max(g(0), g(||a*|]o)), and that when c< V14 1
the maximum igy(0) it does not satisfy the constraint (29). So, in this = 2(L-1)"

he sufficient conditi ! —1/2is,inasen imal ) ,
case, the sufficient conditiog|ajo) > —1/2is, in a sense, optimal ., conclude, let us consider := (M]||a'|jo)f~, and assume the

for the type of argument we have presented. - . ; I .
Inth(;,[ycr;se Whngh'Ho " Oforsopmel (i.e.][a'[lo = 0), we notice strict inequality (30) is satisfied. Then by the above computations

that 53(8) is a piecewise-linear increasing f]unction Iﬁﬁ;(e 9(6) = 9(y) < G(M||allo) < 0 hence the strictinequality (22) is satisfied. If

4(0). Becausdia[|o = 0 we conclude b estimatin«é;(()) as (30) is satisfied as a large inequality and there exists some ingeX

R s y ' such that(1 + M]||a!]|o)/(1 + M]||lat]le) # /2 (this is generally

M||a llo Mo [l , the case!), thew # y* so we havey(y) < G(M|laflo) < 0 and
- Z Z (1+ Mlla'llo). O we get the same result. In both cases, we reach the conclusion usin
L+ Mlla'lo ~ ~ £ 1+ Mla'ly g : : g
Theorem 2. O

1>2

L

In the case of. = 2 bases, (22) is exactly the condition (21) proved The sufficient conditions in Corollary 1 and 2 are very similar, but
in [2] where it is proved that a simpler sufficient conditiorifis|jo < the latter is a bit more restrictive, with a gap2 — (V2 — 1) ~ 0.086
(V2 —1/2)/M. The general condition (22) is simple to check for anyn the constant in front of /A . Table | lists the values of the constant
givena. However, in order to benefit from Lemma 2 and get a sufficierif front of 1 /3 (D) in Corollary 2. Forl, = 2, we recover the constant
condition fora to simultaneously minimize th& and the!! problems, 2 — 1/2 from [2, Theorem 3]. For larger values &f we get more
let us look for a sufficient conditiofjr|jo < f(D). restrictive constraints, i.e., with smaller constants. Indeed[ for 7,

. . ) one can check that for any value &f,
Corollary 2: For a dictionary that is the union df orthonormal

bases, if 5 1
<\/§ 1+ SE=T 1)) /M < (14+1/M)/2

llaflo < <\/§ -1+ ﬁ) M(l D) (30) sothe general sufficient condition in Theorem 1 is less restrictive than
) the specialized one in Corollary 2. For< 6 and small values ol/
thena is the (unique) solution to both th8 and thet* minimization (i.e., because of (16), in large dimensioh >> 1), the condition in
problems. With the notations of Theorem 2, the same conclusionGsrollary 2 is less restrictive than that of Theorem 1, and we get an
reached if the above inequality is large but there exists an ihde2 improved result. For large values 8f andL < 6, one has to check
such thai1 + M ||e!]|o) /(1 + M]||at]le) # V2. on a case-by-case basis which result is stronger.
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TABLE |
NUMERICAL VALUES OF THECONSTANT V2 — 1 + ﬁ IN COROLLARY
2 FORSMALL VALUES OF L
2 3 4 5 6 7
c | 0914 | 0.664 | 0.580 [ 0.539 | 0.514 | 0.497

IV. HIGHLY REDUNDANT DICTIONARIES

3325

We also proved an uncertainty principle for uniondafrthonormal
bases fof+ and derived a slightly less restrictive sufficient condition

ot < (24 57 ) 77
(L-1)) M(D)

to ensure that the (most difficulty minimization problem admits as
a unique solution.

Let us show how to apply the extended result (Theorem 2) to highl The _proofs of the above re_sults are bgsed on the techniques intro-
redundant dictionaries. It is perhaps not obvious that one can hang&ed in [1] and [2] so the main contribution of the present correspon-

large number of orthonormal base$if with a small coherence factor dence is to point out that we are not restricted to dictionaries that are
M(D), but this is possible (for certain values &), and we will use the union of two orthonormal bases. We can consider more general

the following theorem to build examples of such dictionaries. We refdictionaries and still enjoy all the practical benefits from restating the

to [6] and [7] for a proof of Theorem 3.

Theorem 3:; Let N = 2/*! j > 0, and conside{ = R". There
exists a dictionanD in H consisting of the union of = 2/ = N/2
orthonormal bases f6t, such that for any pair, v of distinct vectors
belonging taD: |(u, v)| € {0, N~1/2}.

ForN =27, > 0,andH = C, one can find a dictionar? in +
consisting of the union of = N 4 1 orthonormal bases fdt, again

problem as a linear programming minimization problem and getthe
minimizer for “free” in cases where the output from the LP algorithm
has few nonzero entries.

Finally, we should note that mamatural and useful redundant dic-
tionaries such as the discrete Gabor dictionary, unions of bi-orthogonal
discrete wavelet dictionaries, etcannotbe written as a union of two
orthonormal bases and thus were not covered by the results in [1] and

2].

with the perfect separation property that for any pair of distinct
vectors belonging td: |(u, v)| € {0, N~1/2},

The dictionaries from Theorem 3 are call@dassmannian dictio-
naries due to the fact that their construction is closely related to the
Grassmannian packing problem, see [6] and [7] for details.

For N = 2’*", Theorem 3 tells us that we can take a dictionBry
consisting of the union oV + 1 orthonormal bases i, that is,D
contains the large numbéf (N + 1)/2 of elements, but we still have
coherencel (D) = N~'/2, We can extract from such a dictionary
many examples of unionB;, of L baseg2 < L < N + 1) with the
same coherence. For each example, we can apply Theorem 1 or Coro
lary 2 to conclude that is the unique sparseét and/' representation
of s := Dy« as soon as

llallo < max <ﬁ/2 +1/2,VN <\/§— 1+ ﬁ) }

(1]
[2
(3]

i
5
Q

[7]
V. CONCLUSION

We have studied sparse representations of signals using an arbitrary
dictionaryD in H = R" (resp.,H = C"). For any dictionaryD,
7 € {0,1}, and a given signal we prove thaty, with s := Dq, is the
unique solution to the optimization problem

minimize ||3||- subjecttoDg = s (31)

provided thaf|a|lo < £(1+1/M(D)). So this condition off ||, en-
sures that the more difficul® minimization problem has exactly the
same unique solution as the¢* problem. This is of practical impor-
tance since (31) can be restated and solved as a linear programming
minimization problem, thus giving us a feasible way to actually com-
pute the minimizer.

When D is a union ofL > 2 orthonormal bases fdok, we have
derived the sufficient condition

- 1 1
lladlo < <‘ﬁ_ LYY - 1)) V(D)
for a with s := D, to be the simultaneous unique minimizer in (31)
forr € {0,1}. When2 < L < 6, this condition is generally less
restrictive (and the result thus covers more cases) than the estimate for
arbitrary dictionaries. FoE = 2, we simply recover the main result
from [2].
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