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IntroductionIn signal analysis one is (among other things) interested in obtaining information about localproperties of signals. The Fourier transformation is not very useful for such an analysis, sincethe Fourier integral decomposes the signal into the stationary signals eix� of in�nite duration,which makes it di�cult to extract local information.The traditional solution to the problem of obtaining a local Fourier analysis is due to D.Gabor ([13]). The idea is to analyze the signal through a sliding window, which corresponds tousing basis functions of the typegab(x) = eiaxg(x� b); a; b 2 R;where g is a �xed function in L2(R): The question is, whether it is possible to construct anorthonormal basis for L2(R) consisting of Gabor basis functions well localized in both time andfrequency. The answer is, unfortunately, negative: The Balian-Low Theorem (see [8]) statesthat whenever gm;n(x) = einp0xg(x�mq0); m; n 2 Zis an orthonormal basis for L2(R) then eitherZR x2jg(x)j2 dx =1 or ZR �2jĝ(�)j2 d� =1;where we de�ne the Fourier transform of h 2 L1(R) byĥ(�) = ZR h(x)e�ix� dx:It is therefore impossible for the Gabor basis functions to be well localized in both time andfrequency.A new type of basis functions called wavelets was introduced in 1982 by the geophysicist J.Morlet in view of applications for the analysis of seismic data. He considered the family a;b(x) = jaj�1=2 �x� ba �; a; b 2 R;1



of translated and dilated versions of a single function  2 L2(R) ( is called the wavelet).Wavelet analysis consists in applying such families of functions to decompose data, functions,or operators. The mathematical justi�cation for using such a decomposition was given by A.Grossmann and J. Morlet ([17]). We are interested in the following discrete version of Morlet'salgorithm.De�nition 0.1. An orthonormal wavelet is a function  2 L2(R) such that the familyf j;kgj;k2Z;where  j;k(x) = 2j=2 (2jx� k), is an orthonormal basis for L2(R):The �rst example of a basis with this structure was given by Alfred Haar in 1910.Example 0.2 ([18]). The Haar wavelet h is de�ned byh(x) = 8>>><>>>:1; for x 2 [0; 1=2)�1; for x 2 [1=2; 1)0; otherwise.The family fhj;kgj;k2Z provides an example of an orthonormal wavelet basis for L2(R).The Haar wavelet is not continuous and as a consequence has a bad frequency localization inthe sense that its Fourier transform is not even integrable.During 1986, S. Mallat and Y. Meyer introduced a general method for constructing or-thonormal wavelets with good time-frequency localization. We give a brief review of this method(called multiresolution analysis) in Chapter 1, and we show how the structure is related to apair of so-called Conjugate Quadrature Filters. We also consider some special families of com-pactly supported wavelets, constructed by I. Daubechies, that will be used to construct waveletpackets in Chapters 2 and 3.A problem with every wavelet basis is that all the high-frequency wavelets have poor fre-quency localization. Wavelet packets were introduced by R. Coifman, Y. Meyer, and M. V.Wickerhauser in order to improve the frequency resolution and thereby get more e�cient al-gorithms to decompose signals. The idea is to construct a whole library of orthonormal basesfor L2(R) derived from the multiresolution structure, each with distinct time-frequency proper-ties. The orthonormal wavelet basis itself, and the so-called basic wavelet packet basis, are twoparticular members of the library. The construction of wavelet packets is presented in Chapter2. The main results in this thesis are concerned with the behavior of wavelet packets in Lp(R).In chapter 2 we consider the size properties of the basic wavelet packets in Lp(R). One of the2



main new results is that for a collection of \popular" �nite �lters one can �nd a subsequence ofthe associated basic wavelet packets that grow exponentially in Lp-norm for p large. This resultgeneralizes and re�nes a result by Coifman, Meyer, and Wickerhauser (see [6]) for the Meyer�lters. Another question we consider is whether basic wavelet packets always form a basis forLp(R) for 1 < p < 1. The answer is positive for a select family of basic wavelet packetsrelated to the Walsh system, and we even have pointwise convergence a.e. for expansions insuch functions. In general the wavelet packets fail to be a basis. This is true for the basicwavelet packets associated with the \popular" �lters mentioned above. We also prove thatusing so-called nonstationary wavelet packets one can obtain uniformly bounded basic waveletpacket. We introduce a new generalization of wavelet packets, called highly nonstationarywavelet packets, and prove that such basic wavelet packets can be uniformly bounded and havesupport contained in some �xed compact set.Chapter 3 contains the generalization of all the results from Chapter 2 to periodic waveletpackets. The tool used to generalize the results is multiplier theory for Fourier series.It turns out that the trigonometric system and periodic wavelet packets share a number ofproperties. So it is reasonable to expect that some of the \nice" operators de�ned using thetrigonometric system can be de�ned using periodic wavelet packets in stead. In chapter 4, weemulate the de�nition of the Hilbert transform on T using periodic wavelet packets in placeof the trigonometric system. The construction is successful (i.e. the operator is bounded onLp[0; 1), 1 < p <1) as long as we use periodic wavelet packets derived from the Walsh system.For more general periodic wavelet packets, it is not possible to use our method to constructsuch a bounded Hilbert transform. The negative result is a consequence of the results fromChapter 3.
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Chapter 1WaveletsThis chapter contains a brief review of some basic results about multiresolution analyses, �lters,and wavelets. Readers not already familiar with such concepts may �nd it useful to consult [8],[19], or [44] for some background material.1.1 Multiresolution AnalysisThere exists a very general method for obtaining wavelet bases of various degrees of smoothness.In order to describe this method we introduce the notion of a multiresolution analysis. Themultiresolution analysis structure was �rst introduced by S. Mallat ([26]) and Y. Meyer ([29])in 1986.De�nition 1.1. A multiresolution analysis is a sequence of closed subspaces Vj, j 2 Z, ofL2(R) satisfying Vj � Vj+1; j 2 Z; (1.1)f 2 Vj , f(2 �) 2 Vj+1; j 2 Z; (1.2)[j2ZVj = L2(R); (1.3)\j2ZVj = f0g; (1.4)There exists a � 2 V0 such that f�(� � k)gk2Zis an orthonormal basis for V0: (1.5)Given a multiresolution analysis fVjg we want to construct an associated wavelet. To do4



this we de�ne the 2�-periodic function m0 bym0(�) =Xk2Zckeik�;where the sequence fckg is given by12�(x2 ) =Xk2Zck�(x+ k):The important property of m0 is that�̂(2�) = m0(�)�̂(�); (1.6)which under fairly mild hypothesis on the behaviour of m0 at 0 (see [19]) can be generalized to�̂(�) = 1Yj=1m0(2�j�): (1.7)The function m0 is called the low-pass �lter associated with the multiresolution analysis, and(1.6) is called the two-scale equation for the scaling function �.An orthonormal wavelet can then be obtained using the following fundamental resultTheorem 1.2 ([29, 26]). Suppose � is a scaling function for a multiresolution analysis fVjg,and m0 is the associated low-pass �lter. Then  2 V1\V ?0 is an orthonormal wavelet for L2(R)if and only if  ̂(2�) = ei��(2�)m0(� + �)�̂(�)a.e., for some 2�-periodic, measurable, and unimodular function �.Remark. For simplicity we always take � � 1, and we let Wj denote the wavelet spaceVj+1 \ V ?j .The procedure used for constructing multiresolution analyses is to �nd a suitable 2�-periodicfunction m0 and then de�ne the associated scaling function using equation (1.7). Clearly, m0has to satisfy certain conditions for this construction to work. The main result of A. Cohen'sdissertation is the following su�cient condition to ensure that m0 is the low-pass �lter for amultiresolution analysis.Theorem 1.3 ([3]). Let m0 be a 2�-periodic Cr+1(R) function, r = 0; 1; : : : ;1; such thatm1(0) = 1. Suppose jm0(�)j2 + jm0(� + �)j2 = 1:5



Then m0 is a low-pass �lter for a scaling function associated with a multiresolution analysis ifand only if there exists a compact set K with 0 in its interior, such thatX̀2Z�K(� + 2�`) = 1 for a.e. � 2 R (1.8)and m0(2�j�) 6= 0 for all � 2 K and all j = 1; 2 : : : (1.9)The last condition may look rather technical but if we take K = [��; �] it just says that m0must not vanish on [��=2; �=2].Remark. Only the case r = 1 is proved in [3] but the proof works just as well for �niter. Moreover, if we want a compactly supported scaling function then it su�ces to choose atrigonometric polynomial as m0 (see [8]).1.2 Conjugate Quadrature FiltersSupposem0 is a low-pass �lter associated with a multiresolution analysis fVjg. We de�ne a new2�-periodic function, called the high-pass �lter associated with fVjg, by m1(�) = ei�m0(� + �).One can easily check that the matrix"m0(�) m0(� + �)m1(�) m1(� + �)#is unitary a.e. This fact puts the functions (m0;m1) into the context of conjugate quadrature�lters (CQFs).De�nition 1.4 (CQFs). Let fhng 2 `1(Z) be a real-valued sequences, and let gk = (�1)kh1�kfor k 2 Z. De�ne the operators H;G : `2(Z)! `2(Z) by(Ha)k =Xn2Zanhn�2k(Ga)k =Xn2Zangn�2k:The �lters H and G are called a pair of CQFs if2HH� = 2GG� = I (1.10)H1 = 1; where 1 = (: : : ; 1; 1; 1; : : : )H�G+G�H = I (1.11)HG� = GH� = 0: (1.12)6



It is not hard to check that the adjoints of the operators H and G are given by(H�a)k =Xj2Zajhk�2j(G�a)k =Xj2Zajgk�2j ;so conditions (1.10) and (1.12) can be translated to the following conditions on the �lter coef-�cients X̀2Zh`�2kh` = 12�k;0;X̀2Zg`�2kg` = 12�k;0; and (1.13)X̀2Zh`�2kg` = 0for all k 2 Z: To see the connection to the multiresolution �lters we introduce the 2�-periodicfunctions M0(�) =Xk2Zhkeik� and M1(�) =Xk2Zgkeik�associated with the CQFs of De�nition 1.4 (M0 and M1 are the so-called transfer-functionsassociated with the CQFs). Then the conditions given by (1.13) are equivalent to"M0(�) M0(� + �)M1(�) M1(� + �)#being unitary a.e. Using this fact it is not hard to check that the �lters (m0;m1) associatedwith a multiresolution analysis is indeed a pair of CQFs (see [8]).Remark. We will keep up the tradition and abuse notation by referring to the transfer functionas the �lter.1.2.1 Some Special FIR FiltersTo construct a compactly supported wavelet with N vanishing moments and maximal decay ofits Fourier transform one has to use a low-pass �lter m0 of the formm0(�) = �1 + ei�2 �N L(�); N 2 N;7



where L is a trigonometric polynomial. I. Daubechies proves in [8] that L must satisfyjL(�)j2 = N�1Xk=0 �N � 1 + kk �� sin �2�2k +� sin �2�2NR�12 � sin2 �2�; (1.14)with R an odd polynomial in order to havejm0(�)j2 + jm0(� + �)j2 = 1:We need a factorization result by F. Riesz to recover L from (1.14). We present the theproof of the result here since it is essential in order to explain the construction of the Daubechiesfamily of �lters.Lemma 1.5 (Riesz Factorization). Let A be a positive trigonometric polynomial of the formA(�) = a02 + NXn=1 an cos(n�) (1.15)with an 2 R, aN 6= 0. Then there exists a trigonometric polynomial B(�) = PNn=0 bnein� withbn 2 R such that A(�) = jB(�)j2:Proof. De�ne the polynomial PA byPA(z) = 12 NXn=�N ajnjzN+n:It follows that PA(ei�) = eiN� 12 NXn=�N ajnjein� = eiN�A(�):We now factorize PA. Note that the two polynomials PA(z) and z2NPA(z�1) agree everywhere.Since aN 6= 0 we have PA(0) 6= 0 so if z0 is a zero of PA then so is z�10 . All an are real so we havePA(z) = PA(�z) and this implies that whenever z0 is a zero so is �z0. From these observations itfollows that the zeros of PA come in either complex quadruplets zj ; �zj ; z�1j , and �z�1j or in realdoublets rk and r�1k . Factorizing PA then leads toPA(z) = 12aN� KYk=1(z � rk)(z � r�1k )�� JYj=1(z � zj)(z � �zj)(z � z�1j )(z � �z�1j )�;where we have separated the di�erent kinds of zeros. Note that for z 6= 0,j(ei� � z)(ei� � �z�1j )j = jzj�1jei� � zj2;8



so A(�) = jA(�)j= jPA(ei�)j= �12 jaN j KYk=1 jrkj�1 JYj=1 jzj j�2����� KYk=1(ei� � rk) JYj=1(ei� � zj)(ei� � �zj)����2= jB(�)j2;where B(�) = �12 jaN j KYk=1 jrkj�1 JYj=1 jzj j�2�1=2 KYk=1(ei� � rk) JYj=1(e2i� � 2ei�Re(zj) + jzj j2):Clearly, B is a trigonometric polynomial of order N with real coe�cients. �In the next sections we introduce some speci�c �nite �lters, constructed by I. Daubechies(see [7, 9]), that will be used in the chapters on wavelet packets.The Daubechies FiltersFirst we introduce the \standard" Daubechies �lters. We start by lettingjLN (�)j2 = N�1Xk=0 �N � 1 + kk � sin2k( �2)to get fewest possible non-zero coe�cients for the associated CQF. We �nd LN (�) by the Rieszfactorization, where we always choose the zero on or within the unit circle. To be more explicit,we choose LN (�) = CN NYk=1(ei� � rk) JYj=1(e2i� � 2ei�Re(zj) + jzj j2);with jrkj � 1 for k = 1; : : : K, jzj j � 1 for j = 1; : : : ; J: We now let~mN0 (�) = �1 + ei�2 �NLN (�):Since ~mN0 (�) = 0 we have j ~m0(0)j = 1 and LN (0) � 0 (by our particular choice of LN ). Thus,~mN0 (0) = 1. Moreover, ~mN0 (�) 6= 0 on [��=2; �=2] so m0 satis�es the conditions of Theorem1.3. We let mN0 (�) = c � ~mN0 (�) where we adjust the phase c such thatmN0 (�) = 2N�1Xk=0 cNk e�ik�:9



The sequence fcNk g2N�1k=0 is called the Daubechies low-pass �lter of length 2N . The associatedhigh-pass �lter is given, as usual, bymN1 (�) = ei�mN0 (� + �):The Least Asymmetric Daubechies FiltersA �lter with coe�cients fhng has linear phase if the associated transfer function, H(�) =Pk hkeik�, has linear phase, i.e. H(�) = ei��jH(�)j;for some � 2 R. By inspection, one can check that the Daubechies �lters mN0 do not even comeclose to having linear phase. The least asymmetric Daubechies �lters are constructed like theDaubechies �lters with the exception that the roots of jLN j2 (in the Riesz factorization) arechosen to make the phase of the transfer function \close" to linear. Note that m0 is a productof factors of the type (ei� � zj)(ei� � �zj) = ei�[ei� � 2Rj cos�j +R2je�i�]; (1.16)and (ei� � rk) = ei�=2[ei�=2 � rke�i�=2]: (1.17)Apart from linear terms the phase contributions from such factors are, respectively,	j(�) = arctg� (1 �Rj)2 sin �(1 +R2j ) cos � � 2Rj cos�j�; (1.18)and ~	k(�) = arctg�1 + rk1� rk tg�2�: (1.19)The valuation of arctg is chosen such that 	l is continuous in [0; 2�] and 	l(0) = 0. Then theleast asymmetric �lter is the m0 obtained by minimizing the total nonlinear phase contribution	tot(�) = KXk=1( ~	k(�)� �2� ~	k(2�)) + JXj=1(	j(�)� �2�	j(2�));over the 2bN=2c di�erent choices of zeros. This is usually done graphically.
10



The Coi
et FiltersThe Coi
et �lters (named after R. Coifman, but constructed by Daubechies) are constructedsuch that we get a �xed number of vanishing moments of both the wavelet  and scalingfunction �, i.e. for some �xed LZ �(x) dx = 1;Z xk�(x) dx = 0; for k = 1; 2; : : : ; L� 1;Z xk (x) dx = 0; for k = 0; 1; : : : ; L� 1:It is not hard to see that the above conditions are equivalent to the following conditions on thelow-pass �lter m0, m(`)0 (�) = 0; for ` = 0; 1; : : : ; L� 1;m0(0) = 1; m(`)0 (0) = 0; for ` = 1; 2; : : : ; L� 1:For L = 2K we can takem0(�) = � cos2 �2�K�K�1Xk=0 �K � 1 + kk �� sin2 �2�k +� sin2 �2�Kf(�)�;where f(�) =P2K�1n=0 fne�in�: Using the identityK�1Xj=0 �K � 1 + jj �� cos2K � sin2j � + sin2K � cos2j �� = 1we get m0(�) = 1 +� sin2 �2�K�� K�1Xk=0 �K � 1 + kk �� cos2 �2�k +� cos2 �2�Kf(�)�:Thus, m0 has a zero of order 2K at � [use cos2 �=2 = 14e�i�(1 + ei�)2]. The coe�cients fn arethen chosen appropriately to normalize m0. The technical details can be found in [7].The Meyer FiltersThe Meyer �lter with resolution " is a non-negative CQF, mM;"0 , for whichmM;"0 j(��=2+";�=2�") = 1:We always assume that mM;"0 2 C1(R). 11



Chapter 2Wavelet PacketsWavelet analysis was originally introduced in order to improve seismic signal processing byswitching from short-time Fourier analysis to new algorithms better suited to detect and analyzeabrupt changes in signals. It corresponds to a decomposition of phase space in which the trade-o� between time and frequency localization has been chosen to provide better and better timelocalization at high frequencies in return for poor frequency localization. In fact the wavelet  j;khas a frequency resolution proportional to 2j , which follows by taking the Fourier transform: ̂j;k(�) = 2�j=2 ̂(2�j�)e�i2�jk�:This makes the analysis well adapted to the study of transient phenomena and has provena very successful approach to many problems in signal processing, numerical analysis, andquantum mechanics. Nevertheless, for stationary signals wavelet analysis is outperformed byshort-time Fourier analysis. Wavelet packets were introduced by R. Coifman, Y. Meyer, andM. V. Wickerhauser to improve the poor frequency localization of wavelet bases for large jand thereby provide a more e�cient decomposition of signals containing both transient andstationary components.2.1 Nonstationary Wavelet PacketsIn the original construction by Coifman, Meyer and Wickerhauser ([4, 5]) of wavelet packetsthe functions were constructed by starting from a multiresolution analysis and then generatingthe wavelet packets using the associated CQFs. However, it was observed by Hess-Nielsen([20, 21]) that it is an unnecessary constraint to use the multiresolution �lters to do the frequencydecomposition. We present his, more general, de�nition of so-called nonstationary waveletpackets here. 12



De�nition 2.1 (Nonstationary Wavelet Packets). Let (�;  ) be the scaling function andwavelet associated with a multiresolution analysis, and let (F (p)0 ; F (p)1 ), p 2 N, be a family ofbounded operators on `2(Z) of the form(F (p)" a)k =Xn2Zanh(p)" (n� 2k); " = 0; 1;with h(p)1 (n) = (�1)nh(p)0 (1� n) a real-valued sequence in `1(Z) such that each (F (p)0 ; F (p)1 ) is apair of CQFs. We de�ne the family of nonstationary wavelet packets fwng1n=0 recursively byletting w0 = �, w1 =  , and then for n 2 Nw2n(x) = 2Xq2Zh(p)0 (q)wn(2x� q)w2n+1(x) = 2Xq2Zh(p)1 (q)wn(2x� q); (2.1)where 2p � n < 2p+1.We are interested in the following special case of De�nition 2.1.De�nition 2.2 (Basic Stationary Wavelet Packets). Let (�;  ) be the scaling function andwavelet associated with a multiresolution analysis, with associated CQFs fhng and fgng. Thefunctions fwngn generated by De�nition 2.1 by letting fh(p)0 g = fhng and fh(p)1 g = fgng for allp 2 N are called basic stationary wavelet packets.De�nition 2.2 is the original de�nition of the basic wavelet packets given by Coifman, Meyer,and Wickerhauser. Figure 2.1 shows the basic stationary wavelet packets w1; w2; : : : ; w8 asso-ciated with the Coi
et �lter of length 6.It is an easy consequence of De�nition 2.2 that for n, 2J�1 � n < 2J , with binary expansionn =PJj=1 "j2j�1, we have ŵn(�) = � JYj=1m"j (�=2j)��̂(�=2J )where (m0;m1) are the �lters associated with the multiresolution analysis.
13
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The following is the fundamental result about nonstationary wavelet packets.Theorem 2.3 ([22, 21]). Let fwng1n=0 be a family of nonstationary wavelet packets associatedwith the multiresolution analysis fVjg with scaling function and wavelet (�;  ). The functionsfwng satisfy the following� fw0(� � k)gk2Z is an orthonormal basis for V0� fwn(� � k)gk2Z;0�n<2j is an orthonormal basis for Vj :In particular, fwn(� � k)gk2Z;n2N0 is an orthonormal basis for L2(R):Proof. Since w0 = � and w1 =  we get the �rst statement, and the second in the casej = 0, immediately. Next step is to prove that fw2n(� � k)gk2Z and fw2n+1(� � k)gk2Z areorthonormal systems. Suppose the result is true for all indices j with j < n with n such that2p � n < 2p+1. We have,hw2n; w2n(� � k)i = 4X̀2ZXq2Zh(p)0 (`)h(p)0 (q)Z wn(2t� `)wn(2(t� k)� q) dt= 2X̀2Zh(p)0 (`)h(p)0 (`� 2k)= �0;k;hw2n+1; w2n+1(� � k)i = 4X̀2ZXq2Zh(p)1 (`)h(p)1 (q)Z wn(2t� `)wn(2(t� k)� q) dt= 2X̀2Zh(p)1 (`)h(p)1 (`� 2k)= �0;k;and hw2n; w2n+1(� � k)i = 4X̀2ZXq2Zh(p)0 (`)h(p)1 (q)Z wn(2t� `)wn(2(t� k)� q) dt= 2X̀2Zh(p)0 (`)h(p)1 (`� 2k)= 0:Thus, a simple additional induction argument using the above shows that fwn(� � k)gn2N0 ;k2Zis an orthonormal system.Let 
n = Spanfwn(� � k)gk2Z. De�ne �f(x) = p2f(2x). Since fwn(� � k)gk is an orthonor-mal system so is f�wn(� � k)gk, and it follows from the exact reconstruction property of the15



�lters (see (1.11)) that for 2p � n < 2p+1,wn(x� k) = 12Xq2Zh(p)0 (k � 2q)w2n(x=2� q) + 12Xq2Zh(p)1 (k � 2q)w2n+1(x=2 � q):Hence, by (2.1),Spanfp2wn(2 � �k)gk = Spanfw2n(� � k)gk � Spanfw2n+1(� � k)gk;i.e. �
n = 
2n � 
2n+1. Thus,�
0 	 
0 = 
1�2
0 	 �
0 = �
1 = 
2 � 
3�3
0 	 �2
0 = �
2 � �
3 = 
4 � 
5 � 
6 � 
7...�k
0 	 �k�1
0 = 
2k�1 � 
2k�1+1 � � � � � 
2k�1:By telescoping the above equalities we �nally get the wanted result�k
0 � �kV0 = Vk = 
0 � 
1 � � � � �
2k�1;and [k�0Vk is dense in L2(R) by the de�nition of a multiresolution analysis. �The above theorem can be generalized considerably. The following construction gives us awhole library of orthonormal bases each with di�erent time-frequency properties.Theorem 2.4. Let fwng be a family of nonstationary wavelet packets. For every partition Pof N0 into sets of the form Inj = fn2j ; : : : ; (n+ 1)2j � 1g with n; j 2 N0 , the familyf2j=2wn(2j � �k)gk2Z;Inj2Pis an orthonormal basis for L2(R):Proof. An argument similar to the one in Theorem 2.3 shows that�k
n = 
2kn � 
2kn+1 � � � � � 
2k(n+1)�1:Moreover, the functions f2j=2wn(2j � �q)gq2Z span the space �j
n andXInj2P �j
n =Mq�0 
q = L2(R);which proves the theorem. �There is an (e�cient) algorithm to decompose a given signal in each of the bases given byTheorem 2.4 and another algorithm to �nd the \best" of such expansions wrt. predeterminedcriteria. The reader should consult [44] for more material on such applications.16



2.2 Wavelet Packets as a Basis for the Lp-spacesThe convergence properties of the expansion of a signal in the wavelet basis have been thor-oughly examined, in particular by Y. Meyer ([29]), whereas the convergence properties of theexpansion in the basic wavelet packets remain unresolved. In this section we consider the ex-pansion of Lp(R)-functions in some special basic wavelet packets, related to the Walsh andShannon wavelet packets.Let us recall the de�nition of a Schauder basis for a separable Banach space.De�nition 2.5. Let X be a separable Banach space. A collection feng1n=0 � X is called aSchauder basis for X if every f 2 X has a unique norm-convergent expansion of the formf = 1Xn=0�nen;with f�ng � C :It is easy to check, using the Banach-Steinhaus theorem, that De�nition 2.5 is equivalentto the following two requirements, where Pn denotes the projection onto the closed span offengnj=0,� Spanfeng1n=0 is dense in X.� fPng1n=0 is a uniformly bounded sequence of operators.It is often much easier to check these two conditions than it is to verify De�nition 2.5 directly.The following two sections contain examples of basic nonstationary wavelet packets that doform Schauder bases for Lp(R), 1 < p <1.2.2.1 The Walsh SystemIn this section we consider nonstationary wavelet packets derived from the well known Walshfunctions. For the sake of completeness we begin by de�ning the Walsh function. Furtherdetails on the Walsh system can be found in Appendix A. Let us recall the de�nition of theHaar �lterDe�nition 2.6. The CQFs given by h0 = h1 = 1=2; hk = 0 otherwise, and gk = (�1)kh1�kare called the Haar �lters.The Walsh wavelet packets are de�ned by using the Haar �lter and Haar scaling function�[0;1) in De�nition 2.2, i.e. 17



De�nition 2.7. The Walsh system fWng1n=0 is de�ned recursively on [0; 1) byW0(x) = �[0;1)(x)and W2n+"(x) =Wn(2x) + (�1)"Wn(2x� 1); " = 0; 1;n = 0; 1; : : : :It is a well known result by R. Paley ([30]) that the Walsh system constitutes a Schauder basisfor Lp[0; 1); 1 < p <1; (see [35] for a nice \Martingale proof") so we have the following positiveresultTheorem 2.8. The functions fWn(� � k)gn2N0 ;k2Z constitute a Schauder basis for Lp(R); 1 <p <1; in the sense that NXn=0 Xjkj�Mhf;Wn(� � k)iWn(� � k) Lp(R)������!M;N!1 f:Our goal in the next section is to extend this result to a class of smooth nonstationarywavelet packets that resemble the Walsh system.2.2.2 Walsh Type Wavelet PacketsWe now de�ne a class of nonstationary wavelet packets that can be seen as a natural general-ization of the Walsh functions. In particular, each wavelet packet system in the class turns outto be equivalent to the Walsh functions in Lp(R); 1 < p <1.De�nition 2.9 (Walsh Type Wavelet Packets). Let fwngn�0;k2Z be a family of nonsta-tionary wavelet packets constructed by using a family fh(p)n g1p=1 of �nite �lters in De�nition2.1. If there exists a constant J 2 N such that h(p)n is the Haar �lter for every p � J and w1has compact support then we call fwngn�0 a family of Walsh type wavelet packets.This de�nition closely resembles De�nition 2.7. To prove the equivalence with the Walsh systemwe need to generalize the following theorem by Y. MeyerTheorem 2.10 ([29]). Let  2 C1(R) be a compactly supported wavelet. Then there exists anisomorphism on Lp(R), 1 < p <1, taking  j;k to hj;k; with h the Haar wavelet.The generalization we need is the followingLemma 2.11. Let fwngn�0 be a family of Walsh type wavelet packets with J as in De�nition2.9, and let fWng be the Walsh system. Let fnj;k = 2j=2wn(2j � �k), and gnj;k = 2j=2Wn(2j � �k):If w1 2 C1(R) then there is an isomorphism Q : Lp(R) ! Lp(R), for 1 < p <1, such thatQfnj;k = gnj;k; j; k 2 Z; 2J � n < 2J+1:18



Proof. Let fW sngn be a family of nonstationary wavelet packets generated by taking anycompactly supported C1(R) scaling function and associated wavelet (�;  ), and letting each h(p)be the Haar �lter in de�nition 2.1. Let vnj;k = 2j=2W sn(2j � �k). For each n � 1; 2j � n < 2j+1;we have a �nite set F � Z such that Wn =Xs2F cn;shj;sW sn =Xs2F cn;s j;s:Thus, for 2J � n < 2J+1, gnp;k =Xs2F cn;shp+J;2Jk+svnp;k =Xs2F cn;s p+J;2Jk+s:Let P : Lp(R) ! Lp(R) be the isomorphism de�ned by Phj;k =  j;k. It follows that Pgnp;k = vnp;k:Hence, it su�ces to �nd an isomorphism Q : Lp(R) ! Lp(R) such that Qfnj;k = vnj;k. Note thatffnj;kg2J�n<2J+1;j;k2Z; and fvnj;kg2J�n<2J+1;j;k2Zare both orthonormal bases for L2(R) (easy consequence of the multiresolution structure). Thus,Q de�ned by Qfnj;k = vnj;k, 2J � n < 2J+1; j; k 2 Z; is unitary. The associated (Schwartz) kernelis given by K(x; y) = 2J+1�1Xn=2J Xj;k2Zvnj;k(x) fnj;k(y):We claim that K is a Calder�on-Zygmund kernel. To verify this, choose N � 1 such thatsupp(W sn); supp(wn) � [�N;N ]for 2J � n < 2J+1. We havejK(x; y)j � 2J+1�1Xn=2J Xj;k2Z2j jW sn(2jx� k)jjwn(2jy � k)j:Thus (x; y) 2 supp(K) implies that j2jx� kj � N and j2jy� kj � N . Hence, 2j jx� yj � 2N soj � log2 2Njx� yj :Let j0 = �log2 2Njx� yj� :19



We have jK(x; y)j � 2J+1�1Xn=2J Xj�j0 2j (2N + 1) kW snk1kwnk1� C2J (2N + 1)Xj�j0 2j = 2J+1N(2N + 1)Cjx� yj :Similar estimates give us �� @@xK(x; y)�� � Cjx� yj2�� @@yK(x; y)�� � Cjx� yj2 :It follows that Q is a Calder�on-Zygmund operator and thus bounded on Lp(R), 1 < p <1 (see[28]). The same type of argument applies to Q�1 (the above estimates are symmetric in fnj;kand vnj;k) and Q is therefore an isomorphism on Lp(R). �We can now state and prove the main result of this section, the Walsh type wavelet packetsdo constitute a Schauder basis for Lp(R) for 1 < p <1:Theorem 2.12. Let fwngn�0 be a family of Walsh type wavelet packets with J as in De�nition2.9. If w1 2 C1(R) then fwn(� � k)gn�0;k2Z is a Schauder basis for Lp(R), 1 < p <1.Proof. We claim that the systemsfwn(� � k)gn�2J+1;k2Z and fWn(� � k)gn�2J+1;k2Z (2.2)are equivalent in Lp(R) in the sense that there is an isomorphism Q on Lp(R) mapping onesystem onto the other. Let n � 2J+1. Note thatŵn(�) = KYj=1m"j (2�j�) � ŵ~n(2�K�);for some 2J � ~n < 2J+1 and K � 1: Thuswn(x� k) =Xs2F cn;sf ~nK;s(x� k); (2.3)with f ~nj;k = 2j=2w~n(2j � �k) and F a �nite set (depending on n). The coe�cients cn;s dependonly on n and the Haar �lter. Thus, Wn has the same expansion:Wn(x� k) =Xs2F cn;sg~nK;s(x� k); (2.4)20



with g~nj;k = 2j=2W~n(2j ��k): Let Q : Lp(R) ! Lp(R) be the isomorphism de�ned by Qfnj;k = gnj;k.It follows from (2.3) and (2.4) thatQwn(� � k) =Wn(� � k);which proves (2.2).Now we can prove that the wavelet packets form a basis. It is clear that the systemfwn(� � k)gn�0;k2Zis dense in Lp(R) for 1 < p < 1 since the associated wavelets 2j=2 (2jx � k), j � 0; andthe translates of the scaling function are all �nite linear combinations of the wavelet packets.Hence, it su�ces to prove that there exists a �nite constant (depending on p) such that for anysequence (cn;k) � C and M;N � 1 we have



 X0�n�N;jkj�N cn;kwn(� � k)



p � C



 X0�n�N+M;jkj�M+N cn;kwn(� � k)



p (2.5)First, let us check that fwn(� � k)g0�n<2J+1;k2Zis a Schauder basis for its closed linear span in Lp(R). The kernel for the projection, PN;M ,onto fwn(� � k)g0�n�N<2J+1;jkj�Mis given by KN;M(x; y) = NXn=0 Xjkj�M wn(x� k)wn(y � k):Fix K such that supp(wn) � [�K;K] for 0 � n < 2J+1. ThenjKN;M (x; y)j � 2J+1�1Xn=0 Xk2Zjwn(x� k)jjwn(y � k)j� 2J+1(2K + 1) max0�n<2J+1fkwnk21g � �[0;2K](jx� yj):
21



Hence, using H�older's inequality and Fubini's Theorem,kPN;Mfkpp = Z �� Z KN;M (x; y) f(y) dy��p dx� Z � Z jf(y)jjKN;M (x; y)j1=p � jKN;M (x; y)j1�1=p dy�p dx= Z Z jf(y)jpjKN;M (x; y)j dy� Z jKN;M (x; y)j dy�p=q dx� Cp=q Z jf(y)jp Z jKN;M (x; y)j dx dy� C1+p=qkfkpp;which proves the claim. It now follows that wheneverM +N < 2J+1 then (2.5) holds. SupposeN < 2J+1 and M +N � 2J+1. Then, by the above and the fact that the projection onto themultiresolution space VJ+1 is bounded on Lp(R),



 X0�n�N;jkj�N cn;kwn(� � k)



p � C



 X0�n<2J+1;jkj�M+N cn;kwn(� � k)



p� C C1



 X0�n�N+M;jkj�M+N cn;kwn(� � k)



p:Finally, suppose N � 2J+1. Then, using (2.2), the result for N +M < 2J+1, the Schauder basisproperties of the Walsh system, and kfkp ' fkPVJ+1fkp + k(1� PVJ+1)fkpg,



 X0�n�N;jkj�N cn;kwn(� � k)



p � �



 X0�n<2J+1;jkj�N cn;kwn(� � k)



p +



 X2J+1�n�N;jkj�N cn;kwn(� � k)



p�� C�



 X0�n<2J+1;jkj�M+N cn;kwn(� � k)



p +



 X2J+1�n�N;jkj�N cn;kwn(� � k)



p�� C�



 X0�n<2J+1;jkj�M+N cn;kwn(� � k)



p +



 X2J+1�n�N;jkj�N cn;kWn(� � k)



p�
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� C�



 X0�n<2J+1;jkj�M+N cn;kwn(� � k)



p +



 X2J+1�n�N+M;jkj�M+N cn;kWn(� � k)



p�� C�



 X0�n<2J+1;jkj�M+N cn;kwn(� � k)



p +



 X2J+1�n�N+M;jkj�M+N cn;kwn(� � k)



p�� C



 X0�n�N+M;jkj�N+M cn;kwn(� � k)



p:We conclude that (2.5) holds in general, and we are done. �From the above proof it is easy to deduce the following Corollary.Corollary 2.13. Let fwngn�0 be a family of Walsh type wavelet packets. If w1 2 C1(R) thenthere exists an isomorphism Q : Lp(R) ! Lp(R), 1 < p <1, such thatQwn(� � k) =W (� � k); n � 0; k 2 Z:2.2.3 A Counterexample in L1(R)It is interesting to know what happens in the \limiting case" L1(R) of Theorem 2.12. It iswell known that the exponentials fe2�ikxgk2Z fail to be a basis for L1[0; 1) whereas the periodicwavelets do form a Schauder basis for L1[0; 1), so it can go both ways. However, the nexttheorem provides an explicit function in L1(R) for which the expansion in the Walsh typewavelet packets fails. The construction owes much to a counterexample for the Walsh systemin [14] and a construction (unpublished) by N. Hess-Nielsen.Theorem 2.14. Let fwngn be a family of Walsh type wavelet packet system, and let J bede�ned as in De�nition 2.9. Choose L 2 N such that supp(w2J+1) � [�L+1; L� 1] and chooseM 2 N such that 2M > 2L: Let N(k) = k3+M+1, and de�ne K : N ! N recursively by lettingK(1) = 2J + 1, K(2n) = 2K(n), and K(2n+ 1) = 2K(n) + 1. De�ne f byf(x) = 1Xk=1 1k2� 2N(k)+2k3+1�1Xn=2N(k)+2k3 wK(n)(x)�:Then f 2 L1(R), but the wavelet packet expansion of f diverges in L1(R)-norm.Proof. Same as for the periodic case (Theorem 3.5). �23



2.2.4 Pointwise Convergence for Walsh Type Wavelet Packet ExpansionsIn this section, we prove that the Walsh type wavelet packet expansion of an Lp(R)-function(1 < p < 1) converges pointwise almost everywhere. The key step is to analyze the so-calledCarleson operator for the Walsh type wavelet packet system.De�nition 2.15 (Carleson Operator). Let ffng1n=1 be an orthonormal basis for L2(M).The Carleson operator L is de�ned by(Lf)(x) = supN�0 Xn�Nhf; fnifn(x);for f 2 L2(M).The following result shows that the Carleson operator is well-behaved.Theorem 2.16. The Carleson operator for any Walsh type wavelet packet system with w1 2C1(R) is of strong type (p; p) for 1 < p <1:Proof. Let us start by reducing the problem. Choose N 2 N such that supp(wn) � [�N;N ]for n � 0: Fix p 2 (1;1) and take anyf(x) = Xn�0;k2Zcn;kwn(x� k) 2 Lp(R):De�ne fk(x) =Xn�0 cn;kwn(x� k); gk(x) =Xn�0 cn;kWn(x� k):We have kfkkp ' kgkkp (with bounds independent of k) by the proof of Theorem 2.12. Notethat for l 2 Z, jfx 2 [l; l + 1) : jLf(x)j > �gj � C�p l+1+NXk=l�N Z jLfk(x)jp dx;so (using the Marcinkiewicz interpolation theorem) it su�ces to prove that kLfkkp � Ckfkkp,where C is a constant independent of k, sinceXl2Z l+1+NXk=l�N kfkkpp � 2(N + 1)Xk2Zkfkkpp � 2C(N + 1)Xk2Zkgkkpp � ~Ckfkpp:We can, w.l.o.g., assume that k = 0: Let K 2 N be the scale from which only the Haar �lter isused to generate the wavelet packets fwngn�2K+1 . Let m 2 N and suppose 2J � m < 2J+1 forsome J > K + 1. Clearly, for each x 2 R,mXn=0 cn;0wn(x) = 2K+1�1Xn=0 cn;0wn(x) + 2J�1Xn=2K+1 cn;0wn(x) + mXn=2J cn;0wn(x);24



so we havesupm�1 ���� mXn=0 cn;0wn(x)���� �sup1�m<2K+1 ���� mXn=0 cn;0wn(x)����+ supJ>K+1 ���� 2J+1Xn=2K+1 cn;0wn(x)����+ supJ>K+1(MJf0)(x); (2.6)where (MJf0)(x) = sup2J�m<2J+1 ���� mXn=2J cn;0wn(x)����:We use brute force to estimated the �rst term of (2.6)sup0<m<2K+1 ���� mXn=0 cn;0wn(x)���� � 2K+1�1Xn=0 jcn;0jkwn(x)k1�[�N;N ](x)� kf0kp 2K+1�1Xn=0 kwnkp0kwn(x)k1�[�N;N ](x):The second term of (2.6) satis�es



 supJ>K+1 ���� 2J+1Xn=2K+1 cn;0wn(x)���� 



p � Ckf0kpsince the dyadic partial sums for the wavelet packet expansion for f0 agree everywhere withthe partial sums for the wavelet expansion for f0 and the Carleson operator for the waveletexpansion is of strong type (p; p) (see [40]). The challenge is to prove that the third term is ofstrong type (p; p). Fix x 2 R �D, where D is the family of dyadic rationals. Note that(MJf0)(x) � 2K�1Xj=0 (M jJf0)(x);where (M jJf0)(x) = sup2J+j2J�K�m<2J+(j+1)2J�K ���� mXn=2J+j2J�K cn;0wn(x)����;so it su�ces to prove that k supJ>K+1(M jJf0)kp � Ckf0kpfor j = 0; 1; : : : 2K�1: Fix J > K+1; 0 � j < 2K�1, and 2J+j2J�K � m < 2J+(j+1)2J�K :
25



We have, using Lemma A.4,���� mXn=2J+j2J�K cn;0wn(x)���� =���� 2J�K�1Xs=0 � mXn=2J+j2J�K cn;0Wn�2J�j2J�K (s2�J+K)�w2K+j(2J�Kx� s)����:De�ne Fm(t) = mXn=2J+j2J�K cn;0Wn�2J�j2J�K (t); and F (t) = supm<2J+(j+1)2J�K jFm(t)j:Then ���� mXn=2J+j2J�K cn;0wn(x)���� � 2J�K�1Xs=0 F (s2�J+K)jw2K+j(2J�Kx� s)j;and using the compact support of the wavelet packets,���� mXn=2J+j2J�K cn;0wn(x)���� � kw2K+jk1 N+1Xl=�N F ((b2J�Kxc+ l)2�J+K):Note that F is constant on dyadic intervals of the type [l2�J+K ; (l + 1)2�J+K) so de�ning�l = ((b2J�Kxc+ l)2�J+K ; (b2J�Kxc+ l + 1)2�J+K); we have���� mXn=2J+j2J�K cn;0wn(x)���� � kw2K+jk1 N+1Xl=�N F ((b2J�Kxc+ l)2�J+K)= kw2K+jk1 N+1Xl=�N j�lj�1 Z�l F (t) dt:We need an estimate of F that does not depend on J . Note that for k, 0 � k < 2J�K , using(A.1), W2J+j2J�K (t)Wk(t) =W2J+j2J�K+k(t);since the binary expansions of 2J + j2J�K and of k have no 1's in common. Hence,jFm(t)j = jW2J+j2J�K (t)Fm(t)j = ���� mXn=2J+j2J�K cn;0Wn(t)����;
26



so F (t) � 2(Gg0)(t); with G the Carleson operator for the Walsh system. Thus,���� mXn=2J+j2J�K cn;0wn(x)���� � 2kw2K+jk1 N+1Xl=�N j�lj�1 Z�l(Gg0)(t) dt:We let �?l be the smallest dyadic interval containing �l and x, and note that j�?l j � (N+1)j�ljsince x 2 �0 (here we use x 62 D). We have���� mXn=2J+j2J�K cn;0wn(x)���� � 2kw2K+jk1 N+1Xl=�N j�lj�1 Z�?l (Gg0)(t) dt� 4kw2K+jk1(N + 1)2(MGg0)(x); (2.7)where M is the maximal operator of Hardy and Littlewood. The righthand side of (2.7) doesnot depend on m nor J so we may conclude thatsupJ>K+1(M jJf0)(x) � 4kw2K+jk1(N + 1)2(MGg0)(x); a.e.and thus, since M and G are both of strong type (p; p) (see [38]),k supJ>K+1(M jJf0)kp � Ckg0kp � C1kf0kp; j = 0; 1; : : : 2K � 1;and we are done. �The pointwise convergence result now follows by a standard argument (see [14])Corollary 2.17. Let fwngn be a Walsh type wavelet packet system for which w1 2 C1(R).Then the wavelet packet expansion of every f 2 Lp(R), 1 < p <1, converges a.e.2.2.5 The Shannon Wavelet PacketsThe next well behaved nonstationary wavelet packets we present are related to the Shannon�lter. The (stationary) Shannon wavelet packets are de�ned by takingmS0 (�) =Xk2Z�[��=2;�=2](� � 2�k)and mS1 (�) = 1�mS0 (�)in De�nition 2.2. We want to �nd an explicit expression for ŵn. We de�ne a map G : N0 ! N0in the following way. Let n = P1k=1 nk2k�1 be the binary expansion of n 2 N0 . Then we let27



G(n)i = ni + ni+1 (mod 2), and put G(n) = P1k=1G(n)k2k�1: The map G is the so-calledGray-code permutation (one can easily check that G is 1 � 1 and onto N0). The Gray-codepermutation relates the Walsh system in Paley order and frequency order, and enters naturallyinto the frequency localization of more general wavelet packets. We have the following simpleformulas for the Shannon wavelet packets. See [43] for a proof.Theorem 2.18 ([43]). Let fwngn be the Shannon wavelet packets. ThenŵG(n)(�) = �[n�;(n+1)�](j�j):Note that the Shannon wavelet packets are uniformly bounded just like the Walsh functionsdue to their perfect frequency localization.The above result suggests that reordering the Shannon wavelet packets using the inverseGray-code permutation might improve their convergence properties. We de�ne a new systemby letting !n = wG(n) for n 2 N0 . We call the reordered system f!ng1n=0 the Shannon waveletpackets in frequency order.We want to prove that the Shannon wavelet packets form a Schauder basis for the Lp(R)-spaces. We need the following sampling theorem. The proof can be found in [29].Theorem 2.19 ([29]). Let L�k(x) = sin(���1(x � �k))=(���1(x � �k)); 0 < � � 1; and letfckgk � C : Then 

Xk2Zck L�k

p ' kfckgk`p(Z);for 1 < p <1:Remark. Note that if fckg 2 `p(Z); 1 < p < 1; then it follows from the Lemma thatPk2Zck L�k converges unconditionally in Lp(R).The following two lemmas will be used to prove the main result, Theorem 2.22. The �rst isa well known fact and we therefore omit the proof.Lemma 2.20. Let f 2 Lp(R); 1 < p < 1: De�ne fa;b = F�1�[a;b]Ff; for a; b 2 R; a < b:Then kfa;bkp � Cpkfkp;for some constant Cp independent of a and b. Moreover,kf � fa;bkp �! 0 as � a; b!1:We have the following Lemma which shows that the expansion of each Lp(R)-function in theShannon scaling functions is well behaved. 28



Lemma 2.21. Let L�k(x) = sin(���1(x� �k))(���1(x� �k)) ; 0 < � � 1;and suppose f 2 Lp(R); 1 < p <1: ThenXk2Zhf; L�kiL�k (2.8)converges unconditionally in Lp(R):Proof. First, assume that f 2 Lp(R) with supp(f̂) � [���1�; ��1�] (with f̂ in the sense oftempered distributions for 2 < p <1:). Note that f is the restriction of an analytic function ofexponential type in this special case. We claim that Pk jf(�k)jp � Cp;�kfkpp for some constantCp;�: Indeed, take � 2 S(R) with �̂ = 1 on [���1�; ��1�]. Then, by Plancherel's Theorem,Z f(x) ��(x� �k) dx = 12� Z f̂(�)�̂�(�) exp(i�k�) d�= 12� Z ��1����1� f̂(�) exp(i�k�) d�= f(�k):We now apply H�older's inequality to getXk2Zjf(�k)jp � Z jf(x)jpXk2Zj�(x� �k)j dx k�kp=p0p0� Cp;�kfkpp:Thus, Lemma 2.21 applies to the sequence f(�k) and (2.8) converges unconditionally sincehf; L�ki = f(�k): For general f 2 Lp(R) it su�ces to notice that, by Lemma 2.20, the operatorf ! (�[���1�;��1�]f̂)� is bounded on Lp(R), and that f and (�[���1�;��1�]f̂)� have the sameexpansion in the functions fL�kg: �Finally, we combine the above Lemmas to get a positive convergence result for expansionsin the Shannon wavelet packets in frequency order.Theorem 2.22. The Shannon Wavelet Packet system in frequency order f!n(� � k)gn;k formsa Schauder basis for Lp(R); 1 < p <1; in the sense thatNXn=0Xk2Zhf; !n(� � k)i!n(� � k) Lp(R)����!N!1 f;for f 2 Lp(R): 29



Proof. We have !̂n(�) = �[n�;(n+1)�)(j�j) so!n(x) = (n+ 1)sin((n+ 1)�x)(n+ 1)�x � nsin(n�x)n�x = (n+ 1)L(n+1)�10 � nLn�10 :Let f 2 Lp(R); 1 < p <1. Lemma 2.21 shows that fhf; !n(� � k)igk2Z 2 `p(Z). HenceXk2Zhf; !n(� � k)i!n(� � k)converges unconditionally to P
nf; where P
n is the projection onto the closed span of f!n(��k)gk; i.e. P
n = F�1 �fn��j�j<(n+1)�gF : So all we have to check is thatPNn=0 P
n are uniformlybounded in N on Lp(R). But PN�1n=0 P
n is just the operator f ! F�1�[�N�;N�]F ; and it isuniformly bounded on Lp(R) by Lemma 2.20. �The above result can also be used to show that the expansion in the Shannon wavelet packetscoverges pointwise a.e. Indeed this fact follows directly from the Carleson-Hunt theorem forthe line:Theorem 2.23 (Carleson-Hunt). Let f 2 Lp(R), 1 < p <1. De�ne TR, R > 0, byTRf(x) = 12� Z R�R f̂(�)eix� d�;and let (Tf)(x) = supR>0(TR)(x): Then T is of strong type (p; p).We haveCorollary 2.24. Let f!ngn be the Shannon Wavelet Packet system in frequency order Thenfor f 2 Lp(R); 1 < p <1;NXn=0Xk2Zhf; !n(� � k)i!n(x� k) ����!N!1 f(x); a.e.Proof. Just note that�N�1Xn=0Xk2Zhf; !n(� � k)i!n(x� k)�b(�) = f̂(�)�[�N�;N�](�): �
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2.2.6 Shannon Type Wavelet PacketsWe now generalize the above results to a class of nonstationary wavelet packets.De�nition 2.25 (Shannon Type Wavelet Packets). Let fwngn�0 be the family of nonsta-tionary wavelet packets constructed using a family fh(p)n g1p=1 of CQFs in de�nition 2.1. If thereexists a constant J 2 N such that h(p) is the Shannon �lter for every p � J then we call fwnga family of Shannon type wavelet packets.For �xed J 2 N we de�ne a permutation GJ : N ! N by1GJ(n) = 8<:n if n � 2J[nL � � � nL�J+1[G([nL�J � � �n1])]2] if 2L � n < 2L+1; L � J;where n = [nLnL�1 � � �n1] is the binary expansion of n. So GJ leaves the J most signi�cantbits unchanges, but performs the Gray-code permutation on the least signi�cant L� J bits.The frequency ordering of any Shannon type wavelet packet system fwng (with J as inde�nition 2.25) is given by f!n � wGJ (n)g1n=0:The following result is the analog of Theorem 2.22.Theorem 2.26. Let f!ngn be a system of Shannon type wavelet packets in frequency order.Then f!n(� � k)gn�0;k2Z forms a Schauder basis for Lp(R); 1 < p <1, in the sense thatNXn=0Xk2Zhf; !n(� � k)i!n(� � k) Lp(R)����!N!1 f;for f 2 Lp(R).Proof. First, let us assume that !0 is band limited with supp(!̂0) � [�K�;K�], K 2 N,and that 1 < p < 2. De�ne Pj byPjf(x) =Xk2Zhf; !j(� � k)i!j(x� k):We know that the family fP2L�1j=0 PjgL2N is uniformly bounded on Lp(R) since it is just theprojection onto the wavelet space VL. It therefore su�ces to prove that Pmj=2L Pj is boundedon Lp(R) with bound independent of L 2 N and m < 2L+1. Let J be the scale from which only1Here [�] denotes the function that converts a binary string to the corresponding integer, and [�]2 converts aninteger to its binary expansion. 31



the Shannon �lter is used to generate the wavelet packets. Take j 2 N : 2L � j < 2L+1; L >J; GJ(j) = ["L � � � "1]. Then!̂j(�) = mS"1(�=2)mS"2(�=22) � � �mS"L�J (�=2L�J )m(J)"L�J+1(�=2L�J+1) � � �m(1)"L (�=2L)!̂0(�=2L)� � 2J�1KXs=�2J�1K �Ij (� � 2L�J+1�s)�!̂ij (�=2L�J );where ij = [1"L�1 � � � "L�J+1]2 2 [0; 2J � 1] and 2J�LIj � [��; �] is symmetric about 0 and is aunion of two intervals, each of length 2J�L� (follows from Theorem 2.18). Using Plancherel'stheorem we have2dPjf(�) = 12�Xk2ZZ 1�1 f̂(t) 2J�1KXs=�2J�1K �Ij (t� 2L�J+1�s)!̂ij (t2J�L)eikt dte�ik�!̂j(�)= 12� 2J�1KXs=�2J�1KXk2ZZIj f̂(t+ 2L�J+1�s)!̂ij� t+ 2L�J+1�s2L�J �eikt dte�ik�!̂j(�)= 2J�1KXs=�2J�1K �f̂(� + 2L�J+1�s)!̂ij�� + 2L�J+1�s2L�J ������perIj �2J�1KXr=�2J�1K �Ij (� � 2L�J+1�r)!̂ij (�=2L�J )= � 2J�1KXs=�2J�1K 2J�1KXr=�2J�1K �f̂(� + 2L�J+1�s)!̂ij�� + 2L�J+1�s2L�J ������perIj ��Ij (� � 2L�J+1�r)�!̂ij (�=2L�J )= � 2J�1KXs=�2J�1K 2J�1KXr=�2J�1K f̂(� + 2L�J+1�(s� r))!̂ij�� + 2L�J+1�(s� r)2L�J ���Ij (� � 2L�J+1�r)�!̂ij (�=2L�J )Note that the inverse Fourier transform of each termf̂(� + 2L�J+1�(s� r))!̂ij�� + 2L�J+1�(s� r)2L�J ��Ij (� � 2L�J+1�r)is just the convolution of f with an L1 function of norm kwijk1 and then composed with thebounded operator given by the multiplier �Ij (� � 2L�J+1�r). Thus, Pjf is a �nite sum ofconvolutions of Lp(R) functions all with Lp-norm � Ckfkp (with C independent of j) and a2Notation: gjperI is the 2�-periodic function obtained by taking the 2�-periodic extension of the restriction ofg to I. 32



function of �xed L1-norm. So Pj is bounded on Lp(R). In general, for m � 2L = k2L�J + dwith d 2 [0; 2L�J ),mXj=2L dPjf(�) =k�1Xl=0 � 2J�1KXs=�2J�1K 2J�1KXr=�2J�1K f̂(� + 2L�J+1�(s� r))!̂l�� + 2L�J+1�(s� r)2L�J �� 2L+(l+1)2L�J�1Xj=2L+l2L�J �Ij (� � 2L�J+1�r)�!̂l(�=2L�J )+� 2J�1KXs=�2J�1K 2J�1KXr=�2J�1K f̂(� + 2L�J+1�(s� r))!̂k�� + 2L�J+1�(s� r)2L�J �� 2L+k2L�J+dXj=2L+k2L�J �Ij (� � 2L�J+1�r)�!̂k(�=2L�J )However, 2L+(l+1)2L�J�1Xj=2L+l2L�J �Ij (� � 2L�J+1�r) and 2L+k2L�J+dXj=2L+k2L�J �Ij (� � 2L�J+1�r)are each the characteristic function of an interval (follows from Theorem 2.18 and the orderingof the functions). The same argument as above applies and Pmj=2L Pj is therefore boundedon Lp(R) with bounds independent of m and L. More generally, if !0 is not band limited wecan always �nd an isometry on Lp(R) mapping the wavelet packet system onto a band limitedShannon type wavelet packet system (by Theorem 2.10). The case 2 < p <1 follows easily bya duality argument. �2.3 Growth in Lp-norm of Wavelet PacketsIt was proved in [6] that the family fwngn of basic wavelet packets associated with a Meyer �lteris not uniformly bounded in Lp(R)-norms for p large. The technique used was to prove that thefamily fŵngn is not bounded in L1-norm. This works because the Meyer low-pass �lter m0 is anonnegative functions so each ŵn is just a modulation of a nonnegative function. It is thereforepossible to recover the L1-norm of wn from the L1-norm of ŵn. However, this techniquefails in general since �nite �lters associated with a multiresolution analysis are not nonnegative33



functions. In this section we use the following fundamental result about multiresolution analysesto calculate the Lp(R)-norm of wavelet packets associated with �nite �lters.Lemma 2.27 ([29]). Let fVjg be a multiresolution analysis with associated scaling function �satisfying j�(x)j � C(1 + jxj)�1�" for some " > 0. Then there exist �nite constants cp; Cp > 0such that for every �nite sequence fckgk2Z� C we havecpkfckgk`p(Z) � 


Xk2Zck�(x� k)


p � Cpkfckgk`p(Z):The following lemma gives us a sharp estimate of the Lp(R) norm of a wavelet packetassociated with a multiresolution analysis.Lemma 2.28. Let (m0;m1) be the �lters associated with a multiresolution analysis for whichthe scaling function � satis�es j�(x)j � C(1 + jxj)�1�" for some " > 0: Then there exist �nitepositive constants cp and Cp such that the Lp(R)-norm, 1 � p � 1; of the wavelet packet wn;de�ned by ŵn(�) = " NYj=1m"j (�=2j)#�̂(�=2N );is bounded by cp2N2�N=pkfckgk`p(Z) � kwnkp � Cp2N2�N=pkfckgk`p(Z);where m"N (�)m"N�1(2�) � � �m"1(2N�1�) =Xk2Zckeik�:Proof. We have ŵn(�) = " NYj=1m"j (�=2j)#�̂(�=2N );so ŵn(2N �) = "N�1Yj=0 m"N�j (2j�)#�̂(�): (2.9)Taking the inverse Fourier Transform of (2.9) shows that 2�Nwn(2�Nx) is a linear combinationof the functions f�(x� k)gk and that the expansion coe�cients are given by the coe�cients ofthe Fourier series m"N (�)m"N�1(2�) � � �m"1(2N�1�) =Xk2Zckeik�:Note that k2�Nwn(2�N �)kp = 2�N2N=pkwnkp for 1 � p � 1: It now follows from Lemma 2.27that there exist constants cp and Cp (independent of n) such that34



cp2N2�N=pkfckgk`p(Z) � kwnkp � Cp2N2�N=pkfckgk`p(Z): �In what follows, we will restrict our attention to subsequences of the form fw2n�1gn. Themain reason is that the binary expansion of 2n� 1 consists of n� 1 1's and nothing else, whichsimpli�es the estimates given by Lemma 2.28. The key to getting good estimates is to considerthe following operator.De�nition 2.29. Let m1(�) =Pk2Zgkeik� be a �nite high-pass �lter. We de�ne the boundedoperator S on `p(Z), 1 � p � 1, by(Sc)i =Xj2Zgi�2jcj ; i 2 Z: (2.10)S is called the (stationary) subdivision operator associated with the �lter m1. We let �p[S]denote the spectral radius of S on `p(Z).Note that S is just the bi-in�nite matrix (gi�2j)ij considered as a bounded operator on `p(Z):It is also easy to check that S can be represented (formally) as the multiplication operatorSf(�) = m1(�)f(2�);for f(�) =Pk2Zckeik�.We are interested in calculating the spectral radius of S on `p(Z). The multiplicationrepresentation of S suggests that the productm1(�)m1(2�) � � �m1(2n�1�)might be useful for that purpose. Indeed, the product is the key to calculating the powers ofthe matrix S as the following lemma showsLemma 2.30. Let m1(�) = PNk=�1 gkeik� be a �nite high-pass �lter, and let S = (gi�2j)ij bethe associated subdivision operator. Then(Sn)ij = gni�2nj; (2.11)where m1(�)m1(2�) � � �m1(2n�1�) =Xk2Zgnk eik�:35



Proof. We prove this by induction on n. If n = 1 then (2.11) is trivially true. Suppose theresult is true for n, n � 1. Then, by the induction hypothesis,(Sn+1)ij =Xk2Z(Sn)ik(S)kj=Xk2Zgni�2nkgk�2j= X̀2Zgni�2n`�2n+1jg`: (2.12)On the other hand, m1(�)m1(2�) � � �m1(2n�) =Xp2Zgnp eip�Xq2Zgqei2nq�=Xp2ZX̀2Zgnp g`ei(p+2n`)�=Xk2Z�X̀2Zgnk�2n`g`�eik�:Thus, gn+1i�2n+1j = X̀2Zgni�2n+1j�2n`g`;so from (2.12) we see that (2.11) is true for n+ 1, and we are done. �The spectral radius �p[S] of S on `p(Z) can be calculated by as followsTheorem 2.31 ([15]). Let m1 be a �nite high-pass �lter, and let S be de�ned by (2.10). De�nethe sequence fgnk gk by Xk2Zgnk ein� = m1(�)m1(2�) � � �m1(2n�1�):Then �p[S] = limn!1 kfgnk gkk1=n`p(Z):Proof. First, we claim that there is an integer K (independent of n) such that (Sn)ij = 0whenever j2�ni� jj > K. To verify this, we note that there is an integer K such that (S)ij = 0if ji� 2jj > K since m1 is a �nite �lter. Suppose (Sn)ij 6= 0. We have,(Sn)ij = X`1;::: ;`n�1(S)i`1(S)`1`2 � � � (S)`n�1j:so there are `1; `2; : : : ; `n�1 such thatj`r � 2`r+1j � K; r = 0; 1; : : : ; n� 1;36



where `0 = i and `n = j. Put �r = `r � 2`r+1 for r = 0; 1; : : : ; n� 1: Then2�ni� j = 2�1�n�1 + 2�2�n�2 + � � �+ 2�n�0:Hence j2�ni� jj � nXq=1 2�qK � K:Next, we let 
r = fr + (2K + 1)j : j 2 Zg;for jrj � K. Note that whenever j1 and j2 are distinct members of 
r we have jj1�j2j � 2K+1.We de�ne the matrices Jr for jrj � K by(Jr)ij = 8<:(Sn)ij ; i 2 Z; j 2 
r0; i 2 Z; j 62 
r:We have Sn = Xjrj�K Jr;since f
rgjrj�K partitions Z. Take any (ck)k 2 `p(Z). ThenkSnck`p(Z) � (2K + 1)maxfkJrck`p(Z) : jrj � Kg: (2.13)We claim that, by construction, there is no i 2 Z such that for distinct j1; j2 2 Z we have(Jr)ij1(Jr)ij2 6= 0: (2.14)Indeed, suppose (2.14) holds. Then j1 and j2 must belong to the same 
r and thus jj1 � j2j �2K + 1. But we have already seen that (Jr)ij1 ; (Jr)ij2 6= 0 implies thatj2�ni� j1j; j2�ni� j2j � K:Hence, jj1 � j2j � j2�ni� j1j+ j2�ni� j2j� 2K;a contradiction. It follows that the columns of Jr, denoted by Jrj , do not have common nonzeroelements. Hence, kJrckp̀p(Z) =Xj2Zjcj jpkJrj kp̀p(Z)� supfkJrj kp̀p(Z) : j 2 Zg � kckp̀p(Z):37



From (2.13) and Lemma 2.30 we getkSnk`p!`p � (2K + 1) supfkJrj k`p(Z) : jrj � K; j 2 Zg= (2K + 1) supfkSnj k`p(Z) : j 2 Zg= (2K + 1)kfgnk gkk`p(Z):Hence, �p[S] � lim infn!1 kfgnk gk1=n`p(Z):To get a lower bound on �p[S] note thatkfgnk gkk`p(Z) = kSnj k`p(Z) = kSn(f�j;kgk)k`p(Z) � kSnk`p!`p ;from which we have lim supn!1 kfgnk gkk1=n`p(Z) � �p[S]:Finally, we combine the above inequalities to get�p[S] = limn!1 kfgnk gkk1=n`p(Z): �We combine Theorem 2.31 and Lemma 2.28 to obtain the following useful result about theasymptotic behavior in Lp(R) of the subsequence fw2n�1gn of a given wavelet packet systemfwng.Corollary 2.32. Let fwng1n=0 be the wavelet packets generated by the �nite �lters (m0;m1)associated with a multiresolution analysis. De�ne ~�p; 1 � p � 1; by~�p = limn!1 kw2n�1k1=np :Then ~�p exists and ~�p = 21�1=p�p[S]:Proof. We have, using the same notation as in Lemma 2.28,cp2n2�n=pkfcnkgk`p(Z) � kw2n�1kp � Cp2n2�n=pkfcnkgk`p(Z):The result follows from taking n'th roots of the above inequalities and letting n!1: �Finding the asymptotic behavior of the subsequence fw2n�1gn in Lp(R) thus reduces to calcu-lating the spectral radius �p[S]. Unfortunately, there is no general method available to calculate�p[S]. However, the following lemma shows that we only have worry about �1[S] to estimate�p[S] for p large. Note that the lemma is a Bernstein type inequality.38



Lemma 2.33. Let fwng be a wavelet packet system associated with a multiresolution analysisfVjg. Let n > 0; 2j�1 � n < 2j : Then there is a �nite constant Cp, independent of j, such thatfor p 2 [1;1] kwnk1 � Cp2j=pkwnkp:Proof. We have wn 2 Vj so wn(x) =Xk2Zck�j;k;for some �nite sequence fckg. Then, using Lemma 2.27,kwnk1 � C12j=2kfckgk`1(Z)� C12j=2kfckgk`p(Z)= C12j=p[2j=2�j=pkfckgk`p(Z)]� Cp2j=pkwnkp: �And we haveCorollary 2.34. Let fwng be a wavelet packet system associated a multiresolution analysis.Then ~�p � 2�1=p~�1:2.3.1 Lower Bounds for �1.We are left with the following problem; how do we obtain a lower bound for �1[S]? It turnsout that the calculation of �1[S] can be reduced to a �nite dimensional problem. We need thefollowing de�nition and theoremDe�nition 2.35. Let A0 and A1 be two n � n-matrices. The joint spectral radius of A0 andA1 is given by �1(A0; A1) = lim supr!1 max"2f0;1gr kA"1A"2 � � �A"rk1=r;where k � k is any (matrix) norm on Rn�n :We haveTheorem 2.36 ([15]). Let m1(�) =PNn=�1 gnein� be a high-pass �lter associated with a mul-tiresolution analysis. Form the two matricesA0 = (g�i+2j)N�1i;j=�1; A1 = (g1�i+2j)N�1i;j=�1:39



Then �1[S] = �1(A0; A1):Proof. Set 
 = f�1; 0; : : : ; N � 1g. Note that if i 2 
 and j 2 Zn
 then g"�i+2j = 0 for" = 0; 1: Fix i 2 Z; and write i = 2i1 + " for " 2 f0; 1g. Let ` 2 
: Then(Sc)i�` =Xj2Zgi�`�2jcj=Xk2Zg"�`+2kci1�k=Xk2
 g"�`+2kci1�k=Xk2
(A")`kci1�k: (2.15)Let Jk : `1(Z)! `1(
) be de�ned by(Jkc)` = ck�`; ` 2 
:It follows from (2.15) that JiS = A"Ji1 : Thus, if i = 2i1+"r; i1 = 2i2+"r�1; : : : ; ir�1 = 2ir+"1then JiSr = A"r � � �A"1Jir :Now, we can prove the claim. Given � > 0, we let R be a positive constant such that forany " 2 f0; 1gr and r � R, we have kA"r � � �A"1k � (�1(A0; A1)+�)r: Fix i 2 Z, and let r � R.We write i on the formi = "r + 2"r�1 + � � �+ 2r�1"1 + 2rir; "k 2 f0; 1g; ir 2 Z:Hence for c 2 `1(Z) and ` 2 
, we havej(Src)i�`j � kJiSrck`1(
) = kA"r � � �A"1�k`1(
);where � = Jirc: Since this holds for all i 2 Z, we havekSrck`1(Z) � (�1(A0; A1) + �)rkck`1(Z):It follows that �1[S] � �1(A0; A1):For the other direction, let � > 0 and choose R so that kSrck`1(Z) � (�1[S] + �)rkck`1(Z)holds for every r � R and c 2 `1(Z). Take any � 2 `1(
) and write it as � = J0� for some� 2 `1(Z) with k�k`1(
) = k�k`1(Z). For " 2 f0; 1gr de�ne i byi = "r + 2"r�1 + � � �+ 2r�1"1 + 2r � 0:40



Then kA"r � � �A"1�k`1(
) = kJiSr�k`1(
) � (�1[S] + �)rk�k`1(Z)and it follows that �1(A0; A1) � �1[S]: �It is, in general, di�cult to calculate the joint spectral radius of the matrices A0; A1 introducedin Theorem 2.36. G. Grippenberg gives an example in [16] where one has to perform a verysigni�cant number of matrix multiplications to get decent two-sided estimates of the jointspectral radius even for 2� 2-matrices. However, we just want a lower bound for �1 so for ourpurpose it su�ces to notice that �1(A0; A1) � maxf�(A0); �(A1)g. Hence, the spectral radiusof the matrix A0 gives us a lower bound on �1, i.e., we have reduced the problem to a �nitedimensional eigenvalue problem that can be solved (numerically, at least) for any �nite �lter.2.3.2 Growth in Lp-norm of Some Familiar Wavelet PacketsWe now apply this method to some much used �lters. We have calculated lower bounds for ~�1for some of the standard Daubechies �lters, least asymmetric Daubechies �lters, and Coi
et�lters (see Tables 2.1, 2.2, and 2.3). It is interesting to note the di�erence in the estimatesobtained for the Daubechies �lters and the least asymmetric Daubechies �lters of the samelength since their transfer functions agree in absolute value. It suggests that the phase of thetransfer function does in
uence the behavior of the associated wavelet packets in Lp(R).The following result generalizes the results obtained in [6] for the Meyer wavelets.Theorem 2.37. For each wavelet packet system associated with one of the �lters listed inTables 2.1, 2.2, and 2.3 there is a p0 > 2 such that for p � p0 we have a constant rp > 1 suchthat kw2n�1kp � Cprnp :Figure 2.2 shows the �rst few elements of the sequence fw2n�1g associated with the Daubechies�lter of length 4.
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DaubN Lower bounds for~�1 ~�1 ~�1~�1 p02 0.918558 p11+p34 1.159376 4.6876173 0.946828 1.182094 1.119240 6.1530684 0.964076 1.128085 1.087560 8.2579575 0.975229 1.178557 1.149363 4.9791986 0.982686 1.120631 1.101229 7.1882707 0.987780 1.088578 1.075275 9.5504748 0.991312 1.120338 1.110605 6.6073749 0.993788 1.081554 1.074836 9.60455610 0.995538 1.050467 1.045780 15.4846011 0.996783 1.077456 1.073990 9.71052812 0.997673 1.053657 1.051206 13.8799113 0.998313 1.023405 1.021679 32.3180714 0.998774 1.047230 1.045946 15.4298315 0.999107 1.034474 1.033551 21.0040716 0.999349 1.007608 1.006952 100.050517 0.999524 1.027401 1.026913 26.1000218 0.999652 1.021871 1.021515 32.5619919 0.999745 1.001009 1.000754 919.326820 0.999813 1.015251 1.015061 46.36799Table 2.1: Lower bounds for ~�1, ~�1, and p0 for the �rst 20 Daubechies �lters (with �lterlengthfrom 4 to 40). The estimates have been calculated using Maple V.3 and checked using thePower Method and Matlab.
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Least Asym. DaubN Lower bounds for~�1 ~�1 ~�1~�1 p04 0.964076 1.192708 1.149862 4.9637455 0.975229 1.087374 1.060439 11.811796 0.982686 1.146192 1.126374 5.8257447 0.987780 1.133295 1.119446 6.1430678 0.991312 1.111158 1.101505 7.1696799 0.993788 1.047619 1.041111 17.2042610 0.995538 1.084002 1.079118 9.095479Table 2.2: Lower bounds for ~�1, ~�1, and p0 for the least asymmetric Daubechies �lters with�lterlength 8 to 20. The estimates have been calculated using Maple V.3 and checked using thePower Method and Matlab.
Coi
etN Lower bounds for~�1 ~�1 ~�1~�1 p03 0.939727 1.075437 1.010617 65.631366 0.967122 1.197928 1.158542 4.7100719 0.984923 1.151143 1.133787 5.52028912 0.992775 1.114805 1.106750 6.83386515 0.996445 1.086199 1.082338 8.760274Table 2.3: Lower bounds for ~�1, ~�1, and p0 for the "Coi
et" �lters with �lterlength 6 to 30.The estimates have been calculated using Maple V.3 and checked using the Power Method andMatlab.
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We would like to know if the previous theorem is sharp in the sense that there is a p,2 < p < p0, such that supn kw2n�1kp <1. The answer is, in general, negative as the followingresult shows.Theorem 2.38. Let m0 be the Daubechies �lter of length 4 and let fwng be the associatedwavelet packets. Then kw2n�1kp n!1���!1for every p > 2.Proof. If we can prove that kw2n�1k1 n!1���! 0 then the result will follow by H�older'sinequality since kw2n�1k2 = 1. It su�ces to show that �1[S] < 1: Note that if we can �nd anN such that Pk jcNk j = � < 1; wherem1(�) � � �m1(2N�1�) =Xk2ZcNk eik�;then �1[S] � �1=N < 1: But one can check thatXk2Zjc7kj = 9517 + 13043p332768 < 0:98: �2.3.3 Wavelet Packets Generated By Nonnegative Low-Pass FiltersWe have included the following result for the sake of completeness. Note that Theorem 2.40tells us that the only way to avoid growth in L1-norm of wavelet packets associated withnonnegative �lters is to choose the �lter to be the characteristic function of some measurableset.Theorem 2.39 ([21]). Let fwng be the wavelet packet basis associated with the �lters (m0;m1).Suppose jŵ1(�)j � �0 > 0 on [a� "; a+ "]0 < jm0(�)j < 1 on M� [��; �]holds for some " > 0, point a 2 R, and set M of positive measure. Then there exist constantsC > 0 and r > 1 such that 2�J X2J�n<2J+1 kŵnk1 � CrJ :
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Theorem 2.40. Let fwng be the wavelet packet basis associated with the �lters (m0;m1). Sup-pose the system satis�es the hypothesis of Theorem 2.39 and m0 is a nonnegative function thenthere exist constants C > 0 and r > 1 such thatkwnjk1 � Crjfor some subsequence fnjg � N:Proof. Let C and r be the constants from Theorem 2.39. We pick from each set f2j ; 2j +1; : : : ; 2j+1� 1g an index nj such that kŵnjk1 � Crj (possible since that average of the L1(R)-norms grows like Crj within scale j). Note that ŵnj is just the modulation of a nonnegativefunction. Hence, kwnjk1 = (2�)�1kŵnjk1 and we are done. �2.4 Failure of Some Wavelet Packet Systems to be a Basis forLp(R)We have proved that the Walsh and Shannon wavelet packets do constitute Schauder bases forLp(R); 1 < p < 1; so one might conjecture that such results hold for any reasonable waveletpacket system. However, it turns out that the assertion is not true for many nice �nite �lterssuch as the Daubechies, least asymmetric Daubechies, and Coi
et �lters. They all fail becauseof the following result:Lemma 2.41. If fwn(x � k)gk;n is a Schauder basis for Lp(R); 1 < p < 1; then there existsa �nite constant Cp such thatkwnkpkwnkp0 � Cp; n = 0; 1; : : : : (2.16)Proof. It is a well known result that a Schauder basis feng in a Banach space B withassociated coe�cient functionals ffng satis�essupn kenkBkfnkB� < +1:So it su�ces to show that wn 2 Lp0(R) is the coe�cient functional of wn 2 Lp(R): Also, sincefwn(x� k)gn;k is an orthonormal system in L2(R), we just have to verify that fwn(x� k)gn;kis dense in Lp(R): Now, the wavelet system f j;kg is dense in Lp(R), but each  j;k; j � 0; is a�nite linear combination of the functions fwn(x � k)gn;k since the �lters m0 and m1 are both�nite, and we are done. �The idea is to �nd a subsequence of a given wavelet packet system for which (2.41) fails.We have the following useful result. 46



Corollary 2.42. If ~�1[S]~�1[S] = � > 1;then the associated wavelet packet system fwn(� � k)gn;k fails to be a Schauder basis for Lp(R)for p > p0; where p0 = 1= log2(�):Proof. Since the functions fwng all have support contained in some �xed �nite interval,we have kwnk1 � Cpkwnkp: Thus, for p > 2,kw2n�1kp0kw2n�1kp � Cpkw2n�1k1kw2n�1kp� ~Cp2�n=pkw2n�1k1kw2n�1k1;where we have used Lemma 2.33. Note that2�n=pkw2n�1k1kw2n�1k1 n!1���!1for p > p0; so Lemma 2.41 shows that fwn(x � k)gn;k fails to be a Schauder basis for suchLp(R). �We already have estimates of �1[S]. The following result takes care of �1[S],Lemma 2.43. Let m1(�) be a �nite high-pass �lter with real coe�cients associated with amultiresolution analysis. Then �1[S] � jm1(2�=3)j:Proof. Note that the set f�2�3 ; 2�3 g is invariant under the transformation � ! 2� (mod 2�):Also, jm1(2�3 )j = jm1(�2�3 )j since m1 has real coe�cients. Thus,jm1(2�3 ) � � �m1(2n�1 2�3 )j = jm1(2�3 )jn:Let Xk2Zcnkeik� = m1(�)m1(2�) � � �m1(2n�1 �):Then jm1(2�3 )jn � km1(�) � � �m1(2n�1�)kL1[0;2�) �Xk2Zjcnk j;and the results follows from Lemma 2.31. �
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Example 2.44. Let us apply Lemma 2.43 to the Daubechies �lter of length 2N: We havejmN1 (2�3 )j2 = 1� jm0(2�3 )j2= 1� cos2N (2�3 )N�1Xj=0 �N � 1 + jj � sin2j(2�3 ):Thus, vuut1� 2�2N N�1Xj=0 �N � 1 + jj ��p32 �2j � �1[S] � 1:Note that �1 � 1 since the subsequence kw2n�1k1 is bounded because the wavelet packets associ-ated with m1 are compactly supported with support contained in some �xed interval independentof n. Moreover, N�1Xj=0 �N � 1 + jj ��p32 �2j � �32�N�1 N�1Xj=0 �N � 1 + jj �2�j= �32�N�12N�1= 3N�1:Hence, �1 �vuut1� 2�2N N�1Xj=0 �N � 1 + jj ��p32 �2j �p1� 4�N3N�1 �! 1as N !1: �We have the following unfortunate result about the basic wavelet packets associated withone of the �lters listed in Tables 2.1, 2.2, and 2.3.Theorem 2.45. For each wavelet packet system fwng associated with one of the �lters listedin Tables 2.1, 2.2, and 2.3 there exists a (�nite) p0 > 2 such that for p > p0, the systemfwn(� � k)gn;k (in any ordering) fails to be a Schauder basis for Lp(R).2.4.1 Some Wavelet Packets Generated Using In�nite FiltersSuppose m0 is a �nite low-pass �lter for some multiresolution analysis. Then it is easy to checkthat jm0j is also a low-pass �lter for some multiresolution analysis (see Cohen's condition;Theorem 1.3), and one would expect that the wavelet packets associated with jm0j are \worse"than those associated with m0, since jm0j is not a �nite �lter. Indeed, we have the followingresult. 48



Theorem 2.46. Let m0 be a �nite low-pass �lter with associated wavelet packet system fwng:Let mabs0 = jm0j with associated wavelet packet system fwabsn g. If fwng fails to be a Schauderbasis because kŵnkk1kwnkk1 � Crkfor some subsequence fwnkg and r > 1 then fwabsn g also fails to be a Schauder basis for someLp(R) spaces since kwabsnk kpkwabsnk kp0 �!1;for p large.Proof. We have kwnkk1 � 12�kŵnkk1; andkŵnkk1 = kdwabsnk k1 = 2�kwabsnk k1since dwabsnk is just a modulation of a nonnegative function. By Bernstein's inequality, applied toŵnk , we have kdwabsnk kp = kŵnkkp � Ckŵnkk1;since the Fourier transform of ŵnk has support contained in some �xed interval given by the�lter length of m0. Moreover, by the Hausdor�-Young inequality, for p 2 [1; 2),kdwabsnk kp0 �Ckwabsnk kp:Hence, kwabsnk kp � Ckŵnkk1 for p 2 [1; 2) and kwabsnk k1 � kwnkk1. The result then followsfrom Lemma 2.41. �We now apply the above result the �lters listed in Tables 2.1, 2.2, and 2.3.Corollary 2.47. Theorem 2.46 applies to the �lters listed in Tables 2.1, 2.2, and 2.3.Proof. We know that the subsequence fw2n�1g grows exponentially in Lp(R)-norm for plarge. Furthermore, with � the associated scaling function,kŵ2n�1k1 � jŵ2n�1(2n 2�3 )j = jm1(2�3 )jnj�̂(2�3 )j � Cjm1(2�3 )jn;since j�̂(�)j � C on [��; �]. The result then follows from the values listed in Tables 2.1, 2.2,and 2.3. �
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2.4.2 Fourier Transforms of Wavelet PacketsThe de�nition of the Shannon wavelet packets shows that the Fourier transforms of thesefunctions are well behaved in Lp(R); 1 < p <1: In fact, we have the following easy theorem.Theorem 2.48. The Fourier transforms of the Shannon wavelet packets in frequency orderform a Schauder basis for Lp(R); 1 < p <1:Proof. We have F [!n(� � k)](�) = �[n�;(n+1)�(j�j)e�ik� so the statement follows from thefact that fe2�ik�gk2Z form a Schauder basis for Lp[0; 1); 1 < p <1: �So, one might conjecture that the Fourier transforms of any reasonable wavelet packetsystem are equally well behaved. However, we have the following Corollary to Lemma 2.41.Corollary 2.49. Let fwng be a wavelet packet system associated with a �nite �lter m0. If, forsome p 2 (2;1) kŵnkk1kwnkkp �!1then the Fourier transforms of the wavelet packets fail to be a Schauder basis for Lp(R):Proof. By the Hausdor� Young inequality,kwnkkp � Ckŵnkkp0 ;and Bernstein's inequality shows that kŵnkkp � Ckŵnkk1 sokŵnkkpkŵnkkp0 � Ckwnkkpkŵnkk1;and the result follows. �Corollary 2.50. Theorem 2.49 applies to the wavelet packets associated with one of the �lterslisted in Tables 2.1, 2.2, and 2.3.Proof. We know that the subsequence fw2n�1g grows exponentially in Lp(R)-norm for plarge. Furthermore, with � the associated scaling function,kŵ2n�1k1 � jŵ2n�1(2n 2�3 )j = jm1(2�3 )jnj�̂(2�3 )j � Cjm1(2�3 )jn;since j�̂(�)j � C on [��; �]. The result then follows from the values listed in Tables 2.1, 2.2,and 2.3. �
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2.5 A Formula for �p for p EvenIn this section we generalize the results expressing �1 as a joint spectral radius of two �nitedimensional matrices. First we need the following generalization of the joint spectral radius(introduced by Jia in [23]).De�nition 2.51. Let A0 and A1 be n�n matrices. We de�ne the p-norm joint spectral radiusfor 0 < p <1 by �p(A0; A1) = lim supn!1 � X"2f0;1gn kA"1A"2 � � �A"nkp�1=pn:In what follows we let �0 denote the sequence f�0;kgk2Z, and let S be the subdivisionoperator introduced in De�nition 2.29. We de�ne the operators A0 and A1 by their matrixrepresentations (A")ij = g"+2i�j ;where m1(�) = PNk=�1 gkeik� is a �nite high-pass �lter. Note that A0; A1 are essentially thetranspose of the matrices appearing in Theorem 2.36. The reason is that the new A0 and A1have nice invariant subspaces of �nite dimension, which was �rst observed by L. F. Villemoesin [42]. The following lemma is well known and can be found in, e.g., [24].Lemma 2.52. For i = "1 + 2"2 + � � �+ 2n�1"n + 2nk we have(Sn�0)i�j = (A"nA"n�1 � � �A"1)kj:Proof. We use induction on n. For n = 1 and i = "1 + 2k we have(S�0)i�j = X̀2Zgi�j�2`�0;l = g"1+2k�j = (A"1)kj:Suppose the claim is true for n� 1. For i = "1 + 2k1 with k1 = "2 + � � � "n2n + 2n�1k we have(Sn�0)i�j = X̀2Zgi�j�2`(Sn�1�0)`= X̀2Zg"1+2(k1�`)�j(Sn�1�0)`= X̀2Zg"1+2`�j(Sn�1�0)k1�`= X̀2Zg"1+2`�j(A"n � � �A"2)k1`= X̀2Z(A"1)`j(A"n � � �A"2)k1`= (A"nA"n�1 � � �A"1)kj :51



�It is easy to verify that `p([�1; N � 1]) is invariant under both A0 and A1 so it follows thatV0, the minimal invariant subspace under A0 and A1 containing �0, is �nite dimensional. Welet P = fA0; A1g and de�ne Pn�0 = X"2f0;1gnA"1 � � �A"n�0;and kPn�0kp = � X"2f0;1gn kA"1 � � �A"n�0kp�1=p:The following lemma gives us what we want, an expression for �p in terms of two �nite dimen-sional matrices. The �rst equality in the lemma is a new observation, the second equality wasproved in [24].Lemma 2.53. �p[S] = �p(A0jV0 ; A1jV0) = limn!1 kPn�0k1=np :Proof. For i = "1 + 2"2 + � � � + 2n�1"n + 2nk we have(Sn�0)i = (A"n � � �A"1)k0 = (A"n � � �A"1�0)k;so Xi2Z j(Sn�0)ijp = X"2f0;1gnXk2Zj(A"n � � �A"1�0)kjp= kPn�0kpp:Hence, �p[S] = limn!1 kPn�0k1=np :To get the second equality, we note that V0 is �nite dimensional so it has a basis of the formB = fA"1 � � �A"j �0; j = 0; : : : ; dg:It follows that there is a constant C such thatkPnbkp � CkPn�0kp; for b 2 B;and for which kPnjV0kp � Cmaxb2B kPnbkp;52



so kPnjV0kp � CkPn�0kp:Clearly, kPn�0kp � kPnjV0kpk�0kp:Thus, �p(A0jV0 ; A1jV0) = limn!1 kPnjV0k1=np = limn!1 kPn�0k1=np : �We have the following amazing result by D.-X. Zhou ([50]3) that provides a �nite dimensionalmethod to calculate the spectral radius of our subdivision operator on `2k(Z); k = 1; 2; : : :Theorem 2.54 ([50]). For k 2 N and P = fM1;M2; � � � ;Mdg a �nite collection of real valuedn� n-matrices, we have �2k(P) = �� XM2P(M 
M)[k]�1=2k;where A[1] = A, A[j+1] = A
A[j], and 
 denotes the Kronecker product.Unfortunately, the size of the matrix appearing in Theorem 2.54 grows exponentially in kso the method is only feasible for k < 4 and n < 10 unless one has access to a very powerfulcomputer. We have applied the method to the Daubechies �lters of length 4, 6, and 8 tocalculate ~�4 = 23=4�4[S]. The results are listed in the following Table:DaubN ~�44 1.071976 1.033068 1.02014Table 2.4: ~�4 associated with the Daubechies �lters of length 4, 6, and 8.2.6 Uniformly Bounded Nonstationary Wavelet PacketsWe have seen that the basic stationary wavelet packets associated with some of the mostwidely used �lters are not uniformly bounded functions. In this section we prove that using thenonstationary construction of wavelet packets one can obtain uniformly bounded basic waveletpackets. The price we have to pay is that we have to use a sequence of �lters with an increasing3I would like to thank Lars Villemoes for bringing Zhou's paper to my attention.53



number of nonzero coe�cients. A consequence is that the diameter of the support of the basicwavelet packets grows with the frequency. We propose a new construction of wavelet packetsin the next section to avoid such support problems.The following two lemmas give us some basic information on the geometry of the Daubechies�lters.Lemma 2.55. Let mN0 be the Daubechies �lter of length 2N . ThenjmN0 (�)j � j sin(�)jN�1; for �=2 � j�j � �:Moreover, S(�) = jmN0 (�)j+ jmN0 (� + �)j � 1 + j sin(�)jN�1; � 2 R;and kSkL2([��;�]; dx2� ) = 1 +O(1=pN):Proof. We have, for �=2 � j�j � �,jmN0 (�)j2 = cos2N (�=2)jPN (�)j2;where jPN (�)j2 = N�1Xj=0 �N � 1 + jj � sin2j(�=2)= N�1Xj=0 �N � 1 + jj �[2 sin2(�=2)]j2�j� [2 sin2(�=2)]N�1 N�1Xj=0 �N � 1 + jj �2�j= [2 sin2(�=2)]N�1jPN (�=2)j2= [4 sin2(�=2)]N�1;so jmN0 (�)j2 � cos2N (�=2)j[4 sin2(�=2)]N�1 � [4 cos2(�=2) sin2(�=2)]N�1 = j sin(�)j2(N�1):To get the second part, we just notice that for �=2 � j�j � �:jmN0 (�)j � j sin(�)jN�1; and jmN0 (� + �)j � 1:For j�j � �=2 we have, using j sin(� � �)j = j sin(�)j,jmN0 (�)j � 1; and jmN0 (� + �)j � j sin(�)jN�1:54



Finally, 12� Z ��� S(�)2 dx � 1 + 12� Z ���[j sin(�)j2N�2 + 2j sin(�)jN�1] d�:Assume N is odd (the case N even is similar). We have12� Z ��� sin(2N�2)(�) d� = 1 � 3 � 5 � � � (2N � 3)2 � 4 � 6 � � � (2N � 2) � 1p(N � 1)� ;and 12� Z ��� sin(N�1)(�) d� = 1 � 3 � 5 � � � (N � 2)2 � 4 � 6 � � � (N � 1) � 1p�(N � 1)=2so, using p1 + �2 � 1 + �2=2 we get estimate we want. �Moreover,Lemma 2.56. Let fm(p)0 g1p=1 be a family of Daubechies low-pass �lters. Suppose there areconstants " > 0 and C > 0 such that dp � deg(m(p)0 ) � Cp2+". Then there exists a constantB <1 such thatZ ��� jm(1)"1 (�)m(2)"2 (2�) � � �m(j)"j (2j�1�)j d� � B2�j ; j = 1; 2; ; : : : ;for any choice of ("k) 2 f0; 1gN :Proof. Fix " 2 f0; 1gN , and de�ne IJ;K = I"J;K , J > K; byIJ;K(�) � 2K+1jm(J�K)"J�K (�)m(J�K+1)"J�K+1 (2�) � � �m(J)"J (2K�)j:It su�ces to �nd a constant A such that R ��� IJ;J�1(�) d� � A, independent of J and the choiceof ". Let SK(�) = jm(J�K)"J�K (�)j + jm(J�K)"J�K (� + �)j (note SK does not depend on "J�K whichfollows from the CQF conditions). ThenZ ��� IJ;K(�) d� = 2K+1 Z ��� jm(J�K)"J�K (�)m(J�K+1)"J�K+1 (2�) � � �m(J)"J (2K�)j d�= 2K+1 Z 0�� jm(J�K)"J�K (�)m(J�K+1)"J�K+1 (2�) � � �m(J)"J (2K�)j d�+ 2K+1 Z �0 jm(J�K)"J�K (�)m(J�K+1)"J�K+1 (2�) � � �m(J)"J (2K�)j d�= 2K Z ��� SK(�=2)jm(J�K+1)"J�K+1 (�)m(J�K+2)"J�K+2 (�) � � �m(J)"J (2K�1�)j d�= Z ��� SK(�=2)II;K�1(�) d� (2.17)55



We have 2� � IJ;0 � IJ;1 � � � � � IJ;K;which follows from (2.17) and the fact that SK(�) � jm(J�K)"J�K (�)j2 + jm(J�K)"J�K (� + �)j2 = 1 forK = 1; 2; : : : : Thus, using Lemma 2.55 and H�older's inequality,kIJ;KkL1([��;�]; dx2� ) = kIJ;K�1(�)SK( �2 )kL1([��;�]; dx2� )� kIJ;K�1(�)SK( �2 )kL4=3([��;�]; dx2� )� kIJ;K�1(�)SK( �2 )k2L4=3([��;�]; dx2� )� kIJ;K�1kL1([��;�]; dx2� )kSK( �2 )kL2([��;�]; dx2� ):Hence, kIJ;J�1kL1([��;�]; dx2� ) � kIJ;0kL1([��;�]; dx2� ) � J�1Yj=1 kSj( �2 )kL2([��;�]; dx2� ):Clearly kIJ;0kL1([��;�]; dx2� ) � 2, so it su�ces to prove that QJ�1j=1 kSj( �2 )kL2([��;�]; dx2� ) is uni-formly bounded in J . By Lemma 2.55,kSK( �2 )kL2([��;�]; dx2� ) = 1 +O(1=pdJ�K));and by assumption J�1Xj=1 1pdJ�j � 1Xj=1 1pdj � C 1Xj=1 1j1+"=2 <1:The claim now follows from the Weierstrass product test. �We use the above Lemma to obtain the following result.Theorem 2.57. Let fh(p)g1p=0 be a family of Daubechies CQF's with associated transfer func-tions fm(p)0 g. Suppose there are constants " > 0 and C > 0 such that length(h(p)) � Cp2+".If jŵ0(�)j � B(1 + j�j)�1�" for some constant B then the Fourier transforms of associatednonstationary wavelet packets are uniformly bounded in L1-norm and the wavelet packets areconsequently uniformly bounded.Proof. Take n : 2J+1 � n < 2J+2. Thenŵn(�) = m(J)"1 (�=2)m(J�1)"2 (�=4) � � �m(0)"J+1(�=2J+1)�̂(�=2J+1):
56



Also, since j�̂(�)j � B(1 + j�j)�1�" we haveZ 1�1 jŵn(�)j d� =Xk2ZZ 2J+1�+k2J+2��2J+1�+k2J+2� jŵn(�)j d�� Z 2J+1��2J+1� jm(J)"1 (�=2)m(J�1)"2 (�=4) � � �m(0)"J+1(�=2J+1)j d�Xk2ZC(1 + 2�jkj)�1�":� B2J+1 Z ��� jm(0)"J+1(�)m(1)"J (2�) � � �m(J)"1 (2J�)j d�;and the claim follows from Lemma 2.56. �Remark. It is an unfortunate consequence of the above nonstationary construction that thediameter of support for the nonstationary wavelet packets grows just as fast as the �lterlength.This problem will be eliminated in the next section using a generalized construction of waveletpackets.2.7 Highly Nonstationary Wavelet PacketsThis section contains a generalization of stationary and nonstationary wavelet packets. Thenew de�nition induces more 
exibility into the construction, and thus allows for construction offunctions with better properties than the corresponding nonstationary construction. We havenamed the new functions highly nonstationary wavelet packets (HNWPs) and the de�nition isthe followingDe�nition 2.58 (Highly Nonstationary Wavelet Packets). Let (�;  ) be a scaling func-tion/wavelet associated with an MRA, and let fmp;q0 gp2N;1�q�p be a family of CQFs. Let w0 = �and w1 =  and de�ne the functions wn, n � 2; 2J � n < 2J+1, byŵn(�) = mJ;1"1 (�=2)mJ;2"2 (�=4) � � �mJ;J"J (�=2J ) ̂(�=2J );where n =PJ+1j=1 "j2j�1 is the binary expansion of n. We call fwng1n=0 a family of basic highlynonstationary wavelet packets (HNWPs).Remark. It is obvious that the de�nition of highly nonstationary wavelet packets includes thestationary and nonstationary wavelet packets as special cases.The following result shows that the integer translates of the basic HNWPs do give us anorthonormal basis for L2(R), just like the basic nonstationary wavelet packets.Theorem 2.59. Let fwng1n=0 be a family of highly nonstationary wavelet packets. Then fwn(��k)gn�0;k2Z is an orthonormal basis for L2(R).57



Proof. Recall that L2(R) = V0 �� 1Mn=jWj�;and by de�nition wn 2WJ for 2J � n < 2J+1 so it su�ces to show thatfwn(� � k)g2J�n�2J+1;k2Zis an orthonormal basis forWJ . However, this follows at once from the �rst J steps of the induc-tion argument in the proof of Theorem 2.3 using the �lters m(p)n = mJ;J�p+10 ; for p = 1; � � � ; J .�The following corollary to Lemma 2.56 shows the added 
exibility in the de�nition highlynonstationary wavelet packets allows one to get better joint time-frequency localization.Corollary 2.60. Let fh(p)g1p=0 be a family of Daubechies CQFs with associated transfer func-tions fm(p)0 g. Suppose there are constants " > 0 and C > 0 such thatC�1p2+" � length(h(p)) � Cp�1�"2p:Let fwngn be the highly nonstationary wavelet packets associated with mp;q0 = m(q)0 for p �1; q � p; and some pair (�;  ). If jŵ0(�)j � B(1 + j�j)�1�" for some constant B then theFourier transforms of associated nonstationary wavelet packets are uniformly bounded in L1-norm and the wavelet packets are consequently uniformly bounded. Moreover, if w1 has compactsupport then there is a K <1 such that supp(wn) � [�K;K] for all n � 1:Proof. The �rst statement follows directly from the proof of Theorem 2.56. The secondfollows from the fact that the distribution de�ned as the inverse Fourier transform of the productQJj=1m(j)"j (�=2) ̂(�=2J ) has support contained in���PJj=1 length(m(j)"j )2�j ;PJj=1 length(m(j)"j )2�j� � [� ~K; ~K];whenever w1 =  has compact support (� <1 depends on the diameter of the support of w1).�
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Chapter 3Periodic Wavelet PacketsWavelet packets have been introduced to provide a 
exible method for time-frequency anal-ysis combining the advantages of wavelet analysis and windowed Fourier analysis. Similarlyperiodic wavelet packets provide an alternative to Fourier series. Although there are a numberof similarities between periodic wavelet packets and the trigonometric system, we show in thischapter that the similarities end when the systems are considered in Lp[0; 1) for p 6= 2:We showthat, unlike the trigonometric system, periodic wavelet packets are not, in general, uniformlybounded in every Lp[0; 1)-space, and they may fail to be a Schauder basis for such spaces.We also prove that certain periodic HNWPs do form Schauder bases for Lp[0; 1), 1 < p <1:3.1 Periodic Wavelet PacketsIt was proved in [29] that by periodizing any (reasonable) orthonormal wavelet basis associatedwith a multiresolution analysis one obtain a multiresolution analysis for L2[0; 1).The same procedure works equally well with wavelet packets,De�nition 3.1. Let fwng1n=0 be a family of (possibly) nonstationary basic wavelet packets sat-isfying jwn(x)j � Cn(1 + jxj)�1�"n for some "n > 0; n 2 N0 : For n 2 N0 we de�ne thecorresponding periodic wavelet packets fwn byfwn(x) =Xk2Zwn(x� k):Note that the hypothesis about the pointwise decay of the wavelet packets wn ensures thatthe associated periodic wavelet packets are well de�ned functions contained in Lp[0; 1) for everyp 2 [1;1]:The following result shows that the above de�nition is useful.59



Theorem 3.2 ([22]). The family ffwng1n=0 is an orthonormal basis for L2[0; 1):Proof. Note that fwn 2 fWj for 2j�1 � n < 2j (fWj is the periodized version of the waveletspace Wj) and that fWj is 2j�1 dimensional (see [29] for details), so it su�ces to show thatffwng1n=0 is an orthonormal system. We have, using Fubini's Theorem,Z 10 fwn(x)gwm(x) dx = Z 10 Xq2Zwn(x� q)Xr2Zwm(x� r) dx=Xq2ZZ 10 wn(x� q)Xr2Zwm(x� r) dx= Z 1�1wn(x)Xr2Zwm(x� r) dx=Xr2ZZ 1�1wn(x)wm(x� r) dx= �m;n: �3.1.1 Periodic Wavelet Packets and the Trigonometric SystemIt was observed by Hess-Nielsen in [22] that there are some important similarities betweenperiodic wavelet packets and the trigonometric system. Most strikingly is the fact that theperiodic wavelet packets share the translation property of the trigonometric system, althoughthe property is more complicated for the periodic wavelet packets.Let G : N0 ! N0 be the Gray-code permutation. For n 2 N we write2n = 1X`=k(n) "` 2`; 1 � k(n) <1;with "k(n) = 1 and "l 2 f0; 1g otherwise. De�ne the number �n by�n = 1� 2�(k(n)+1) + "k(n)+1(n) � (2�k(n) � 1); n 2 N:Readers interested in the origin of �n should consult [22]. The result by Hess-Nielsen is then:Theorem 3.3 ([22]). For n 2 N : ~wG(2n)(x) = ~wG(2n�1)(x� �n):This theorem shows that the periodic wavelet packets (in frequency order) resemble thetrigonometric system in the sense that each f 2 L2[0; 1) has the convergent expansionsf = a0 + 1Xn=1�an cos(2�nx) + bn sin(2�nx)	;60



and f = ~a0 + 1Xn=1 �~an ~wG(2n) +~bn ~wG(2n�1)	; (3.1)where ~wG(2n) is a translate of ~wG(2n�1):We would like to know if the expansion given by (3.1) converges in other spaces that L2[0; 1).In the following section we show that the expansion works just �ne in Lp[0; 1), 1 < p <1, forthe periodic wavelet packets associated with the Walsh type wavelet packets introduced in theprevious chapter. However, the convergence property may fail for the Lp[0; 1)-spaces for p 6= 2even for \nice" periodic wavelet packets. This will be proved in section 3.4.3.2 Periodic Walsh Type Wavelet Packets as a Basis for Lp[0; 1)The periodic version of the Walsh system is the Walsh system itself due to the fact that thesupport of each Walsh function is contained in [0; 1), so the periodic Walsh system is indeeda Schauder basis for Lp[0; 1) (R. Paley's original result) for 1 < p < 1. The next theoremgeneralizes Paley's result to the periodic Walsh type wavelet packets.Theorem 3.4. Let fwngn be a wavelet packet system satisfying the hypothesis of Theorem 2.12.Then the associated periodic system ffwngn is a Schauder basis for Lp[0; 1) for 1 < p <1.Proof. We claim that the periodized system ffwngn is dense in Lp[0; 1). To verify the claimwe let PN be the projection onto the closed linear span of ffwngNn=0. By the construction ofthe periodic wavelet packets we have P2N�1 = PeVN , where eVN is the periodized version of themultiresolution space VN . But PeVN f ! f for f 2 Lp[0; 1) and the claim follows. So it su�cesto prove that supN kPNkLp[0;1)!Lp[0;1) < 1. Suppose not. Note that each Pn is bounded onLp[0; 1) since its kernel is bounded on [0; 1)2, so by the Banach-Steinhaus Theorem there existsf 2 Lp[0; 1) such that supN kPNfkLp[0;1) =1: (3.2)According to the proof of Theorem 2.12 there exists a constant Cp such that



 NXn=0hg; wn(� � k)iwn(� � k)



p � Cpkgkp (3.3)for every N � 1, k 2 Z, and every g 2 Lp(R). Fix K such that supp(wn) � [�K;K] for n � 0.Then, for x 2 [0; 1) fwn(x) = K+1Xk=�Kwn(x� k): (3.4)61



Choose N such that 



 NXn=0hf;fwnifwn



Lp[0;1) > (2K + 2)2CpkfkLp[0;1); (3.5)which is possible by (3.2). We insert (3.4) into (3.5);



 K+1Xk1=�K K+1Xk2=�K� NXn=0Z 10 f(x)wn(x� k1) dxwn(y � k2)�



Lp([0;1); dy ) > (2K + 2)2CpkfkLp[0;1):By Minkowski's inequality



 K+1Xk1=�K K+1Xk2=�K� NXn=0Z 10 f(x)wn(x� k1) dxwn(y � k2)�



Lp([0;1); dy )� K+1Xk1=�K K+1Xk2=�K 



 NXn=0Z 10 f(x)wn(x� k1) dxwn(y � k2)



Lp([0;1); dy )so we can �nd k1 and k2 such thatCpkfkLp[0;1) = Cpk�[0;1)fkLp(R)< 



 NXn=0Z 10 f(x)wn(x� k1) dxwn(y � k2)



Lp([0;1); dy )� 



 NXn=0Z 10 f(x)wn(x� k1) dxwn(y � k2)



Lp(R; dy )= 



 NXn=0ZRf�[0;1)(x)f(x)gwn(x� k1) dxwn(y � k1)



Lp(R; dy );which contradicts (3.3). Hence, our assumption that supN kPNkLp[0;1)!Lp[0;1) =1 is false andwe are done. �3.2.1 A Counterexample in L1[0; 1)This section contains the analog to the counterexample of Theorem 2.14, the expansion in theperiodic Walsh type wavelet packets fails in L1[0; 1).Theorem 3.5. Let fwngn be a family of smooth Walsh type wavelet packets and let J be de�nedas in De�nition 2.9. Choose L 2 N such that supp(w2J+1) � [�L+1; L� 1] and choose M 2 Nsuch that 2M > 2L: Let N(k) = k3 +M + 1, and de�ne K : N ! N recursively by lettingK(1) = 2J + 1, K(2n) = 2K(n), and K(2n+ 1) = 2K(n) + 1. De�ne f byf(x) = 1Xk=1 1k2� 2N(k)+2k3+1�1Xn=2N(k)+2k3 ŵK(n)(x)�:62



Then f 2 L1[0; 1), but the periodic wavelet packet expansion of f diverges in L1[0; 1)-norm.Proof. Let 1 � 2j � n < 2j+1. It is clear from the construction of K and the recursivede�nition of the wavelet packets that wK(n) 2 spanfwK(1)(2jx� k)gk and the expansion coef-�cients are given by the expansion coe�cients of Wn in the Haar wavelets h(2jx � k). Fromthis observation and the well known fact that the Walsh functions and the Haar wavelets arerelated by the Hadamard Transform we get (see Appendix A)wK(n)(x) = 2j�1Xs=0 Wn�2j (s2�j)wK(1)(2jx� s)so ŵK(n)(x) = 2j�1Xs=0 Wn�2j (s2�j)Xr2ZwK(1)(2jx� 2jr � s)� 2j�1Xs=0 Wn�2j (s2�j)gj;s(x)We now use the fact that for x 2 [0; 1) (see Appendix A)2N(k)+2k3+1�1Xn=2N(k)+2k3 Wn�2N(k)k(x) = 2k3+1�1Xn=2k3 Wn(x) =W2k3 (x)2k3�[0;2�k3)(x)to getZ 10 ���� 2N(k)+2k3+1�1Xn=2N(k)+2k3 ŵK(n)(x)���� dx = Z 10 ���� 2N(k)+2k3+1�1Xn=2N(k)+2k3 � 2N(k)�1Xs=0 Wn�2N(k)(s2�N(k))gN(k);s(x)����� dx= 2k3 Z 10 ���� 2N(k)�k3�1Xs=0 W2k3 (s2�N(k))gN(k);s(x)���� dx� 2k3 2N(k)�k3�1Xs=0 Z 10 ��W2k3 (s2�N(k))gN(k);s(x)�� dx� 2k32N(k)�k32�N(k)kwK(1)kL1(R)= kwK(1)kL1(R):Thus, f 2 L1[0; 1): De�ne the sequence an byan = 8<: 1k2 for 2N(k) + 2k3 � n < 2N(k) + 2k3+1; k 2 N0 otherwise: 63



Then f =P1n=0 anŵK(n). De�ne nj byn2j = jXi=0 22i and n2j+1 = jXi=0 22i+1;and note that nk3�2 < 2k3 for k 2 N. Let us estimate the di�erence between the following twopartial sums of fZ 10 ���� 2N(k)+2k3+nk3�2�1Xn=0 anŵK(n)(x)� 2N(k)+2k3�1Xn=0 anŵK(n)(x)���� dx= 1k2 Z 10 ���� 2N(k)�1Xs=0 2N(k)+2k3+nk3�2�1Xn=2N(k)+2k3 Wn�2N(k)(s2�N(k))gN(k);s(x)���� dx= 1k2 Z 10 ���� 2N(k)�1Xs=0 W2k3 (s2�N(k)) nk3�2�1Xn=0 Wn(s2�N(k))gN(k);s(x)���� dx;and using the fact that Wn is constant on [p2�(k3+1); (p+ 1)2�(k3+1)) for n � 2k3 ,= 1k2 Z 10 ���� 2k3+1�1Xp=0 W2k3 (p2�(k3+1)) nk3�2�1Xn=0 Wn(p2�(k3+1))�2(N(k)�k3�1)�1Xs=0 gN(k);p2(N(k)�k3�1)+s(x)���� dxDe�ne fIpg2k3+1�1p=0 � [0; 1) byIp = fxj2N(k)x 2 [p2((N(k)�k3�1)) + L; (p+ 1)2(N(k)�k3�1) � L]g= [p2�(k3+1) + 2�N(k)L; (p+ 1)2�(k3+1) � 2�N(k)L]Suppose x 2 Il. ConsiderXr2Z2(N(k)�k3�1)�1Xs=0 wK(1)(2N(k)x� 2N(k)r � p2(N(k)�k3�1) � s): (3.6)Note that2N(k)x� 2N(k)r � p2(N(k)�k3�1) � s2 [(l � p)2(N(k)�k3�1) + L� r2N(k) � s; (l + 1� p)2(N(k)�k3�1) � L� r2N(k) � s]:64



Using that p 2 [0; 2k3+1 � 1] and s 2 [0; 2N(k)�k3�1 � 1] we get the bounds(l � p)2(N(k)�k3�1) + L� r2N(k) � s � �2N(k) � r2N(k) + L+ 1(l + 1� p)2(N(k)�k3�1) � L� r2N(k) � s � 2N(k) � L� r2N(k)from which we deduce that it is only the terms with r = 0 that contribute to (3.6) sincesupp(wK(1)) � [�L + 1; L � 1]. A similar argument using the de�nition of Il, the fact that2(N(k)�k3�1) = 2M > 2L, and the compact support of wK(1), shows that for x 2 IlXr2Z2(N(k)�k3�1)�1Xs=0 wK(1)(2N(k)x�2N(k)r�p2N(k)�k3�1�s) = 8><>:Xr2ZwK(1)(2N(k)x� r) for p = l0 for p 6= l:Hence,1k2 ZIl ���� 2k3+1�1Xp=0 W2k3 (p2�(k3+1)) nk3�2�1Xn=0 Wn(p2�(k3+1)) 2(N(k)�k3�1)�1Xs=0 gN(k);p2(N(k)�k3�1)+s(x)���� dx= ���� nk3�2�1Xn=0 Wn(l2�(k3+1))���� ZIl ����Xr2ZwK(1)(2N(k)x� r)���� dx= ���� nk3�2�1Xn=0 Wn(l2�(k3+1))����2�N(k) Z2N(k)Il ��Xr2ZwK(1)(x� r)�� dx= ���� nk3�2�1Xn=0 Wn(l2�(k3+1))����2�N(k) Z (l+1)2M�Ll2M+L ��Xr2ZwK(1)(x� r)�� dx= ���� nk3�2�1Xn=0 Wn(l2�(k3+1))����2�N(k)(2M � 2L)Z 10 ��Xr2ZwK(1)(x� r)�� dxFinally we use the following fact about the Lebesgue constants for the Walsh system (seeTheorem A.2)Z 10 ���� nk3�2�1Xn=0 Wn(x)���� dx = 2�(k3+1) 2k3+1�1Xl=0 ���� nk3�2�1Xn=0 Wn(l2�(k3+1))���� > 12�k3 � 22 + 1�
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to get the estimate we wantZ 10 ���� 2N(k)+2k3+nk3�2�1Xn=0 anŵK(n)(x)� 2N(k)+2k3�1Xn=0 anŵK(n)(x)���� dx� 1k2 2k3+1�1Xl=0 ZIl ���� 2k3+1�1Xp=0 W2k3 (p2�(k3+1)) nk3�2�1Xn=0 Wn(p2�(k3+1))�2(N(k)�k3�1)�1Xs=0 gN(k);p2(N(k)�k3�1)+s(x)���� dx= 1k2 2k3+1�1Xl=0 ���� nk3�2�1Xn=0 Wn(l2�(k3+1))����2�N(k)(2M � 2L)�Z 10 ����Xr2ZwK(1)(x� r)���� dx= 1k2 (2M � 2L)Z 10 ��Xr2ZwK(1)(x� r)�� dx 2�M Z 10 ���� nk3�2�1Xn=0 Wn(x)���� dx> 1k2 (2M � 2L)Z 10 ����Xr2ZwK(1)(x� r)���� dx 2�M 12�k3 � 22 + 1�� Ckfor some C > 0. We conclude that the partial sumsPK(2N(k)+2k3+nk3�2�1)f � PK(2N(k)+2k3�1)fdiverge in L1[0; 1) as k !1. This proves the Theorem. �3.2.2 Pointwise Convergence for Periodic Walsh Type Wavelet Packet Ex-pansionsWe have the following corollary to Theorem 2.16.Corollary 3.6. Let fwngn be a wavelet packet system satisfying the hypothesis of Theorem2.12. Then the expansion of each f 2 Lp[0; 1), 1 < p <1, in associated periodic system ffwngnconverges a.e.Proof. Let f 2 Lp[0; 1), and de�ne N as in the proof of Theorem 2.16. Note thatmXn=0hf;fwnifwn(x) = N+1Xk1=�N N+1Xk2=�N � mXn=0Z 10 f(y)wn(y � k1) dywn(x� k2)�;66



so it follows at once from the proof of Theorem 2.16 that the Carleson operator associated withthe periodic Walsh type wavelet packets is of strong type (p; p) for 1 < p <1: �3.3 Growth in Lp-norm of Periodic Wavelet PacketsWe have seen that wavelet packets generated by the Daubechies or Coi
et �lters (other thatthe Haar �lter) are not uniformly bounded in Lp(R)-norm for p large, and this growth in normprevents the wavelet packets from being Schauder bases for the Lp(R) spaces. One could hopethat periodizing the wavelet packets would somehow collapse their Lp(R)-norm and hopefullygive us some new nice bases for Lp[0; 1). However, this is not so as will be show in this section.But �rst we need a technical result about multipliers for Fourier series. The result can bededuced, with some work, from a result by de Leeuw (see [12, Corollary 4.6]). We present amore direct proof here.Lemma 3.7. Let fmkgk2Z be a 2N -periodic sequence with � = infk jmkj > 0: Then the operatorT , de�ned on L2[0; 1) by T�Xk2Zake2�ikx	 =Xk2Zmk ake2�ikx;extends to an isomorphism on Lp[0; 1); 1 < p <1:Proof. Fix 1 < p <1. First step is to prove that f�2NZ+j(k)gk2Z is a p-multiplier. Sincethe shift operator (i.e. multiplication by e2�ijx) is an isometric isomorphism on Lp[0; 1) it su�cesto prove that f�2NZ(k)gk2Z is a p-multiplier. We prove this by induction on N . Suppose N = 1and let T2 be the operator induced by the sequence f�2Z(k)gk2Z. Let p(x) =P ake2�ikx be atrigonometric polynomial. Then, for l = 1; 2; : : : ,Z 10 jp(x)j2l dx =Xj1 � � �Xj2l aj1�aj2 � � � aj2l�1�aj2l Z 10 e2�i(j1�j2+���+j2l�1�j2l)x dx: (3.7)However,
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Z 10 e2�i(j1�j2+���+j2l�1�j2l)x dx 6= 0, j1 � j2 + � � � + j2l�1 � j2l = 0;and j1 � j2 + � � � + j2l�1 � j2l = 0 only if the number of odd indices in the set fj1; j2; : : : ; j2lgis even. Let ~p(x) =P c(k)ake2�ikx; where c(k) = 1� 2(k mod 2): The above argument showsthat if j1 � j2 � � � + j2l�1 � j2l = 0 thenaj1�aj2 � � � a2l�1�aj2l = c(j1)aj1c(j2)�aj2 � � � c(j2l�1)aj2l�1c(j2l)�aj2l :Thus, it follows from (3.7) that ~p(x) has the same L2l[0; 1)-norm as p(x). SokT2pkL2l[0;1) = 12kp(x) + ~p(x)kL2l[0;1) � kpkL2l[0;1);and T2 thus extends to a bounded operator on L2l[0; 1) for l = 1; 2; : : : The Riesz-Thorin inter-polation theorem and a duality argument (T2 is obviously self-adjoint) shows that T2 extendsto bounded operator on every Lp[0; 1) for 1 < p <1.Suppose the result holds for N�1, N � 2. Let Tj be the operator induced by f�2jZ(k)gk2Z.Note that TNf(x) = T2[(TN�1f)(21�N � )](2N�1x)so TN is bounded on Lp[0; 1).We now apply the above 2N times to obtain2N�1Xj=0 

 Xk22NZ+j cke2�ikx

Lp[0;1) � Cp2N

Xk2Zcke2�ikx

Lp[0;1):Hence, using Minkowski's inequality,

Xk2Zcke2�ikx

Lp[0;1) ' 2N�1Xj=0 

 Xk22NZ+j cke2�ikx

Lp[0;1):Returning to the operator T we have, using fmkg is 2N -periodic and0 < infk jmkj � supk jmkj <1;
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Xk2Zmkcke2�ikx

Lp[0;1) ' 2N�1Xj=0 

 Xk22NZ+jmkcke2�ikx

Lp[0;1)= 2N�1Xj=0 jmj j

 Xk22NZ+j cke2�ikx

Lp[0;1)' 2N�1Xj=0 

 Xk22NZ+j cke2�ikx

Lp[0;1)' 

Xk2Zcke2�ikx

Lp[0;1);which shows that T is an isomorphism on Lp[0; 1) and we are done. �The following result shows that periodizing most compactly supported wavelet packets willnot collapse their Lp-norm signi�cantly.Theorem 3.8. Let fwngn be a wavelet packet basis associated with the �nite �lters (m0;m1):Choose N such that diam supp(wn) � 2N : Fix L 2 2Z++ 1. If(m�10 (0) [m�11 (0)) \ � N[k=1 2�k(2Z+ 1)�� = ;then there exist �nite constants cp; Cp > 0 (depending on L) such thatcpkw2n�1kp � k ^w2n+N�LkLp[0;1) � Cpkw2n�1kp; for n � 2n+N � L � 1:Proof. We have, using that m1(k�) = �(k mod 2);^w2n+N�L(x) =Xk2Zŵ2N+n�L(2�k)e2�ikx=Xk2Zm1(�k)m"2(�k2 ) � � �m"J ( �k2N )ŵ2n�1( �k2N )e2�ikx= �X̀2Zm"2� (2`+1)�2 � � � �m"J� (2`+1)�2N �ŵ2n�1� (2`+1)�2N �e2�i2`xe2�ix;where "1; "2; : : : ; "J are the �rst J bits of the binary expansion of 2n+N � L. Note that "1 = 1since L is odd and "2; : : : ; "J do not depend on n, only on L. Thus,k ^w2n+N�LkLp[0;1) = 


X̀2Zm"2( (2`+1)�2 ) � � �m"J ( (2`+1)�2N )ŵ2n�1( (2`+1)�2N )e2�i2`xe2�ix


Lp[0;1)= 


X̀2Zm"2( (2`+1)�2 ) � � �m"J ( (2`+1)�2N )ŵ2n�1( (2`+1)�2N )e2�i2`x


Lp[0;1)= 


X̀2Zm"2( (2`+1)�2 ) � � �m"J ( (2`+1)�2N )ŵ2n�1( (2`+1)�2N )e2�i`x


Lp[0;1):69



Note that �m"2( (2`+1)�2 ) � � �m"J ( (2`+1)�2N )	`2Zis a 2N -periodic sequence. Moreover, the sequence is non-vanishing (by assumption). Hence,by Lemma 3.7 for 1 < p <1,k ^w2n+N�LkpLp[0;1) ' 


X̀2Zŵ2n�1( (2`+1)�2N )e2�i`x


pLp[0;1)= 2�N


X̀2Zŵ2n�1(2`�2N + �2N )e2�i2�N `x


pLp[0;2N ):However, 2�N X̀2Zŵ2n�1(2`�2N + �2N )e2�i2�N `xis just the Fourier series on [0; 2N ) of the functiong(x) =Xk2Zf(x� 2Nk);where f(x) = w2n�1(x)e�i2�N�x. Also, kgkLp[0;2N ) = kw2n�1kLp(R) since diamsupp(w2n�1) �2N : So we conclude that for 1 < p <1k ^w2n+N�LkLp[0;1) ' kw2n�1kLp(R);for n su�ciently large. �Corollary 3.9. Let fwngn be a wavelet packet system generated using one of the �lters listedin Tables 2.1, 2.2, and 2.3. Fix L 2 2Z++1. Then there is a p0 > 2 such that for p � p0 thereis a constant rp > 1 (depending on L) such thatkŵ2n�LkLp[0;1) � Cprnp ;for n large.Proof. Follows at once from Corollary 2.37 and Theorem 3.8, since the combined zero-setof the �lters m0 and m1 is �Z, and (2`+ 1)=2j 62 Z for j � 1. �Corollary 3.9 can be used to generalize Theorem 2.37. The following result emphasizes thatit is the high-pass �lter (m1) that causes the growth in Lp-norm of the wavelet packets.Corollary 3.10. Let fwngn be a wavelet packet system generated using one of the �lters listedin Tables 2.1, 2.2, and 2.3. Fix L 2 2Z++1. Then there is a p0 > 2 such that for p � p0 thereis a constant rp > 1 (depending on L) such thatkw2n�LkLp(R) � Cprnp ;for n large. 70



Proof. Follows at once from Corollary 3.9, Minkowski's inequality, and the fact that thewavelet packets all have support contained in some �xed interval. �We have the following result analogous to Theorem 2.38.Corollary 3.11. Let m0 be the Daubechies �lter of length 4 and let ffwng be the associatedperiodic wavelet packets. Then kŵ2n�1kLp[0;1) n!1���!1for every p > 2.Proof. We just have to prove thatkŵ2n�1kL1[0;1) n!1���! 0since kŵ2n�1kL2[0;1) = 1. But kŵ2n�1kL1[0;1) � kw2n�1kL1(R); and we havekw2n�1kL1(R) n!1���! 0by the proof of Theorem 2.38, and we are done. �3.4 Failure of Some Periodic Wavelet Packets to be a BasisWe proved in the previous chapter that compactly supported wavelet packets may fail to beSchauder bases for the Lp(R)-spaces. We show in this section that a similar (unfortunate) resultholds true for periodic wavelet packets. The failure is due to the following analog of Lemma2.41.Lemma 3.12. If ffwng1n=0 is a Schauder basis for Lp[0; 1); 1 < p < 1; then there exists a�nite constant Cp such thatkfwnkLp[0;1)kfwnkLp0 [0;1) � Cp; n = 0; 1; : : : : (3.8)Proof. Same as for Lemma 2.41. �The main theorem is the followingTheorem 3.13. Let fwngn be a wavelet packet system generated using one of the �lters listedin Tables 2.1, 2.2, and 2.3. Then there is a p0 > 2 such that for p � p0 the periodic waveletpacket system ffwngn (in any ordering) fails to be a Schauder basis for Lp[0; 1):71



Proof. Choose p0 such that supn kw2n�1kp0kw2n�1kp =1;for each p � p0: Fix p � p0: Then here is a constant cp 2 (0;1) and an integer N such thatk ^w2n+N�1kLp0 [0;1)k ^w2n+N�1kLp[0;1) � cpkw2n�1kp0kw2n�1kp:Hence, supj kŵ2j�1kLp0 [0;1)kŵ2j�1kLp[0;1) =1:The result then follows from Lemma 3.12. �3.4.1 Some Periodic Wavelet Packets Generated Using In�nite FiltersThe results in this section are the periodic analog of the results from Section 2.4.1. Again, forcertain technical reasons we have to restrict our attention to transfer functions that are givenby the absolute value of a transfer function for a FIR �lter.First, we check that the Bernstein type inequality from Lemma 2.33 can be generalized toperiodic wavelet packets.Lemma 3.14. Let f ~Vjg be the periodization of a multiresolution analysis fVjg with associatedscaling function � satisfying j�(x)j � C(1 + jxj)�1�"; for some " > 0. Then there is a constantCp such that for f 2 ~Vn, kfkL1[0;1) � 2n=pCpkfkLp[0;1):Proof. We have f =P2n�1k=0 ck ~�n;k for some sequence fckg. Thus,kfkL1[0;1) = 


 2n�1Xk=0 ckXq2Z2n=2�(2n(x� q)� k)


1� 2n=2kfckgk`1(Z)


Xq2Zj�(2nx� q)j


1� C2n=2kfckgk`1(Z)� C2n=2kfckgk`p(Z):We also have ck = Z 10 f(x) ~�1=pn;k (x) ~�1=p0n;k (x) dx;so jckj � k~�n;kk1=p0L1[0;1)�Z 10 jf(x)jpj~�n;k(x)j dx�1=p:72



Hence, 2n�1Xk=0 jckjp � 2n�1Xk=0 k~�n;kkp=p0L1[0;1) Z 10 jf(x)jpj~�n;k(x)j dx� C(2�n=p02n=2p02n=2p)p Z 10 jf(x)jpXq2Zj�(2nx� q)j dx� ~C(2�n=p02n=2p02n=2p)p Z 10 jf(x)jp dx:= ~C(2n=p2�n=2)pkfkpLp[0;1):Thus, kfkL1[0;1) � C2n=p[2n=22�n=pkfckgk`p(Z)] � ~C2n=pkfkLp[0;1);and we are done. �We have the following resultTheorem 3.15. Let m0 be a �nite low-pass �lter with associated wavelet packet system fwng:Let mabs0 = jm0j with associated periodic wavelet packet system fgwabsn g. Suppose m0 only van-ishes on (2Z+ 1)� and suppose there is an r > 1 such thatkŵ2n�1k1kw2n�1k1 � Crn:Then there is a p0 > 2 such that for p > p0; fgwabsn g fails to be a Schauder basis for Lp[0; 1)since kŵabs2n�1kLp[0;1)kŵabs2n�1kLp0 [0;1) n!1���!1:Proof. Fix 2 < p <1. By the proof of Theorem 3.8 there is an N > 1 such thatk ^wabs2n+N�1kLp0 [0;1) ' 


Xk2Zŵabs2n�1(2�k2N + �2N )e2�ikx


Lp0 [0;1);so by the Hausdor�-Young inequalitykŵabs2n�1kLp0 [0;1) � Ckfŵabs2n�1(2�k2N + �2N )gkk`p(Z):By Theorem 2.19 we have kfŵabs2n�1(2�k2N + �2N )gkk`p(Z) ' kŵ2n�1kp;and using Bernstein's inequality (note, ŵn is band-limited), we getkŵabs2n�1kLp0 [0;1) � Ckŵ2n�1k1:73



Also, kŵ2n�1k1 � kfŵ2n�1(2�k)gkk`1(Z) = kŵabs2n�1k1;since ŵabs2n�1 is a modulation of a nonnegative function. Hence, using Lemma 3.14,kŵabs2n�1kLp[0;1)kŵabs2n�1kLp0 [0;1) � C2�n=pkŵ2n�1k1kŵabs2n�1k1� C2�n=pkŵ2n�1k1kŵ2n�1k1� ~C2�n=pkŵ2n�1k1kŵ2n�1kp� ~~C2�n=pkŵ2n�1k1kw2n�N�1kLp(R);but 2�n=pkŵ2n�1k1kw2n�N�1kLp(R) n!1���!1for p large and we are done. �An immediate corollary of the above result isCorollary 3.16. Theorem 3.15 applies to the �lters listed in Tables 2.1, 2.2, and 2.3.Proof. Same as for Corollary 2.47. �3.5 Periodic HNWPs With Near Perfect Frequency Localiza-tionThe Shannon wavelet packets are not contained in L1(R) so one has to be careful trying toperiodize the functions. We can avoid this problem by viewing the Shannon �lter as the limitof a sequence of Meyer �lters. For Meyer �lters, N. Hess-Nielsen observed that periodic waveletpackets in frequency ordering are just shifted sine and cosines at the low frequencies. Moreprecisely, for n 2 N we use the binary expansion 2n =P1̀=0 "`2` to de�ne a sequence f�ng by�n = 1X̀=0 j"` � "`+1j2�`�1:Then the result isTheorem 3.17 ([22]). Choose " such that �=6 > " > 0, and let N 2 N be such that " � 2�N .For m0 a Meyer �lter with m0(�) = 1 for � 2 [��2 + "��" ; �2 � "��" ] we consider the periodizedwavelet packets ffwngn in frequency order generated using m0 and the associated high-pass �lter.They ful�ll gw2n(x) = p2 cos[2�n(x� �n)]ŵ2n�1(x) = p2 sin[2�n(x� �n)];74



for each n, 0 < n < 2N�1.The periodized version of the Shannon wavelet packet system should correspond to the limitof the above results as we let "! 0. This consideration leads us to the following de�nition:De�nition 3.18 (Periodic Shannon Wavelet Packets). We de�ne the periodic Shannonwavelet packets ffSng (in frequency order) by fS0 = 1 and for n 2 N:gS2n(x) = p2 cos[2�n(x� �n)]Ŝ2n�1(x) = p2 sin[2�n(x� �n)]:This system has all the useful properties one can hope for:Theorem 3.19. The system ffSngn is an orthonormal basis for L2[0; 1) and a Schauder basisfor Lp[0; 1), 1 < p <1.Proof. The L2 result follows from the fact that any �nite subsystem of ffSngn is a subset ofthe orthonormal basis considered in Theorem 3.17 for su�ciently small ". To get the Lp resultit su�ces to notice that for any sequence (�k)k2Z � R, fe2�ik(x��k)gk is a Schauder basis forLp[0; 1); which follows easily by calculating the associated partial sumsXjkj�Nhf; e�2�ik�ke2�ik�ie2�ik(x��k) = Xjkj�N e2�ik�khf; e2�ik�ie�2�ik�ke2�ikx= Xjkj�Nhf; e2�ik�ie2�ikx;where we have used that the coe�cient functional of e2�in(x��n) is just e2�in(x��n) since fe2�ik(x��k)gkis an orthonormal system in L2[0; 1): �3.5.1 Periodic Shannon WaveletsOur goal in this section is to construct periodic HNWPs that are equivalent in Lp[0; 1) to smallperturbations of the periodic Shannon wavelet packets. To get such results we need some resultson the periodic Shannon wavelets. The Shannon wavelet is not in L1(R) so it does not reallymake sense to try to periodize it. However, if we view the Shannon �lter as the limit of asequence of Meyer �lters, we obtain the following natural de�nition of the periodized ShannonsystemDe�nition 3.20 (Periodic Shannon Wavelets). Let �0 = 1. For n = 2J + k; 0 � k <2J ; J � 0; we de�ne �n by �n(x) = fJ(x� 2�Jk);75



where fJ(x) = 2�J=2 2JX`=2J�1 b(`)�e2�i`=2J+1e�2�i`x + e�2�i`=2J+1e2�i`x�;and b(`) = 8<:1=p2; if ` 2 f2jgj�0;1; otherwise.We call f�ng1n=0 the family of periodic Shannon wavelets.
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Lemma 3.21 ([48]). Let f be a trigonometric polynomial of degree n. Then there exists aconstant C > 0 such that Mf(x) � C supjt�xj��=n jf(t)j;where M is the classical Hardy-Littlewood maximal operator,to get the following Theorem. The proof is in the spirit of Wojtaszczyk's work [48].Theorem 3.22. The periodic Shannon wavelets are equivalent to the (periodic) Haar waveletsin Lp[0; 1]; 1 < p <1.Proof. First, we have to introduce and analyze some auxiliary functions. For n = 2J +k; 0 � k < 2J we de�ne�n(x) = 2�(J�1)=2 2J�1Xs=2J�1 exp�2�is�x� k + 1=22J ��:Note that e�2J�12�ix�n(x) = e��i(k+1=2)2�(J�1)=2 2J�1�1Xs=0 exp�2�is�x� k + 1=22J ��: (3.9)In particular, f�2ngn�0 and f�2n�1gn�1 are both orthonormal systems, since each of the blocksf�2ng2J�2n<2J+1 and f�2n�1g2J�2n�1<2J+1is a unitary image of the orthonormal system�2�(J�1)=2 2J�1�1Xs=0 e2�is(x�k=2J�1)�2J�1�1k=0 :Moreover, it is easy to check thatspanf�2ng0�2n<2J = spanf�2n�1g0�2n�1<2J = spanfe2�inxg2J�1�1n=0 :Let fakgk�0 � C and de�nef(x) = e�2J�12�ix X2J�2`<2J+1 a2`�2`(x)= 2�(J�1)=2e�i�=2 X0�2k<2J a2J+2k� 2J�1�1Xs=0 exp�2�is�x� k2J�1 � 12J+1��� (3.10)In particular, jf( `2J�1 + 12J+1 )j = 1p22J=2ja2J+2`j;77



since 2J�1�1Xs=0 e2�i(`�k)s=2J�1 = 2J�1�`;k:It follows form Lemma 3.21 and (3.10) thatM� X2J�2`<2J+1 a2`�2`�(x) � C X2J�2`<2J+1 ja2`j[jh2`(x)j + jh2`+1(x)j]: (3.11)Hence, by using the Littlewood-Paley theorem and the Fe�erman-Stein inequality for vectorvalued maximal functions,



 1Xn=0 a2n�2n



p = 



a0�0 + 1XJ=0 X2J�2`<2J+1 a2`�2`



p� �Z 10 �ja0�0j2 + 1XJ=0 ���� X2J�2`<2J+1 a2`�2`����2�p=2dx�1=p� Cp�Z 10 �ja0j2 + 1XJ=0 ����M� X2J�2`<2J+1 a2`�2`�����2�p=2dx�1=p;and by (3.11), � Cp�Z 10 �ja0j2 + 1XJ=0� X2J�2`<2J+1 ja2`j[jh2`j+ jh2`+1j]�2�p=2dx�1=p� Cp



 1Xl=0 a2n[h2n + h2n+1]



p� Cp



 1Xl=0 a2nh2n



p;where we have used the unconditionality of the Haar system (in particular, the projection ontothe even numbered Haar functions is bounded on Lp[0; 1), 1 < p <1). A similar proof showsthat 



 1Xn=1 a2n�1�2n�1



p � Cp



 1Xn=1 a2n�1h2n�1



p:Actually, it is the opposite inequalities we really need. However, since spanf�2ngn�0 is dense
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in Hq[0; 1), for f =P a2n�2n and " > 0 there is a g =P b2n�2n with kgkq � 1 + " such thatkfkp � " � jhX a2n�2n;X b2n�2nij= jhX a2nh2n;X b2nh2nij� 



X a2nh2n



p



X b2nh2n



q� C



X a2nh2n



p



X b2n�2n



q:Since " was arbitrary, we have



X a2n�2n



p � C



X a2nh2n



p;and similarly, 



X a2n+1�2n+1



p � C



X a2n+1h2n+1



p:Finally, we can prove the theorem. Let R denote the Riesz projection, i.e. the projection ontofe2�inxgn�0. Then for any �nite sequence fakgk�0 � C we have



 1Xn=0 an�n



p � 



 1Xn=0 anR�n



p + 



 1Xn=0 an(1�R)�n



p� 



 1Xn=0 a2nR�2n



p + 



 1Xn=1 a2n�1R�2n�1



p+ 



 1Xn=0 a2n(1�R)�2n



p + 



 1Xn=1 a2n�1(1�R)�2n�1



p: (3.12)Let P : Lp[0; 1) ! Lp[0; 1) denote the bounded projection1 onto the frequencies fe2�i2jxgj�0.We have, using Khintchine's inequality for lacunary Fourier series (see [45, I.B.8]),



 1Xn=0 a2nR�2n



p � 



 1Xn=0 a2nPR�2n



p + 



 1Xn=0 a2n(1� P )R�2n



p� C�



 1Xn=0 a2nPR�2n



2 + 



 1Xn=0 a2n(1� P )R�2n



p�:1The operator P is bounded since for 2 � p <1,
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Lp[0;1);where we have used Khintchine's inequelity for lacunary Fourier series. The case 1 < p < 2 follows by duality.79



A direct calculation shows thatP� X0�2`<2J a2J+2`R�2J+2`� = 2�(J+1)=2��e�i�=2 X0�2`<2J a2J+2`�e2�i2J�1x+�e�i� X0�2`<2J a2J+2`�e2�i2Jx�;whereas,P� X0�2`<2J a2J+2`�2J+2`� = 2�(J�1)=2�e�i�=2 X0�2`<2J a2J+2`�e2�i2J�1x:Thus, 
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p:Similarly, we obtain 
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p:The remaining two terms in (3.12) can easily be estimated by assuming (w.l.o.g., of course)that fakg � R and taking complex conjugates of the above estimates (note, the coe�cients atnegative frequencies of �n are just the conjugate of the coe�cients at positive frequencies). Weconclude that
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where we have used that the projection onto the even numbered Haar functions is bounded onLp[0; 1). To obtain the opposite inequality, we let " > 0 and let f =P anhn. The Haar systemis dense in Lq[0; 1] so there is a function g =P bnhn 2 span(hn) with kgkq � 1 + " such thatkfkp � " � jhX anhn;X bnhnij= jhX an�n;X bn�nij� 
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p;where we have used the orthonormality of the system �n. Since " was arbitrary we have
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p;and we are done. �The following Theorem is the periodic analog to Theorem 2.10. The proof is new, but theresult is due to Meyer ([28])Theorem 3.23. Let f	ngn be a periodic wavelet system associated with a wavelet  satisfyingj (x)j � C(1 + jxj)�2�". Then f	ngn is equivalent to the (periodic) Haar wavelets in Lp[0; 1].Proof. By duality, it su�ces to prove that
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p:We have, by the Fe�erman-Stein inequality,
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It follows form [46, p. 208] that for n = 2J + k;j	n(x)j � C2J=2(1 + 2J jx� k=2J j)�1�": (3.13)Hence, for x 2 [k2�J ; (k + 1)2�J ) (see [39, pp. 62-63]),janj = ���� Z 10 � 2J+1�1X`=2J a`	`(y)�	n(y) dy���� � C2�J=2M� 2J+1�1Xk=2J ak	k�(x);where we have used the estimate (3.13), which shows that 2J=2j	nj is an approximation of theidentity centered at k2�J . ThusM� 2J+1�1Xk=2J ak	k� � C 2J+1�1Xk=2J jakjjhkj;and we have 
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p: �The following corollary is immediateCorollary 3.24. Let f	ngn be a periodic wavelet packet system associated with a wavelet  satisfying j (x)j � C(1 + jxj)�2�". Then f	ngn is equivalent to the periodic Shannon waveletsin Lp[0; 1], 1 < p <1.We let fwngn be a HNWP system for which jw1(x)j � C(1+ jxj)�2�", and let f ewngn be thecorresponding periodic system. For 2J � n � 2J+1 writeewn(x) = 2J+1Xs=2J cn;s	s(x);where 	n is the corresponding periodic wavelet. De�ne a new system f ewSng byewSn(x) = 2J+1Xs=2J cn;s�s(x);where �s is the periodic Shannon wavelets. Then we have the following result82



Corollary 3.25. The systems f ewngn and f ewSngn are equivalent in Lp[0; 1), 1 < p <1, in thesense that there exists an isomorphism Q on Lp[0; 1) such thatQ ewn = ewSn :Proof. Take Q to be the isomorphism from Corollary 3.24 de�ned by Q	n = �n. �Remark. The signi�cance of the previous Corollary is that when dealing with periodic HNWPsf ewngn in Lp[0; 1), we may assume that the wavelet  = w1 is a Meyer wavelet  M;� witharbitrarily good frequency localization, i.e.  (�) = 1 for j�j 2 (� + �; 2� � �) for a smallnumber �. To see this, let f ewM;�n gn be the periodic HNWP system obtained using the same�lters that generated f ewngn but with  M;� as the wavelet. From the previous discussion of theperiodic Meyer wavelets we see that by periodizing  M;�j;k we get exactly fSn for n � N(�), whereN(�) ! 1 as � ! 0: Hence, ewSn = ewM;�n for j � N , and ewSn can be mapped onto ewn by theisomorphism of Corollary 3.25.3.5.2 Perturbation of Periodic Shannon Wavelet PacketsWe need the following perturbation theorem by Krein and Liusternik (see [49])Theorem 3.26. Let fxng be a Schauder basis for a Banach space X and let ffng be theassociated sequence of coe�cient functionals. If fyng is a sequence of vectors in X with denselinear span and if 1Xn=1 kxn � ynkX � kfnkX� <1then fyng is a Schauder basis for X equivalent to fxng.to prove our main theorem on periodic HNWPs;Theorem 3.27. Let fdng1n=0 � 2N be such that dn � Cn4n log(n+1) for some constant C > 0.Let f ewngn be a periodic HNWP system (in frequency order) given by the �lters fmn;q0 gn�1;1�q�n,where mn;q0 (�) = m(dn)0 (�); q = 1; 2; : : : ; n;is the Daubechies �lter of length dn. Suppose jw1(x)j � C(1 + jxj)�2�" for some " > 0. Thenf ewngn is a Schauder basis for Lp[0; 1), 1 < p <1.Proof. By the remark at the end of the previous section, we may assume that w1 is a Meyerwavelet with arbitrarily good frequency localization. We note that since f ewngn is orthonormal83



in L2[0; 1), a simple duality argument will give us the result for 2 < p < 1 if we can prove itfor 1 < p < 2. Fix 1 < p < 2: De�ne the phase functions �n : R ! [0; 2�) byjm(dn)0 (�)j = e�i�n(�)m(dn)0 (�):De�ne a family of low-pass �lters bymn;q0 (�) = ei�n(�)mM;�0 ;where mM;�0 is a Meyer �lter with localization �. Take  M;� as the wavelet and consider thecorresponding periodic HNWPs f ewM;�n gn. For �xed n, there is a �n > 0 such that 0 < �; ~� < �nimplies that ewM;�n = ewM;~�n . Let ewMn denote this limit function. It follows from Theorem 3.17 andthe proof of Theorem 3.19 that f ewMn g1n=0 is a Schauder basis for Lp[0; 1), 1 < p <1, consistingof shifted sines and cosines (more precisely, ewMn is a shifted version of eSn). The property ofthis new basis we need, is that the Fourier coe�cients of ewMn have the same phase (but not thesame length) as the the Fourier coe�cients of ewn. We want to apply the perturbation result(Theorem 3.26), so we need to show that1Xn=0 k ewn � ewMn kp � k ewMn kq ' 1Xn=0 k ewn � ewMn kp <1:However, by H�older's inequality1Xn=0 k ewn � ewMn kp � 1Xn=0 k ewn � ewMn k2;so it su�ces to estimate k ewn � ewMn k2. To ensure that1Xn=0 k ewn � ewMn k2 <1 (3.14)we will show that for 2J � n < 2J+1,k ewn � ewMn k2 � C2�JJ�1 log(J)�2;with C a constant independent of J .The Fourier series for ewMn is particularly simple and contains only two non-zero terms, equalto e�i�2�1=2, where � 2 R depends on the phase of the Daubechies �lters used to generatef ewngn. We want to estimate the corresponding two most signi�cant coe�cients in the Fourierseries for ewn. We have, for 2J � n < 2J+1,ewn(x) =Xk2Zŵn(2�k)e2�ikx;84



and we can choose w1 =  M;� to be a Meyer wavelet with su�ciently good frequency localizationso this reduces to the following trigonometric polynomialewn(x) = X2J�1�jkj<2J ŵn(2�k)e2�ikx:Recall that ŵn(�) = m(dJ )"1 (�=2)m(dJ )"2 (�=4) � � �m(dJ )"J (�=2J ) ̂M;�(�=2J );where G(n) =PJ+1j=1 "j2j�1 is the binary expansion of of the Gray-code permutation of n. Letkn be the positive index corresponding to the signi�cant coe�cient of ewMn . We deduce fromTheorem 3.17 thatm(dJ )"1 (2�kn=2)m(dJ )"2 (2�kn=4) � � �m(dJ )"J (2�kn=2J ) ̂M;�(2�kn=2J )has exactly one factor equal to 2�1=2 in absolute value, namely the factor with argument 2�s2�knsatisfying 2�kn2s 2 �2 + 2�Z:The arguments of the remaining factors are at least a distance of 21�J� from the set �=2+2�Z.Moreover, Theorem 3.17 shows that the arguments of the remaining J factors are situatedwhere the respective m"'s are \big", i.e. in the set [��=2; �=2] for the low-pass �lters appearingin the product and in the set [��;��=2] [ [�=2; �] for the high-pass �lters appearing in theproduct.Notice that, by construction, the Fourier coe�cients of ewn and ewMn have the same phase.Also, the Fourier series of ewMn contains only two non-zero terms and ewn is normalized in L2[0; 1).From this we see that to show k ewn� ewMn k2 � C2�JJ�1 log(J)�2, for 2J � n < 2J+1, it su�cesto verify thatjm(dJ )"1 (2�kn=2)m(dJ )"2 (2�kn=4) � � �m(dJ )"J (2�kn=2J ) ̂M;�(2�kn=2J )j � 2�1=2�1� C2JJ log2(J)�;(3.15)for some constant C independent of J . The dJ 's have already been chosen, so we will workour way back to see that everything works out. We now consider (3.15) as an inequality indJ = N(J). Hence, (3.15) will be satis�ed ifjm(N(J))0 (�=2 � 21�J�)j � �1� C2JJ log2(J)�1=J : (3.16)By the CQF conditions, (3.16) is equivalent tojm(N(J))0 (�=2 + 21�J�)j2 � 1��1� C2JJ log2(J)�2=J :85



From lemma 2.55 we havejm(N(J))0 (�=2 + 21�J�)j � j cos(21�J�)jN(J)�1;which gives us an explicit way to pick a sequence N(J) that works. We putcos(21�J�)2(N(J)�1) � 1��1� C2JJ log2(J)�2=JA simple estimate shows that1��1� C2JJ log2(J)�2=J � ~C2JJ log2(J) :Hence, 2(N(J)� 1) log cos(21�J�) � C � (J + log(J) + 2 log log(J)) (3.17)Using log cos(x) = �12x2 +O(x4); as x! 0;in (3.17), we see that choosing N(J) � CJ22J log(J)for any C > 0 will work. This is exactly our hypothesis about the dJ 's. �Remark. It follows from the above estimates that the factor log(n + 1) in the hypothesisabout the sequence fdng can be replaced by �n with f�ng any positive increasing sequencewith �n !1.
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Chapter 4Modi�ed Hilbert TransformsThe classical Hilbert transform de�ned on L2[0; 1) is given byH(e2�inx) = �i sgn(n) e2�inx; (4.1)and it is well known that H extends to a bounded operator on Lp[0; 1): Note that an equiv-alent de�nition of H is given by requiring that H(1) = 0; H(cos(2�nx)) = sin(2�nx); andH(sin(2�nx)) = � cos(2�nx) for n � 1. We emulate this last de�nition, using certain Walshtype wavelet packets in place of the trigonometric system, to get a family of transforms boundedon Lp[0; 1) for each 1 < p <1.4.1 A Modi�ed Hilbert Transform for the Walsh SystemGuided by (4.1), we want to de�ne a modi�ed Hilbert transform for the Walsh system fWng1n=0.First, we de�ne the binary operator u : N0 � N0 ! N0 bymu n = 1Xi=0 jmi � nij2i;where m =P1i=0mi2i and n =P1i=0 ni2i; and de�ne the notion of Z2-linearityDe�nition 4.1. Let T : N0 ! N0 be a permutation. T is called Z2-linear if T (m u n) =T (m)u T (n):The most important example if such an operator is given by the Gray-code permutation:Example 4.2. One important example of such a map is the Gray-code permutation G : N0 !
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N0 ; de�ned by G(n)i = ni u ni+1: To see that it is Z2-linear note thatG(num)i = (ni umi)u (ni+1 umi+1)= (ni u ni+1)u (mi umi+1)= G(n)i uG(m)i:We can now de�ne the transformation.De�nition 4.3. Let T be any Z2-linear permutation of N0 . We de�ne the modi�ed Hilberttransform HT by HT (WT (n)) = 8>>><>>>:0; if n = 0;WT (n�1); if n is even,�WT (n+1); if n is odd.Thus, we let cos(2�nx) correspond to WT (2n)(x) and sin(2�nx) correspond to WT (2n�1). It isobvious that HT is bounded on L2[0; 1) (of norm 1). The Walsh system and the trigonometricsystem share a number of properties, however, they are not equivalent bases in Lp[0; 1) forp 6= 2 (see [35]) so HT is not trivially bounded on Lp[0; 1). The main result of the next sectionis that HT can be extended to a bounded operator on Lp[0; 1) for 1 < p <1:4.1.1 Boundedness of the Operator HTThe following Lemma shows that there is an important metric relationship between the Walshsystems fWn(x)g1n=0 and fWT (n)(x)g1n=0 for T any Z2-linear map.Lemma 4.4 ([35]). Let T : N0 ! N0 be a Z2-linear permutation. Then there exist measurepreserving mappings M; ~M : [0; 1) ! [0; 1) such thatWT (n)(x) =Wn(M(x));Wn(x) =WT (n)( ~M(x)):We use Lemma 4.4 to prove the following result.Lemma 4.5. Let T : N0 ! N0 be a Z2-linear permutation. Then fWng1n=0 and fWT (n)g1n=0are equivalent Schauder bases for Lp[0; 1); 1 < p <1:
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Proof. Let f =PNn=0 anWn, and ~f =PNn=0 anWT (n): Then, for 1 < p <1,kfkpp = Z 10 ��� NXn=0 anWn(x)���p dx= Z 10 ��� NXn=0 anWn(M(x))���p dx= Z 10 ��� NXn=0 anWT (n)(x)���p dx= k ~fkpp:It follows that fWng1n=0 and fWT (n)g1n=0 are equivalent systems on Lp[0; 1). Since fWng1n=0 isa Schauder basis for Lp[0; 1); the Lemma follows. �We also need the following result:Lemma 4.6 ([35]). The operators W(�) : L2[0; 1)! L2[0; 1); de�ned byW(�)Wn =Wn�1;where we let W�1 = 0; extend to bounded operators on Lp[0; 1) for 1 < p <1:Lemma 4.5 shows that there is an isomorphism on Lp[0; 1), 1 < p < 1, mapping Wn ontoWT (n). Using this result, Lemma 4.6, and the next Lemma, we can decompose HT into a sumof bounded operators.Lemma 4.7. Let P : L2[0; 1)! L2[0; 1) be the operator de�ned byPn 2NXn=0 anWT (n)o = NXn=0 a2nWT (2n):Then P extends to a bounded operator on Lp[0; 1); 1 < p <1:Proof. First we prove that P extends to a bounded operator on L2k[0; 1) for k = 1; 2; : : : : Letf =PNn=0 anWT (n) be a Walsh polynomial with real coe�cients. Thenf2k = NXi1=0 NXi2=0 � � � NXi2k=0 ai1ai2 � � � ai2kWT (i1)WT (i2) � � �WT (i2k)= NXi1=0 NXi2=0 � � � NXi2k=0 ai1ai2 � � � ai2kWT (i1ui2u���ui2k):89



Hence, kfk2k2k = NXi1=0 NXi2=0 � � � NXi2k=0 ai1ai2 � � � ai2k Z 10 WT (i1ui2u���ui2k)(x) dx:Note that Z 10 WT (i1ui2u���ui2k)(x) dx 6= 0() T (i1 u i2 u � � � u i2k) = 0;and that T (i1u i2u � � �u i2k) = 0 if and only if i1u i2u � � �u i2k = 0: But i1u i2u � � �u i2k = 0only if the number of odd indices in the set fi1; i2; : : : i2kg is even. Letc(n) = 8<:1 if n is even�1 if n is odd ;and let ~f =PNn=0 c(n)anWT (n). The above argument shows that if i1 u i2 u � � �u i2k = 0 thenai1ai2 � � � ai2k = c(i1)ai1c(i2)ai2 � � � c(i2k)ai2k :We conclude that f and ~f have the same L2k[0; 1)-norm. Hence,kPfk2k = 12kf + ~fk2k � kfk2k:The family fWT (n)g1n=0 is a Schauder basis for L2k[0; 1) so it follows that P extends to abounded operator on L2k[0; 1). Using the Riesz-Thorin interpolation theorem, we concludethat P extends to a bounded operator on Lp[0; 1) for 2 � p < 1: A simple duality argumentshows that P is also bounded on Lp[0; 1) for 1 < p < 2: �We are ready to prove the main result.Theorem 4.8. Let T : N0 ! N0 be a Z2-linear permutation. Then the operator HT : L2[0; 1)!L2[0; 1) extends to a bounded operator on Lp[0; 1) for 1 < p <1:Proof. It follows from Lemma 4.6 that there exists an isomorphism, K, on Lp[0; 1) such thatKWn =WT (n): We have,HT = KW(�)K�1PT �KW(+)K�1(I � PT );a composition of bounded operators on Lp[0; 1) for 1 < p <1: �
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4.1.2 Walsh ExponentialsAn important fact about the trigonometric system is that it is a Schauder basis for Lp[0; 1); 1 <p <1; and we have limM;N!1 X�M�n�N f̂(n)e2�inx = f;for every f 2 Lp[0; 1), with convergence in Lp[0; 1)-norm. A closely related property is that theRiesz projection, given by Rn 1Xn=�1 f̂(n)e2�inxo = 1Xn=0 f̂(n)e2�inx;is bounded on Lp[0; 1). We want to emulate the exponential system using Walsh functions.One way to do that is to de�ne a set of Walsh exponentials by the following.De�nition 4.9. Let T be any Z2-linear permutation of N0 . Then we let e0(x) = 1 and de�neen(x) = 1p2 �(WT (2jnj)(x) + i sgn(n)WT (2jnj�1)(x)	 ; n 2 Z� f0g:It is immediate that fengn2Z is an orthonormal basis for L2[0; 1). Moreover, the Walsh expo-nentials and fe2�inxgn2Z share the following property.Theorem 4.10. The system fengn2Z is a Schauder basis for Lp[0; 1); 1 < p <1; in the sensethat limM;N!1 X�M�n�N(f; en)en = f (4.2)for all f 2 Lp[0; 1); 1 < p <1; with convergence in Lp[0; 1)-norm.Proof. Clearly, fengn2Z is dense in Lp[0; 1) so it su�ces to prove that the partial sum operatorsS�M;N(f); de�ned by S�M;N(f) = X�M�n�N(f; en)en;are uniformly bounded on each Lp[0; 1): Let f =P1n=0 anWT (n) 2 Lp[0; 1). Note that (f; 1) =a0; and (f; en) = 1p2 �aj2nj � i sgn(n) a2jnj�1	 ; n 2 Z� f0g: (4.3)We have S�M;N(f) = X�M�n�N(f; en)en= X�M�n<0(f; en)en + (f; 1)1 + X0<n�N(f; en)en= I + II + III: 91



Clearly, kIIkp � kfkp. Let SN (f) =P0<n�N anWT (n) and let K be de�ned as in Theorem 4.8,P be de�ned as in Lemma 4.7, and W(�) be de�ned as in Lemma 4.6. Then, using (4.3) andDe�nition 4.9,p2I = X�M�n<0na2jnjWT (2jnj) � ia2jnjWT (2jnj�1) + ia2jnj�1WT (2jnj)+ a2jnj�1WT (2jnj�1)o= [PSM � iKW(�)K�1PSM + iKW(+)K�1(I � P )SM + (I � P )SM ](f);where all the operators inside the brackets are bounded on Lp[0; 1). The same argument canbe used to estimate II, and (4.2) follows. �An easy corollary of the proof of Theorem 4.10 is the following.Corollary 4.11. The Riesz-projection, de�ned for f =PNn=�M(f; en)en byRn NXn=�M(f; en)eno = NXn=0(f; en)en;extends to a bounded operator on Lp[0; 1); 1 < p <1.Proof. Follows from the estimate of II and III in the proof of Theorem 4.10. �4.2 Periodic Walsh Type SystemsWe now want to extend all of the results to the periodic Walsh type wavelet packets. Firstwe deal with the shift operator and the projection operator onto the even numbered periodicWalsh type wavelet packets.4.2.1 The Shift and Projection OperatorThe next lemma shows that the shift operator is bounded for the periodic Walsh type waveletpackets. We show later in this chapter the such a result may fail for more general periodicwavelet packets.Lemma 4.12. Let fwngn be a wavelet packet system satisfying the hypothesis of Theorem 2.12,and let ffwngn be the associated periodic system. Then the shift operators S�, de�ned byS�fwn = ]wn�1;with gw�1 � 0, are bounded on Lp[0; 1) for 1 < p <1:92



Proof. Since ffwngn is a Schauder basis for Lp[0; 1) it su�ces to prove that the familyfS�Png1n=0, with Pn as in Theorem 3.4, is a uniformly bounded family of operators on Lp[0; 1).Suppose not. Note that each S�Pn is bounded on Lp[0; 1) (since its kernel is bounded on[0; 1)2). Hence, by the Banach-Steinhaus Theorem, there exists f 2 Lp[0; 1) such thatsupn kS�PnfkLp[0;1) =1: (4.4)Let W�N be the operator de�ned on Lp(R) byW�Ng = NXn=0hg; wn(� � k)iwn�1(� � k):It is easy to check that fW�Ng1N=0 is a uniformly bounded family of operators on Lp(R) sincethe shift operator is bounded for the Walsh system and we have the equivalence given by (2.2).Let Cp = supn kW�n kLp[0;1)!Lp[0;1): By (4.4) we can �nd N � 1 such that



 NXn=0hf;fwni]wn�1



Lp[0;1) > (2K + 2)2CpkfkLp[0;1); (4.5)with K de�ned as in Theorem 2.2. We have
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Lp([0;1); dy ) > (2K + 2)2CpkfkLp[0;1);and proceeding as in the proof of Theorem 3.4 we can �nd k1 and k2 such thatCpkfkLp[0;1) = Cpk�[0;1)fkLp(R)< 
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Lp(R; dy )= 



 NXn=0ZRf�[0;1)(x)f(x)gwn(x� k1) dxwn�1(y � k1)



Lp(R; dy );which contradicts the de�nition of Cp. Hence, our assumption thatsupn kS�PnkLp[0;1)!Lp[0;1) =1is wrong and we are done. �Next we show the the projection onto the even numbered Walsh type wavelet packets isbounded on Lp[0; 1) for 1 < p <1. It is interesting to note that the proof works for any typeof periodic wavelet packets not just the Walsh type.93



Lemma 4.13. Let fwngn be a wavelet packet system satisfying the hypothesis of Theorem 2.12,and let ffwng1n=0 be the associated periodic system. Then the projection P onto fgw2ng1n=0 isbounded on Lp[0; 1) for 1 < p <1:Proof. Note that for ` � 0 we havegw2`(x) =Xk2Zŵ2`(2�k)e2�ikx=Xk2Zm0(�k)ŵ`(�k)e2�ikx=Xs2Zŵ`(2�s)e2�i(2 s)xand ŵ2`+1(x) =Xk2Zŵ2`+1(2�k)e2�ikx=Xk2Zm1(�k)ŵ`(�k)e2�ikx= �Xs2Zŵ`((2s+ 1)�)e2�i(2 s+1)x:Thus,gw2` is made up entirely of even frequencies and ŵ2`+1 is made up entirely of odd frequen-cies. The claim therefore follows from the fact that the projection onto fe2�ikxgk22Z is boundedon Lp[0; 1) (see the proof of Lemma 3.7). �4.2.2 Boundedness of the Hilbert TransformWe can now generalize all of the results obtained for the Walsh functions to the periodic Walshtype wavelet packets. The proof of the following is a trivial consequence of the results from theprevious section.Corollary 4.14. Substitute WT (n) by ŵT (n) in De�nitions 4.3 and 4.9. Then Theorem 4.8,Theorem 4.10, and Corollary 4.11 hold for the system fŵT (n)g1n=0:4.3 Failure of the Hilbert TransformOne of the important results needed to prove boundedness of the modi�ed Hilbert Trans-form for periodic Walsh type wavelet packets is that the shift operator S(�) is bounded onLp[0; 1); 1 < p <1: However, as we shall see in this section, the shift operator is not boundedfor general periodic wavelet packet systems. The reason is that the periodic wavelet packets94



are not, in general, uniformly bounded in Lp[0; 1).First we prove the following result about the lacunary subsequence fgw2ng of the periodicwavelet packets. The result shows the the subsequence essentially agrees with the Rademacherfunctions.Theorem 4.15. Let ffwng1n=0 be any periodized wavelet packet system for which w1 2 C1(R)has compact support, and let fWng1n=0 be the Walsh System. Then the following subsystem areequivalent in Lp[0; 1); 1 < p <1; fW2ng1n=0 $ fgw2ng1n=0fW3�2ng1n=0 $ f]w3�2ng1n=0;in the sense that there exists an isomorphism Q on Lp[0; 1) mapping one subsystem to the other.Proof. Let gW sn be the periodized smooth Walsh type wavelet packets de�ned in the proofof Lemma 2.11 generated using the wavelet w1. It su�ces to prove that fwn � gW sn whenevern 2 f2ng1n=0[f3 �2ng1n=0 (see Corollary 3.24). Note that the Fourier expansion of fwn is is givenby fwn(x) =Xk2Zŵn(2�k)e2�ikx:In particular, gw2n(x) =Xk2Zŵ2n(2�k)e2�ikx=Xk2Zm0(k�)ŵn(k�)e2�ikx= Xk22Zŵn(k�)e2�ikx=Xl2Z ŵn(2�l)e2�il(2x)= fwn(2x): (4.6)So, it su�ces to prove that fw1 �gW s1 ; fw2 �gW s2 ; and fw3 �gW s3 . Surely, fw1 �gW s1 since they arethe periodized version of the same wavelet. It follows from (4.6) that fw2 �gW s2 since they haveidentical Fourier series. Also, a calculation similar to (4.6) shows thatfw3(x) = �Xk2Z ̂((2k + 1)�)e2(2k+1)�ix:Hence, fw3 �gW s3 ; and we are done. �The above theorem is bad news for shift operator on Lp[0; 1).95



Theorem 4.16. There is a periodized wavelet packet system ffwng1n=0 for which the shift oper-ator W(�), de�ned by W(�)fwn � ]wn�1, fails to be bounded on Lp[0; 1); p 6= 2:Proof. By duality, it su�ces to prove the result for W(�). Note that W(�) maps gw2n ontoŵ2n�1. Theorem 4.15 shows that the system fgw2ng is uniformly bounded in Lp[0; 1); 1 < p <1:Hence, any system for which supn kŵ2n�1kp = 1; p > 2; provides a counterexample since abounded operator cannot map a bounded sequence onto an unbounded one. See Theorem 2.38for such a counterexample. �We can also use each of the periodic wavelet packet systems associated with one of the �ltersfrom Tables 2.1, 2.2, and 2.3 to get more counterexamples if we limit Theorem 4.16 to large p.The same type of argument used in Theorem 4.16 can also be used to obtain the followingresults, which shows that general periodic wavelet packet systems behave nothing like the Walshsystem in Lp[0; 1):Corollary 4.17. The the systems ffwng and fŵG(n)g are, in general, not equivalent in Lp[0; 1); p 6=2: Proof. Note that G(2n � 1) = 2n and use the same argument as in Theorem 4.16. �Corollary 4.18. The modi�ed Hilbert Transform is, in general, not bounded on Lp[0; 1); p 6= 2;for the periodic wavelet packet system in Paley order.Proof. The modi�ed Hilbert Transform restricted to fgw2ng is just the shift operator. �
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Appendix AThe Walsh SystemThis appendix contains some results on the Walsh system that are used in the previous chapters.All the results are taken from the two monographs [14, 35] that both containmuch more aboutthe Walsh systems than we have included here.A.1 De�nitions and PropertiesWe need two equivalent de�nitions of the Walsh system on [0; 1). The �rst one �t into thewavelet packet schemeDe�nition A.1. The Walsh system fWng1n=0 is de�ned recursively on [0; 1) by letting W0 =�[0;1) and W2n(x) =Wn(2x) +Wn(2x+ 1)W2n+1(x) =Wn(2x) �Wn(2x+ 1):It is not hard to see that the Walsh system is the basic wavelet packets associated with theHaar multiresolution analysis. It turns out that the Walsh system is closed under pointwisemultiplication, but this is hard to verify using De�nition A.1. An alternative de�nition of theWalsh system can be given in terms of the Rademacher functions. Consider the functionr0(x) = 8<:1 for x 2 [0; 1=2);�1 for x 2 [1=2; 1):Extend r0 to the real line and de�ne rn(x) = r0(2nx). Then the Walsh system can be obtainedby taking all possible �nite products of the Rademacher functions. More precisely, for n =97



P1i=0 ni2i 2 N0 ; we de�ne wn(x) = 1Yi=0(ri(x))ni�[0;1)(x):To see that the de�nitions agree, we just have to note that w0 = �[0;1) and, using the propertiesof the Rademacher functions, w2n(x) = wn(2x) + wn(2x+ 1)w2n+1(x) = wn(2x)� wn(2x+ 1);i.e Wn � wn for n 2 N0 . Using the multiplicative de�nition, it follows easily that the Walshsystem is closed under pointwise multiplication. In fact, de�ne the binary operator u : N0 �N0 ! N0 by mu n = 1Xi=0 jmi � nij2i;where m =P1i=0mi2i and n =P1i=0 ni2i: ThenWm(x)Wn(x) =Wmun(x): (A.1)Moreover, (A.1) shows that the Walsh functions are characters for the group of all binarysequences (indexed by N0) under bitwise addition.Theorem A.2. Let fLngn2N be the Lebesgue constants for the Walsh system de�ned byLn = Z 10 ���� n�1Xk=0Wk(x)���� dx:De�ne nk, k 2 N, by n2s =Psi=0 22i, and n2s+1 =Psi=0 22i+1, then for all k 2 NLnk > 12�k2 + 1�:Proof. See [14, Chapter 2]. �Theorem A.3. Let Dn(x) = n�1Xk=0Wk(x):Then D2k(x) = 2k�[0;2�k)(x):98



Proof. We prove the result by induction on k. If k = 0 the the result is trivial (w0 � �[0;1)).Suppose the result holds for some k � 0. Note that, using (A.1),D2k+1(x) = D2k(x) + 2k+1�1Xn=2k Wn(x)= D2k(x) +W2k(x) 2k�1Xn=0 Wn(x)= (1 + rk(x))D2k (x);and (1 + rk(x))��x2[0;2k) = 2�[0;2�(k+1))(x):Thus by induction hypothesisD2k+1(x) = (1 + rk(x))D2k (x)= 2�[0;2�(k+1))(x)2k�[0;2�k)(x)= 2k+1�[0;2�(k+1))(x): �Lemma A.4. Let f1 2 L2(R), and de�ne ffngn � 2 recursively byf2n+"(x) = fn(2x) + (�1)"fn(2x� 1):Then for n; J 2 N, 2J � n < 2J+1, we havefn(x) = 2J�1Xs=0 Wn�2J (s2�J)f1(2J � s):Proof. Proof is by induction on n. First, note that for n = 2; 3;f2(x) = f1(2x) + f1(2x� 1) =W0(0)f1(2x) +W0(1=2)f1(2x� 1);f3(x) = f1(2x) � f1(2x� 1) =W1(0)f1(2x) +W1(1=2)f1(2x� 1);and for the inductive step observe thatf2[1"J�1���"1]2+"(x) = f[1"J�1���"1]2(2x) + (�1)"f[1"J�1���"1]2(2x� 1)= 2J�1�1Xs=0 W["J�1���"1](s2�(J�1))f1(2Jx� s)+ (�1)" 2J�1�1Xs=0 W["J�1���"1](s2�(J�1))f1(2Jx� 2J�1 � s);99



and using (A.1), = 2J�1Xs=0 W["J�1���"1"](s2�J)f1(2Jx� s): �Remark. The matrix H 2 R2J�2J de�ned byHi;j = 2�J=2Wi(j2�J ); i; j = 0; 1; : : : 2J � 1;is called the Hadamard Transform, and it follows from the previous lemma that the expansioncoe�cients of Wavelet packets generated by Haar �lters can be expressed in terms of thistransform.
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