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Introduction

In signal analysis one is (among other things) interested in obtaining information about local
properties of signals. The Fourier transformation is not very useful for such an analysis, since
the Fourier integral decomposes the signal into the stationary signals e*¢ of infinite duration,
which makes it difficult to extract local information.

The traditional solution to the problem of obtaining a local Fourier analysis is due to D.
Gabor ([13]). The idea is to analyze the signal through a sliding window, which corresponds to

using basis functions of the type
gap(z) = €% g(z — b), a,beR,

where g is a fixed function in L?(R). The question is, whether it is possible to construct an
orthonormal basis for L2(R) consisting of Gabor basis functions well localized in both time and
frequency. The answer is, unfortunately, negative: The Balian-Low Theorem (see [8]) states
that whenever

inpoT

gmn(z) =€ gz —mqp), m,n € 7Z

is an orthonormal basis for L?(R) then either

[lo@Pd=cc o [ P ds =,
R R
where we define the Fourier transform of h € L'(R) by

h(e) = /R h(z)e i da.

It is therefore impossible for the Gabor basis functions to be well localized in both time and
frequency.
A new type of basis functions called wavelets was introduced in 1982 by the geophysicist J.

Morlet in view of applications for the analysis of seismic data. He considered the family

_ _1/2 x_b
¢a,b(w)_|a’| Q[}( a )7 a,bER,



of translated and dilated versions of a single function 1) € L?(R) (3 is called the wavelet).
Wavelet analysis consists in applying such families of functions to decompose data, functions,
or operators. The mathematical justification for using such a decomposition was given by A.
Grossmann and J. Morlet ([17]). We are interested in the following discrete version of Morlet’s

algorithm.

Definition 0.1. An orthonormal wavelet is a function 1 € L?(R) such that the family

{¥jk}jkez,
where ;i (z) = 29/24p(2x — k), is an orthonormal basis for L?(R).
The first example of a basis with this structure was given by Alfred Haar in 1910.

Example 0.2 ([18]). The Haar wavelet h is defined by

1, forxzel0,1/2)
h(z) =4 -1, forz €[1/2,1)

0, otherwise.

The family {hjx}jrez provides an ezample of an orthonormal wavelet basis for L?(R).

The Haar wavelet is not continuous and as a consequence has a bad frequency localization in
the sense that its Fourier transform is not even integrable.

During 1986, S. Mallat and Y. Meyer introduced a general method for constructing or-
thonormal wavelets with good time-frequency localization. We give a brief review of this method
(called multiresolution analysis) in Chapter 1, and we show how the structure is related to a
pair of so-called Conjugate Quadrature Filters. We also consider some special families of com-
pactly supported wavelets, constructed by I. Daubechies, that will be used to construct wavelet
packets in Chapters 2 and 3.

A problem with every wavelet basis is that all the high-frequency wavelets have poor fre-
quency localization. Wavelet packets were introduced by R. Coifman, Y. Meyer, and M. V.
Wickerhauser in order to improve the frequency resolution and thereby get more efficient al-
gorithms to decompose signals. The idea is to construct a whole library of orthonormal bases
for L?(R) derived from the multiresolution structure, each with distinct time-frequency proper-
ties. The orthonormal wavelet basis itself, and the so-called basic wavelet packet basis, are two
particular members of the library. The construction of wavelet packets is presented in Chapter
2.

The main results in this thesis are concerned with the behavior of wavelet packets in LP(RR).

In chapter 2 we consider the size properties of the basic wavelet packets in LP(R). One of the



main new results is that for a collection of “popular” finite filters one can find a subsequence of
the associated basic wavelet packets that grow exponentially in LP-norm for p large. This result
generalizes and refines a result by Coifman, Meyer, and Wickerhauser (see [6]) for the Meyer
filters. Another question we consider is whether basic wavelet packets always form a basis for
LP(R) for 1 < p < oo. The answer is positive for a select family of basic wavelet packets
related to the Walsh system, and we even have pointwise convergence a.e. for expansions in
such functions. In general the wavelet packets fail to be a basis. This is true for the basic
wavelet packets associated with the “popular” filters mentioned above. We also prove that
using so-called nonstationary wavelet packets one can obtain uniformly bounded basic wavelet
packet. We introduce a new generalization of wavelet packets, called highly nonstationary
wavelet packets, and prove that such basic wavelet packets can be uniformly bounded and have
support contained in some fixed compact set.

Chapter 3 contains the generalization of all the results from Chapter 2 to periodic wavelet
packets. The tool used to generalize the results is multiplier theory for Fourier series.

It turns out that the trigonometric system and periodic wavelet packets share a number of
properties. So it is reasonable to expect that some of the “nice” operators defined using the
trigonometric system can be defined using periodic wavelet packets in stead. In chapter 4, we
emulate the definition of the Hilbert transform on T using periodic wavelet packets in place
of the trigonometric system. The construction is successful (i.e. the operator is bounded on
LP[0,1), 1 < p < 00) as long as we use periodic wavelet packets derived from the Walsh system.
For more general periodic wavelet packets, it is not possible to use our method to construct
such a bounded Hilbert transform. The negative result is a consequence of the results from
Chapter 3.



Chapter 1

Wavelets

This chapter contains a brief review of some basic results about multiresolution analyses, filters,
and wavelets. Readers not already familiar with such concepts may find it useful to consult [8],

[19], or [44] for some background material.

1.1 Multiresolution Analysis

There exists a very general method for obtaining wavelet bases of various degrees of smoothness.
In order to describe this method we introduce the notion of a multiresolution analysis. The
multiresolution analysis structure was first introduced by S. Mallat ([26]) and Y. Meyer ([29])
in 1986.

Definition 1.1. A multiresolution analysis is a sequence of closed subspaces V;, j € 7Z, of
L?(R) satisfying

Vi CViy,  JEL, (1.1)
feVie f2)€eVin, JEL, (1.2)
Uv =r*m), (1.3)
JEZ
Vs = {0}, (1.4)
JEL

There exists a ¢ € Vo such that {p(- — k) }rez

is an orthonormal basis for V. (1.5)

Given a multiresolution analysis {V;} we want to construct an associated wavelet. To do



this we define the 2m-periodic function mgy by

The important property of mg is that

$(26) = mo(€)p(£), (1.6)

which under fairly mild hypothesis on the behaviour of mg at 0 (see [19]) can be generalized to
(&) = [[mo(279). (17)
j=1

The function my is called the low-pass filter associated with the multiresolution analysis, and

(1.6) is called the two-scale equation for the scaling function ¢.

An orthonormal wavelet can then be obtained using the following fundamental result

Theorem 1.2 ([29, 26]). Suppose ¢ is a scaling function for a multiresolution analysis {V;},
and myg s the associated low-pass filter. Then ¢ € V1 ﬁVOL is an orthonormal wavelet for L?(R)
if and only if

$(2) = e (26)mo (€ + m)(¢)

a.e., for some 2mw-periodic, measurable, and unimodular function v.

Remark. For simplicity we always take v = 1, and we let W, denote the wavelet space
Vip NV

The procedure used for constructing multiresolution analyses is to find a suitable 27-periodic
function mg and then define the associated scaling function using equation (1.7). Clearly, my
has to satisfy certain conditions for this construction to work. The main result of A. Cohen’s
dissertation is the following sufficient condition to ensure that mg is the low-pass filter for a

multiresolution analysis.

Theorem 1.3 ([3]). Let mg be a 2m-periodic C"TY(R) function, r = 0,1,... ,00, such that
m1(0) = 1. Suppose
Imo(&)]* + [mo(€ +m)> = 1.



Then myg is a low-pass filter for a scaling function associated with a multiresolution analysis if

and only if there exists a compact set K with 0 in its interior, such that

ZXK(é’ +27l) =1 for a.e. £€ER (1.8)
LeL
and
mo(277€) #0 forallé € K and all j =1,2... (1.9)
The last condition may look rather technical but if we take K = [—m, x| it just says that myg

must not vanish on [—7/2,7/2].

Remark. Only the case r = oo is proved in [3] but the proof works just as well for finite
r. Moreover, if we want a compactly supported scaling function then it suffices to choose a

trigonometric polynomial as mg (see [8]).

1.2 Conjugate Quadrature Filters

Suppose my is a low-pass filter associated with a multiresolution analysis {V;}. We define a new
2m-periodic function, called the high-pass filter associated with {V;}, by mq(€) = e®mg (€ + ).

One can easily check that the matrix

[mo(f) mo (€ + )
m1(§) mi(§+ )

is unitary a.e. This fact puts the functions (mg, m1) into the context of conjugate quadrature
filters (CQFs).

Definition 1.4 (CQFs). Let {h,} € *(Z) be a real-valued sequences, and let g = (—1)*hy
for k € Z. Define the operators H,G : *(Z) — ¢*(Z) by

(Ha), = Z aphn 2k

nel

(Ga)k = Z Gngn—2k-

nez
The filters H and G are called a pair of CQFs if

OHH* = 2GG* = I (1.10)
H1=1, wherel=(...,1,1,1,...)

H'G+G'H=1 (1.11)

HG* = GH* = 0. (1.12)



It is not hard to check that the adjoints of the operators H and G are given by
(H*a)p = Z ajhi—2;
JEL

(G*a)e =Y ajgr—2j,

JET

so conditions (1.10) and (1.12) can be translated to the following conditions on the filter coef-

ficients

1
Z ho—orhe = 5519,0,

ez
1
de—%gz = 5519,0, and (1.13)
tez
> he_okge =0
€7,

for all k € Z. To see the connection to the multiresolution filters we introduce the 2mw-periodic

functions
Mo(€) =Y hge™  and  My(e) = 3 gre€
kezZ keZ

associated with the CQFs of Definition 1.4 (M, and M; are the so-called transfer-functions
associated with the CQFs). Then the conditions given by (1.13) are equivalent to

[MM)MM+M
Mi(€) Mi(€+m)

being unitary a.e. Using this fact it is not hard to check that the filters (mg, m;) associated

with a multiresolution analysis is indeed a pair of CQF's (see [8]).

Remark. We will keep up the tradition and abuse notation by referring to the transfer function
as the filter.
1.2.1 Some Special FIR Filters

To construct a compactly supported wavelet with N vanishing moments and maximal decay of
its Fourier transform one has to use a low-pass filter mg of the form

1+ e
2

mo(©) = ( )Na& NeN



where £ is a trigonometric polynomial. I. Daubechies proves in [8] that £ must satisfy

L) = Ni (N _kl + k) (sing>2k + (sin%)QNR(% _ sin? g) (1.14)

k=0

with R an odd polynomial in order to have
Imo(&)]” + mo (€ +7)> = 1.

We need a factorization result by F. Riesz to recover £ from (1.14). We present the the
proof of the result here since it is essential in order to explain the construction of the Daubechies

family of filters.

Lemma 1.5 (Riesz Factorization). Let A be a positive trigonometric polynomial of the form
a N
0
A(¢) = 5 +z:1an cos(né) (1.15)
n=

with an, € R, ay # 0. Then there exists a trigonometric polynomial B(§) = ETJLO bne™s with
b, € R such that

A@6) = B
Proof. Define the polynomial P4 by
[ B S
A(z) = 5 nZNamz .
It follows that N
Pa(e) = ¢ D a4
—

We now factorize P4. Note that the two polynomials P4(z) and 22V P4(27!) agree everywhere.
Since an # 0 we have P4(0) # 0 so if zg is a zero of P4 then so is z(;l. All a,, are real so we have
m = P4(z) and this implies that whenever 2, is a zero so is Zy. From these observations it
follows that the zeros of P4 come in either complex quadruplets z;, Z;, zj_l, and 2]-_1 or in real

doublets 7, and r,;l. Factorizing P4 then leads to

1 8 d
Pa(z) = 5@N[H(z —7i)(2 _rk_l)] [H(z— %)z = 2)(z — 2, )z — 271 |

k=1 j=1

where we have separated the different kinds of zeros. Note that for z # 0,
(€ = 2) (e =2z, 1)| = |2| 1]e’ = 2P,

8



SO

A(€) = |A(9)]
= |Pa(e")]
1 K J K J 2
= [3low TLin™ T || TTE - TT6 - 2ptet - )
k=1 j=1 k=1 j=1
= [B()I%,
where
1/2 K J
&= 5lax H el 1H =] T T 2ot + 1)
k=1 j=1
Clearly, B is a trigonometric polynomial of order N with real coefficients. |

In the next sections we introduce some specific finite filters, constructed by I. Daubechies

(see [7, 9]), that will be used in the chapters on wavelet packets.

The Daubechies Filters

First we introduce the “standard” Daubechies filters. We start by letting

N-1

op =Y (V7))

k=0

to get fewest possible non-zero coefficients for the associated CQF. We find LV (¢) by the Riesz
factorization, where we always choose the zero on or within the unit circle. To be more explicit,

we choose
N . J . .
=Cy H(elg — i) [T (€% — 26%Re(2)) + I21%),

with |ry| <1fork=1,...K, |z| <1for j=1,...,J. We now let
- 1+ e\ N
e = (14 ) )

Since M’ (m) = 0 we have |my(0)| = 1 and LY (0) > 0 (by our particular choice of £V). Thus,

md (0) = 1. Moreover, m{Y (£) # 0 on [—7/2,7/2] so my satisfies the conditions of Theorem

1.3. We let m{Y(¢) = c-m) (¢) where we adjust the phase ¢ such that

2N—-1

k=0



The sequence {cp’ iz 0 ! is called the Daubechies low-pass filter of length 2N. The associated

high-pass filter is given, as usual, by
mi (€) = e m{ (¢ + 7).

The Least Asymmetric Daubechies Filters

A filter with coefficients {hy} has linear phase if the associated transfer function, H({) =
Yok hiet*€ . has linear phase, i.e.
H(¢) = e *¢[H(€)],

for some o € R. By inspection, one can check that the Daubechies filters mév do not even come
close to having linear phase. The least asymmetric Daubechies filters are constructed like the
Daubechies filters with the exception that the roots of |[£V|? (in the Riesz factorization) are
chosen to make the phase of the transfer function “close” to linear. Note that mg is a product

of factors of the type
(e — ;) (e — z;) = e%[e® — 2R; cos o + R]ze*ig], (1.16)
and
(€ —1p,) = &/2[ei€/2 — e/, (1.17)

Apart from linear terms the phase contributions from such factors are, respectively,

e (1 — R;j)?sin¢
¥ie) = arctg<(1 + R%) cos§ — 2R; cos ozj>’ (1.18)
and
(€)= arctg(i t::w;g) (1.19)

The valuation of arctg is chosen such that ¥, is continuous in [0, 27] and ¥;(0) = 0. Then the

least asymmetric filter is the mg obtained by minimizing the total nonlinear phase contribution

(T5(6) — - 0(2m),

J
=1

K ~ f ~
WOE) =) (D) - o U(2m)) +

k=1 j

over the 2LV/2] different choices of zeros. This is usually done graphically.

10



The Coiflet Filters

The Coiflet filters (named after R. Coifman, but constructed by Daubechies) are constructed
such that we get a fixed number of vanishing moments of both the wavelet ¢ and scaling

function ¢, i.e. for some fixed L

[ ) ds

/ d(x)de =0, fork=12,...,L—1,

/xkzp(x)dxzo, for k=0,1,... ,L — 1.

It is not hard to see that the above conditions are equivalent to the following conditions on the

low-pass filter my,
mP(r) =0, forl=0,1,... L—1,
mo(0) =1, m{?0) =0, fore=1,2,... L—1
For L = 2K we can take
KpK-1 k K
_ 2§ K—=1+k\( .2¢ .9 €
mo(€) = (cos 2) [;( f ><s1n 5 + | sin 5 f]1,

where f(¢) = E2Ko ! f.e~™¢, Using the identity

K—1
_1 . .
< + j) [cosQK Bsin? 3 + sin?X B cos? Bl =1
Jj=0

=1 (w9) [ () () (08) ]

Thus, mg has a zero of order 2K at 7 [use cos®{/2 = 1e7%(1 + €)?]. The coefficients f, are

then chosen appropriately to normalize mg. The technical details can be found in [7].

we get

=

ES
Il

The Meyer Filters

The Meyer filter with resolution € is a non-negative CQF, mO ®, for which
M,e
my | (—x/24e,m/2—e) = L.

We always assume that m0 *e C'(R).

11



Chapter 2

Wavelet Packets

Wavelet analysis was originally introduced in order to improve seismic signal processing by
switching from short-time Fourier analysis to new algorithms better suited to detect and analyze
abrupt changes in signals. It corresponds to a decomposition of phase space in which the trade-
off between time and frequency localization has been chosen to provide better and better time
localization at high frequencies in return for poor frequency localization. In fact the wavelet 4,

has a frequency resolution proportional to 27, which follows by taking the Fourier transform:
Bik(€) = 279227 g)em M,

This makes the analysis well adapted to the study of transient phenomena and has proven
a very successful approach to many problems in signal processing, numerical analysis, and
quantum mechanics. Nevertheless, for stationary signals wavelet analysis is outperformed by
short-time Fourier analysis. Wavelet packets were introduced by R. Coifman, Y. Meyer, and
M. V. Wickerhauser to improve the poor frequency localization of wavelet bases for large j
and thereby provide a more efficient decomposition of signals containing both transient and

stationary components.

2.1 Nonstationary Wavelet Packets

In the original construction by Coifman, Meyer and Wickerhauser ([4, 5]) of wavelet packets
the functions were constructed by starting from a multiresolution analysis and then generating
the wavelet packets using the associated CQFs. However, it was observed by Hess-Nielsen
([20, 21]) that it is an unnecessary constraint to use the multiresolution filters to do the frequency
decomposition. We present his, more general, definition of so-called nonstationary wavelet

packets here.

12



Definition 2.1 (Nonstationary Wavelet Packets). Let (¢,1)) be the scaling function and
wavelet associated with a multiresolution analysis, and let (Fo(p),Fl(p)), p €N, be a family of

bounded operators on (%(7) of the form

(FPa)y =3 anh® (n—2k),  e=0,1,
nez
with hgp) (n) = (—1)"h(()p)(1 —n) a real-valued sequence in ¢'(Z) such that each (Fo(p),Fl(p)) is a
pair of CQFs. We define the family of nonstationary wavelet packets {wy}>2, recursively by
letting wo = ¢, w1 =, and then for n € N

wan (1) =2 b’ (q)wn (25 — q)
qEZ

woni(2) = 23 W (@wn (22 — q), (2.1)
qEL

where 2P < n < 2P*1,
We are interested in the following special case of Definition 2.1.

Definition 2.2 (Basic Stationary Wavelet Packets). Let ($, 1)) be the scaling function and
wavelet associated with a multiresolution analysis, with associated CQFs {h,} and {g,}. The
functions {wp}, generated by Definition 2.1 by letting {hgp)} = {hn,} and {hgp)} = {gn} for all

p € N are called basic stationary wavelet packets.

Definition 2.2 is the original definition of the basic wavelet packets given by Coifman, Meyer,
and Wickerhauser. Figure 2.1 shows the basic stationary wavelet packets wy,ws, ... ,wg asso-
ciated with the Coiflet filter of length 6.

It is an easy consequence of Definition 2.2 that for n, 2/~ < n < 27, with binary expansion
n = 2;21 ;271 we have

J
in(©) = | T[m, e/2) | otes2”)
=1

where (mg,m1) are the filters associated with the multiresolution analysis.

13



. . 15 . .
0 2 4 6 0 2 4 6

w W,
Figure 2.1: The first 8 basic stationary wavelet packets associated’ with the Coiflet filter of
length 6.

14



The following is the fundamental result about nonstationary wavelet packets.

Theorem 2.3 ([22, 21]). Let {w,}72, be a family of nonstationary wavelet packets associated
with the multiresolution analysis {V;} with scaling function and wavelet (¢,1). The functions

{wy} satisfy the following
o {wo(- — k) }rez is an orthonormal basis for Vj
o {wn(- — k) }rez 0<n<coi is an orthonormal basis for Vj.
In particular, {wy, (- — k) }keznen, s an orthonormal basis for L*(R).

Proof. Since wy = ¢ and w; = 1 we get the first statement, and the second in the case
j = 0, immediately. Next step is to prove that {wa,(- — k) }rez and {wani1(- — k) }rez are
orthonormal systems. Suppose the result is true for all indices j with j < n with n such that
2% < n < 2Pt We have,

(wan, waa (- — k) =43 3 P (ORY (0) /wn(2t — O)w, (2(t — k) — q) dt
L€ qEZ
=23 w0 (¢ — 2k)
LET

= do,k>
(wans1, w1 (- — k) =4 3 b (ORP (g) / wy (2t — O)wy (2t — k) — q) dt
LET qEZ

=23 wP (OnP (£ — 2k)

LEZ

= 60,]67

and

(wans won i1 (- — k) =43 3" b (ORP (g) / wn (2t — O)ywn (2(t — k) — q) dt

L€ qEZ

=23 w0 (¢ - 2k)
Le

= 0.

Thus, a simple additional induction argument using the above shows that {w;, (- — k) }neny kez

is an orthonormal system.
Let Q, = Span{w, (- — k) }rez. Define 0f(z) = V2f(2x). Since {w,(- — k) } is an orthonor-

mal system so is {dw, (- — k) }k, and it follows from the exact reconstruction property of the

15



filters (see (1.11)) that for 27 < n < 2P+1,

Zh k —2q)wan(z/2 — q) + Zh k —2q)wani1(z/2 — q).
qEZ qEZ

Hence, by (2.1),
Span{v/2wy (2 - —k)}, = Span{wan (- — k) }x ® Span{wani1(- — k) },
ie. 6Q, = Qo ® Qopy1. Thus,
0N e Q=
520 © Q) = 69 = U ® Q3
3000620 =00 D003 = B Vs D Qs D Uy

50 0 F 10 = Qop1 D Qo1 B+ D Qo4
By telescoping the above equalities we finally get the wanted result
FU=FV =V =e0 @ O Uy,

and Ug>oVj is dense in L?(R) by the definition of a multiresolution analysis. [ |

The above theorem can be generalized considerably. The following construction gives us a

whole library of orthonormal bases each with different time-frequency properties.

Theorem 2.4. Let {w,} be a family of nonstationary wavelet packets. For every partition P
of Ny into sets of the form I,,; = {n27,... ,(n+1)27 — 1} with n,j € Ny, the family

{2j/2wn(2j : _k)}kEZ,InjEP
is an orthonormal basis for L*(R).
Proof. An argument similar to the one in Theorem 2.3 shows that
0¥ = Qoiy, ® gy y) & -+ B Dok (ny1)-1

Moreover, the functions {2//2w,,(27 - —q)}4cz span the space 47§, and
> 59, =P, =IL*R)
InjEP ¢>0

which proves the theorem. |

There is an (efficient) algorithm to decompose a given signal in each of the bases given by
Theorem 2.4 and another algorithm to find the “best” of such expansions wrt. predetermined

criteria. The reader should consult [44] for more material on such applications.
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2.2 Wavelet Packets as a Basis for the LP-spaces

The convergence properties of the expansion of a signal in the wavelet basis have been thor-
oughly examined, in particular by Y. Meyer ([29]), whereas the convergence properties of the
expansion in the basic wavelet packets remain unresolved. In this section we consider the ex-
pansion of LP(R)-functions in some special basic wavelet packets, related to the Walsh and
Shannon wavelet packets.

Let us recall the definition of a Schauder basis for a separable Banach space.

Definition 2.5. Let X be a separable Banach space. A collection {en}2>, C X is called a

Schauder basis for X if every f € X has a unique norm-convergent expansion of the form

oo
f = Z Qp€n,
n=0

with {ay,} C C.

It is easy to check, using the Banach-Steinhaus theorem, that Definition 2.5 is equivalent

to the following two requirements, where P, denotes the projection onto the closed span of

{en }?:07

e Span{ey}22, is dense in X.

o {P,}°°, is a uniformly bounded sequence of operators.

It is often much easier to check these two conditions than it is to verify Definition 2.5 directly.
The following two sections contain examples of basic nonstationary wavelet packets that do
form Schauder bases for LP(R), 1 < p < oo.

2.2.1 The Walsh System

In this section we consider nonstationary wavelet packets derived from the well known Walsh
functions. For the sake of completeness we begin by defining the Walsh function. Further
details on the Walsh system can be found in Appendix A. Let us recall the definition of the
Haar filter

Definition 2.6. The CQFs given by hg = hy = 1/2, hj, = 0 otherwise, and g, = (—1)*h;
are called the Haar filters.

The Walsh wavelet packets are defined by using the Haar filter and Haar scaling function
X[o,1) in Definition 2.2, i.e.

17



Definition 2.7. The Walsh system {W,,}3° is defined recursively on [0,1) by Wy(z) = x[0,1)(7)
and
Wonte(x) = Wy (22) + (—1)° Wy (22 — 1), e=0,1;m=0,1,....

It is a well known result by R. Paley ([30]) that the Walsh system constitutes a Schauder basis
for LP[0,1), 1 < p < 0o, (see [35] for a nice “Martingale proof”) so we have the following positive

result

Theorem 2.8. The functions {W, (- — k) }nen, kez constitute a Schauder basis for LP(R), 1 <

p < 00, in the sense that

N
>, (F,Woa(- = k) Wi (- — k) — 8,
n=0 [k|<M M,N—o00

Our goal in the next section is to extend this result to a class of smooth nonstationary

wavelet packets that resemble the Walsh system.

2.2.2 Walsh Type Wavelet Packets

We now define a class of nonstationary wavelet packets that can be seen as a natural general-
ization of the Walsh functions. In particular, each wavelet packet system in the class turns out
to be equivalent to the Walsh functions in LP(R), 1 < p < co.

Definition 2.9 (Walsh Type Wavelet Packets). Let {wy,}n>0ez be a family of nonsta-

tionary wavelet packets constructed by using a family {h%p) ooy of finite filters in Definition

2.1. If there exists a constant J € N such that h%p) is the Haar filter for every p > J and w;
has compact support then we call {wy}n>0 a family of Walsh type wavelet packets.

This definition closely resembles Definition 2.7. To prove the equivalence with the Walsh system

we need to generalize the following theorem by Y. Meyer

Theorem 2.10 ([29]). Let 1p € C'(R) be a compactly supported wavelet. Then there exists an
isomorphism on LP(R), 1 < p < oo, taking v, to hjy, with h the Haar wavelet.

The generalization we need is the following

Lemma 2.11. Let {wy},>0 be a family of Walsh type wavelet packets with J as in Definition
2.9, and let {W,} be the Walsh system. Let [l = 21/, (27 - —k), and 9ir = 20/2W,, (27 - —k).
If w; € C'(R) then there is an isomorphism Q : LP(R) — LP(R), for 1 < p < oo, such that

Qffx =9 5 k€Z,2 <n <2/t

18



Proof. Let {W/}}, be a family of nonstationary wavelet packets generated by taking any
compactly supported C'' (R) scaling function and associated wavelet (¢, 1)), and letting each h(P)
be the Haar filter in definition 2.1. Let v}, = 2//2W3(27 - —k). For each n > 1,2 <n < 2i*1,
we have a finite set F' C 7Z such that

W, = E Cn,shjs
sEF

W; = Z Cn,sd’j,s-

seF
Thus, for 27 <n < 27+
n. o _
Ipk = Z Cn,Shp+J,2Jk+s
seF

n o _
Upk = § :CN,S¢p+J,2Jk+s'
seEF

Let P : LP(R) — LP(R) be the isomorphism defined by Ph; j, = 1; 5. It follows that Pgp . = v} .
Hence, it suffices to find an isomorphism @ : LP(R) — LP(R) such that @ fiy, = v}). Note that

{fintor<ncortijrez,  and {vfptorcncortt jrez

are both orthonormal bases for L?(R) (easy consequence of the multiresolution structure). Thus,
@ defined by Q 7}, = v}, 27 <n <271 j k € 7, is unitary. The associated (Schwartz) kernel

is given by

27411
K(my)= Y., Y vj(z) i),
n=2J J,kEZ

We claim that K is a Calderén-Zygmund kernel. To verify this, choose N > 1 such that
supp(Wy,), supp(wy) C [N, N]

for 27 < n < 27*'. We have

27+
K@)l < Y > 2 Wi~ k)llwa 27y — k).
n=2J j,k€EZL

Thus (z,y) € supp(K) implies that |2/ — k| < N and |2/y — k| < N. Hence, 27|z —y| < 2N so

J <logy —.
|z —yl
Let
. 2N
Jo = |logg —| .
|z —yl
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We have

27+l 1
Kzl < Y D2 N+ 1) [Wylloollwalloo
n=27 j<jo

27+IN(2N +1)C

<02’ (2N +1 2 —
( )2 |z — y|

Ji<jo

Similar estimates give us

0

‘ C
ox

|z —y|?
0 C

ZK(z,y)] < ——.
‘By @) |z —yl?

It follows that @ is a Calderén-Zygmund operator and thus bounded on LP(R), 1 < p < oo (see
[28]). The same type of argument applies to Q™' (the above estimates are symmetric in filk

and vy;) and @ is therefore an isomorphism on LP(R). [ |
We can now state and prove the main result of this section, the Walsh type wavelet packets
do constitute a Schauder basis for LP(R) for 1 < p < co.

Theorem 2.12. Let {wy}n>0 be a family of Walsh type wavelet packets with J as in Definition
2.9. If wy € CY(R) then {wy(- — k)}n>okez is a Schauder basis for LP(R), 1 < p < oo.

Proof. We claim that the systems
{wn(- = k) nsortiker and  {Win(- — k) }psor4t pez (2.2)

are equivalent in LP(R) in the sense that there is an isomorphism @ on LP(R) mapping one
system onto the other. Let n > 27!, Note that

K
i (€) = [ [ me; (277€) - b (275¢),
j=1

for some 27 <7 < 271! and K > 1. Thus

wn(z = k) =Y enofies(z— k), (2.3)

selF
with fﬁk = 20/24p;(27 - —k) and F a finite set (depending on n). The coefficients ¢, ¢ depend

only on n and the Haar filter. Thus, W,, has the same expansion:

Wiz —k) = ensgi sz — k), (2.4)
scF
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with g7, = 21/2W;(27-—k). Let Q : LP(R) — LP(R) be the isomorphism defined by Q I = 974
It follows from (2.3) and (2.4) that

Qun (- — k) = Wy(- — k),

which proves (2.2).

Now we can prove that the wavelet packets form a basis. It is clear that the system

{wn (- = k) fn>o0.kez

is dense in LP(R) for 1 < p < oo since the associated wavelets 2//%¢)(2/z — k), j > 0, and
the translates of the scaling function are all finite linear combinations of the wavelet packets.
Hence, it suffices to prove that there exists a finite constant (depending on p) such that for any
sequence (¢, ;) C C and M, N > 1 we have

Z CnkWn (- — k)

0<n<N,[k|<N

<C
p

(2.5)

Z CnWn (- — k)

0<n<N+M,|k|<M+N

p

First, let us check that

{wn(- - k)}0§n<21+1,kez
is a Schauder basis for its closed linear span in LP(R). The kernel for the projection, Py ar,
onto
{wn (- — k)}0§n§N<2J+1,|k\§M
is given by
N e —
KN,M(xay) = Z Z wy (2 — k)wn(y — k).
n=0 [k|<M
Fix K such that supp(wy,) C [~ K, K] for 0 <n < 2/%1. Then

27411

[Kva(@y)l < D0 Y lwale = k)l[wn(y — k)|

n=0 keZ
< 9J+1 2K +1 max w21 o .
B ( )0§n<2J+1{H n”oo} X[O,QK](| y|)
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Hence, using Holder’s inequality and Fubini’s Theorem,

1P 1= [ | [ Knartonw) 1)yl do
< [ (J @R ()7 s ()7 dy)” do
= [ [1spivatealan [ Kxartel )’ s
<cot [ 1P [ 1Kn (o)l dady

<P £,
which proves the claim. It now follows that whenever M + N < 27+ then (2.5) holds. Suppose

N <2741 and M 4+ N > 27%!. Then, by the above and the fact that the projection onto the

multiresolution space Vj; is bounded on LP(R),

Z Cn,kwn(' - k)

0<n<N,|k|<N

<C
p

Z Cn,kwn(' - k)

0<n<2T+L, k| <MAN

Z Cn,k:wn(' - k)

0<n<N+M,|k|<M+N

p

<CCy

p

Finally, suppose N > 27+, Then, using (2.2), the result for N +M < 27+!, the Schauder basis
properties of the Walsh system, and || f||, ~ {||PVJ+1f||p + (1 — PVJH)pr},

Z Cn,kwn(' - k)| < { Z Cn,k:wn(' — k)
p

0<n< N, [k|<N 0<n<2/+1 |k|<N

+
p

Z Cn,kwn(' - k)

2/ +HL<n< N k| <N

Z Cn,kwn(' - k)

0<n<2/+1,|k|<M+N

Z Cn,kwn(' - k)

2/ +HL<n< N k| <N

Z Cn,kwn(' - k)

0<n<2/+1,|k|<M+N

Z Cn,kWn(' - k)

2/ +HL<n< N k| <N

J

+
p

ol

J

_I_
p

o

J
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+
p

o

Z CnWn (- — k)

0<n<2/+! |k|<M+N

Z Cn,kWn(' - k)

2T+1<n< N+ M,|k|<M+N

Z Cn,k:wn(' - k)

0<n<27+1! |k|<M+N

J

+
p

Z Cn,kwn(' - k)

2T+1<n< N+ M,|k|<M+N

J

<C Z Cnpwn (- — k)| -
0<n<N+M,|k|<N+M p
We conclude that (2.5) holds in general, and we are done. [ |

From the above proof it is easy to deduce the following Corollary.

Corollary 2.13. Let {wy,},>0 be a family of Walsh type wavelet packets. If wy € C'(R) then
there exists an isomorphism @ : LP(R) — LP(R), 1 < p < oo, such that

Qun(-—k)=W(-—k), n>0keZ.

2.2.3 A Counterexample in L!'(R)

It is interesting to know what happens in the “limiting case” L'(R) of Theorem 2.12. Tt is
well known that the exponentials {7*2}, 7 fail to be a basis for L'[0, 1) whereas the periodic
wavelets do form a Schauder basis for L'[0,1), so it can go both ways. However, the next
theorem provides an explicit function in L'(R) for which the expansion in the Walsh type
wavelet packets fails. The construction owes much to a counterexample for the Walsh system

in [14] and a construction (unpublished) by N. Hess-Nielsen.

Theorem 2.14. Let {wy}yn be a family of Walsh type wavelet packet system, and let J be
defined as in Definition 2.9. Choose L € N such that supp(wys 1) C [-L+1,L—1] and choose
M € N such that 2M > 2L. Let N(k) = k> + M +1, and define K : N — N recursively by letting
K(1) =2’ +1, K(2n) = 2K(n), and K(2n 4+ 1) = 2K (n) + 1. Define f by

9N (k) +2k3+1_1

f<x>=§jl$( > k@),

n=2N (k) 2k3
Then f € L'(R), but the wavelet packet expansion of f diverges in L'(R)-norm.

Proof. Same as for the periodic case (Theorem 3.5). [ |
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2.2.4 Pointwise Convergence for Walsh Type Wavelet Packet Expansions

In this section, we prove that the Walsh type wavelet packet expansion of an LP(R)-function
(1 < p < o0) converges pointwise almost everywhere. The key step is to analyze the so-called

Carleson operator for the Walsh type wavelet packet system.

Definition 2.15 (Carleson Operator). Let {f,}5°, be an orthonormal basis for L*(M).
The Carleson operator L is defined by

(Lf)(@) = sup > S fa) ful@),
N20 <N

for f € L2(M).

The following result shows that the Carleson operator is well-behaved.
Theorem 2.16. The Carleson operator for any Walsh type wavelet packet system with wi €
CY(R) is of strong type (p,p) for 1 < p < co.

Proof. Let us start by reducing the problem. Choose N € N such that supp(w,) C [N, N]
for n > 0. Fix p € (1,00) and take any

fiz)= Y copwn(z —k) € LP(R).

n>0,ke7

x) = Z Cn pWn(z — k), gr(z) = Z CnpWh(z — k).

n>0 n>0
We have || fill, = |lgk|lp (with bounds independent of k) by the proof of Theorem 2.12. Note
that for [ € Z,

Define

l+1+N

frell+): L) >al < 5 > [ILAP ds,

k=I-N
so (using the Marcinkiewicz interpolation theorem) it suffices to prove that ||Lfy|l, < C||fxllp,
where C is a constant independent of &, since

[+1+N

Yood0 M <2N 1Yl <20(N +1) Y llgrllh < CUFIE.

lEZ k=I-N kEZ kEZ
We can, w.l.o.g., assume that £ = 0. Let K € N be the scale from which only the Haar filter is
used to generate the wavelet packets {wy,},>or+1. Let m € N and suppose 27 < m < 27! for
some J > K + 1. Clearly, for each x € R, B

m oK+1_q 27 1 m
ch,own(ﬂﬁ) = Z Cn,Own(fE) + Z Cn,(]wn(l") + Z Cn,(]wn(x)a
n=0 n=0 n=2K+1 n=27
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so we have

m

sup chyown(az) <
m>1 —
= n=0
m 2741
sup | Y cnown(@)| + sup ‘ > cnown(z)| + sup (Myfo)(z), (2.6)
1<m<2k+1 | £25 I>K+1 | L J>K+1
where .
(Myfo)(z) =  sup > cnown(z)|.

27 <m<2/ | T

We use brute force to estimated the first term of (2.6)

m 2K+1_1
sup | D enown(@)| < D lenolllwn (#)llooxi—nn (@)
0<m<2K+1 n=0 n=0
2K+
<Nfolly D Nwallylwn(@)lloox;n x(@)-
n=0
The second term of (2.6) satisfies
2741
sup cnown ()| || < Cllfollp

J>K+1l S »

since the dyadic partial sums for the wavelet packet expansion for f, agree everywhere with
the partial sums for the wavelet expansion for fy and the Carleson operator for the wavelet
expansion is of strong type (p,p) (see [40]). The challenge is to prove that the third term is of
strong type (p,p). Fix £ € R — D, where D is the family of dyadic rationals. Note that

oK _1

(M fo)(@) < 3 (M) fo)(a),

j=0

where
m

Z Cn,Own(l") ,

n=27 427K

(M fo) (=) = sup
27 4527 K <m <27 +(j+1)27 - K

so it suffices to prove that

I sup (M7 fo)llp < Cllfollp
J>K+1

for j =0,1,...28K —1.Fix J > K+1,0< j < 2K —1,and 27 +j27 K <m < 27 + (j4+1)27 K,
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We have, using Lemma A .4,

m
Z Cnowp(x)| =
n=27 4527~ K
2/-K 1 m
Z { Z Cn’[]Wn_QJ_jQJK(SQJ+K)}U)2K+j(2JKl' —35)|.
s=0 n=2J +j2J-K
Define
m
F(t) = Z cn,oWp_oi_jor-x(t), and F(t) = sup | F (2)].
n=27J 4j2J K m<27+(j+1)27 K
Then
m 27K 1
Do enown(@)| < D0 F(s27 T g (27 — ),
n=2J 4j2/-K s=0

and using the compact support of the wavelet packets,

Ui N+1
2 engwn(e)] < gl 3 F(((277 ] + D277,
n=27+j27-K =N

Note that F is constant on dyadic intervals of the type [I27/+K (I 4 1)277+K) 50 defining
Ap=(([277 2] + 27745 (|27 Fz] + 1+ 1)2774F), we have

m N+1
S cuown@)] < il 3 P12 Fa] +027+)
n=27 427K I=—N

N+1

= [lwyr 100 Z |Az|_1/ F(t) dt.
I=—N Ay

We need an estimate of F' that does not depend on J. Note that for k, 0 < k < 277K using
(A1),
W2J+jQJ—K(t)Wk(t) = W2J+]‘2J—K+k(t),

since the binary expansions of 27 + j27~K and of k£ have no 1’s in common. Hence,

m

[Fm ()| = [Wauy jor—x (£) Fin (t)] = Yoo cnoWald),
n=27 4527 K
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so F(t) < 2(Ggp)(t), with G the Carleson operator for the Walsh system. Thus,

N+1

< g il 3 1A /A (Ggo) (t) dt.
l

I=—N

m

Z Cn,0Wn ()

n=27 4527 -K

We let A} be the smallest dyadic interval containing A; and z, and note that |AF| < (N+1)]A]
since z € Ay (here we use x ¢ D). We have

m N+1

S cnoun(®)] < 2w lee 3 1A / (Ggo) (1) dt
n=27 +j27 - K I=—N i
< 4wy i lloo(N + 1)*(MGgo)(2), (2.7)

where M is the maximal operator of Hardy and Littlewood. The righthand side of (2.7) does

not depend on m nor J so we may conclude that

sup (M7 fo)(x) < 4flwarjlloo(N +1)*(MGgo)(z), ae.
J>K+1

and thus, since M and G are both of strong type (p,p) (see [38]),

I sup (M} fo)llp < Cllgoll, < Cillfoll,, 4 =0,1,...25 -1,
J>K-+1

and we are done. [}

The pointwise convergence result now follows by a standard argument (see [14])
Corollary 2.17. Let {w,}, be a Walsh type wavelet packet system for which w; € C'(R).
Then the wavelet packet expansion of every f € LP(R), 1 < p < oo, converges a.e.

2.2.5 The Shannon Wavelet Packets

The next well behaved nonstationary wavelet packets we present are related to the Shannon

filter. The (stationary) Shannon wavelet packets are defined by taking

mg (&) =Y X[_r/2,m/2(€ — 2k)

keZ

and

my (£) =1 —mg (€)

in Definition 2.2. We want to find an explicit expression for w,. We define a map G : Ny — Ny
in the following way. Let n = > 2, ni2*~1 be the binary expansion of n € Ny. Then we let
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G(n); = n; +niy1 (mod 2), and put G(n) = Y72, G(n),28~1. The map G is the so-called
Gray-code permutation (one can easily check that G is 1 — 1 and onto Ny). The Gray-code
permutation relates the Walsh system in Paley order and frequency order, and enters naturally
into the frequency localization of more general wavelet packets. We have the following simple

formulas for the Shannon wavelet packets. See [43] for a proof.

Theorem 2.18 ([43]). Let {wy}, be the Shannon wavelet packets. Then

Wei(n) (§) = X, (n+1)7) (1€])-

Note that the Shannon wavelet packets are uniformly bounded just like the Walsh functions
due to their perfect frequency localization.

The above result suggests that reordering the Shannon wavelet packets using the inverse
Gray-code permutation might improve their convergence properties. We define a new system
by letting wy, = wg(y) for n € Ng. We call the reordered system {wy };2, the Shannon wavelet
packets in frequency order.

We want to prove that the Shannon wavelet packets form a Schauder basis for the LP(R)-

spaces. We need the following sampling theorem. The proof can be found in [29].

Theorem 2.19 ([29]). Let L{(z) = sin(nd = (z — 0k))/(md~ (z — 0k)), 0 < § < 1, and let
{ck}r C C. Then

1> e B, = I{ex o),

kEZ
for 1 <p< oo.

Remark. Note that if {¢x} € P(Z),1 < p < oo, then it follows from the Lemma that
> kez ¢k LY converges unconditionally in LP(R).

The following two lemmas will be used to prove the main result, Theorem 2.22. The first is

a well known fact and we therefore omit the proof.

Lemma 2.20. Let f € LP(R), 1 < p < oo. Define fop = f‘lx[a’b]]-"f, for a,b € R a < b.
Then
||fa,b||p < Cp“f”pa

for some constant Cj, independent of a and b. Moreover,

Hf - fa,b

lp, — 0 as —a,b — oo.

We have the following Lemma which shows that the expansion of each LP(RR)-function in the

Shannon scaling functions is well behaved.
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Lemma 2.21. Let
sin(mé~(z — 6k))

(m0—Y(x — Ok)) ’
and suppose f € LP(R), 1 < p < oo. Then

> LI I (2.8)

kEZ

Li(z) = 0<d<1,

converges unconditionally in LP(R).

Proof. First, assume that f € LP(R) with supp(f) C [=0 'm, 6 x] (with f in the sense of
tempered distributions for 2 < p < 00.). Note that f is the restriction of an analytic function of
exponential type in this special case. We claim that Y, |f(0k)|? < Cps| f|lp for some constant
Cp.s. Indeed, take ¢ € S(R) with $=1on [0 ', 6 '7]. Then, by Plancherel’s Theorem,

[ #@) b — o) do = /f¢ exp(idke) dt

= f(£) exp (k) d§

271' 5 1rx

= f(0F).

We now apply Holder’s inequality to get

S 1£(6K) |”</|f WS |6 — oK) da | $17L”

keZ kEZ
< CpsllFllp-

Thus, Lemma 2.21 applies to the sequence f(dk) and (2.8) converges unconditionally since
(f, Li) = f(dk). For general f € LP(R) it suffices to notice that, by Lemma 2.20, the operator
[ = (X—s-1m }f) is bounded on LP(R), and that f and (X[,(;_lm;_lﬂf)v have the same

expansion in the functions {L{}. |
Finally, we combine the above Lemmas to get a positive convergence result for expansions
in the Shannon wavelet packets in frequency order.

Theorem 2.22. The Shannon Wavelet Packet system in frequency order {wy(- — k) }n forms
a Schauder basis for LP(R), 1 < p < oo, in the sense that

()
ZZ f7wn _k wn( _k) Noo f

n=0keZ

for f € LP(R).
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Proof. We have @, (£) = Xnr,(n+1)m) ([€]) s0

sin((n + 1)7x sin(nmz n+1)=1 -l
wp(z) = (n+1) ((7“(L-|-1)733: )—n 77(/7'('17 ):(n-l-l)L(() 1) —nLy .

Let f € LP(R), 1 < p < co. Lemma 2.21 shows that {(f,wn(- — k)) }kez € ¢P(Z). Hence
> (Frwn( = B))wn(- — k)
keZ

converges unconditionally to P, f, where Pq, is the projection onto the closed span of {wy, (- —
k) g, ie P, = F~! X{nr<|¢|<(n+1)x} F- So all we have to check is that ETJ:[:O Pq, are uniformly
bounded in N on LP(R). But 27]:7;01 Pq,, is just the operator f — F_lx[_Nﬂ,Nﬂ]]-", and it is
uniformly bounded on LP(R) by Lemma 2.20. [ |

The above result can also be used to show that the expansion in the Shannon wavelet packets
coverges pointwise a.e. Indeed this fact follows directly from the Carleson-Hunt theorem for
the line:

Theorem 2.23 (Carleson-Hunt). Let f € LP(R), 1 < p < co. Define T, R > 0, by

R ~ .
Taf(o) = 5= [ F(€)eine s

and let (Tf)(z) = supgso(Tr)(x). Then T is of strong type (p,p).
We have

Corollary 2.24. Let {wyp}, be the Shannon Wavelet Packet system in frequency order Then
for f € LP(R), 1 < p < oo,

N

SS T (wn( — k) wale — k) — f(2),  ae.

N—00
n=0kcZ

Proof. Just note that

N—-1
{ X T thont = mDante =0} ) = H€x-wve©)

n=0 kEZ
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2.2.6 Shannon Type Wavelet Packets

We now generalize the above results to a class of nonstationary wavelet packets.

Definition 2.25 (Shannon Type Wavelet Packets). Let {w,},>o be the family of nonsta-
tionary wavelet packets constructed using a family {th’) };‘;1 of CQFs in definition 2.1. If there
exists a constant J € N such that hP) is the Shannon filter for every p > J then we call {wy}
a family of Shannon type wavelet packets.

For fixed J € N we define a permutation Gy : N — N by!

n ifn <2’/

Gy(n) =
nn - np—g[G(np—y---m))] if2F <n <20H L >,

where n = [npng_1---n1] is the binary expansion of n. So G leaves the J most significant
bits unchanges, but performs the Gray-code permutation on the least significant L — J bits.

The frequency ordering of any Shannon type wavelet packet system {w,} (with J as in
definition 2.25) is given by

{wn = wa; () Fnzo-

The following result is the analog of Theorem 2.22.

Theorem 2.26. Let {wy}, be a system of Shannon type wavelet packets in frequency order.
Then {wy (- — k) }n>o0kez forms a Schauder basis for LP(R), 1 < p < oo, in the sense that

fj S (frwnl- = k)wal- — k) — 7,

N—o0
n=0 ke
for f € LP(R).

Proof. First, let us assume that wy is band limited with supp(wy) C [-Kn,Kn], K € N,
and that 1 < p < 2. Define P; by

Pif(z) =) (f wi(- = k)wi(z — k).
keZ
We know that the family {E?ial Pj}ren is uniformly bounded on LP(R) since it is just the
projection onto the wavelet space V7. It therefore suffices to prove that ZT:ZL P; is bounded
on LP(R) with bound independent of L € N and m < 2'+!. Let J be the scale from which only

'Here [-] denotes the function that converts a binary string to the corresponding integer, and [-]» converts an

integer to its binary expansion.
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the Shannon filter is used to generate the wavelet packets. Take j € N: 28 < j < 2041 [ >
J, GJ(j) = [€L Tt 81]. Then

@;(€) = m?, (6/2)mZ, (6/2%) ---mZ,_,(&/2"~yml) | (€/257+Y) - m{)(€/2" )i (€/2")
271K

= { S xr(€- 2L—J+17rs)}cbij (&/2"77),

s=—2/-1K

where i; = [lef,—1 - er—y1]2 € [0,27 — 1] and 27 LT; C [—, 7] is symmetric about 0 and is a
union of two intervals, each of length 2/~"7 (follows from Theorem 2.18). Using Plancherel’s
theorem we have?

2.]—1K
— 1 o0 R B . By A
PJf(f) = — Z/ f(t) Z XI; (t _ 9ol J+1ﬂ_8)wij (t2J—L)ezkt dte Zkgwj(f)
2 kez” —° s=—92J-1[K
1 oI -1 A T |

s=—2/-1K keZ" "1

2J71K er
R B ) £+ o2L—J+1rg p
= Z |:f(£ + 2L J+17TS)C(JZ']- <2L——J X
s=—27-1K Ij
271K
S (6 2 e, (€/2")
r=—2/"1K
271K 2/-1K T—J+1 per
= { Z Z |:f(£ + 2L7]+17T3)(:)ij <w>:| X
s=—2/-1K r=—2J-1K 2 I

i, (€ — zL-”lm)}wij (e/24)

2‘171]{ 2J71K

{ T X ferrrtint o, (ST «

s=—2/ 1K r=-2/-1K

i, (€ — 28T ) }w (/24

Note that the inverse Fourier transform of each term

flE+ 257 n(s = r))ay, <§ : 2L2JLH;T(S - r)>XIj (& — 28T qp)

is just the convolution of f with an L' function of norm |lw;, ||; and then composed with the
bounded operator given by the multiplier xz,(§ — 2=/+1mr). Thus, Pjf is a finite sum of
convolutions of LP(R) functions all with LP-norm < C|f||, (with C' independent of j) and a

*Notation: g|P*" is the 27-periodic function obtained by taking the 2w-periodic extension of the restriction of

I.
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function of fixed L'-norm. So P; is bounded on LP(R). In general, for m — 2 = k28~ + 4
with d € [0,2"77),
m

_ J—1 J—1
k 1{ Dol > e+ 20 - o (2=
s=—2/"1Kr=-2/-1K
2L (l+1)28 =7 -1
D S ) T OEa

j:2L+l2L_J

2J-1K -1 ]
" { Z Z F&+ 277 n(s —r))an, <£ = 2JL+_1;T(3 — 7"))

s=—2/ 1K r=—27-1K

2L +k2l=7 +d
L—J+1 N L—J
S e —2b T w)}wk(w )
j=2L 4 k2L—J
However,
2l 4 (141)20-7 -1 of g2l =J 44
L—J+1 L—J+1
Z XI; (6 -2 It 71'7’) and Z XI; (6 -2 It 7T’I")
j:2L+l2L—J j:2L+k2L7‘I

are each the characteristic function of an interval (follows from Theorem 2.18 and the ordering
of the functions). The same argument as above applies and ZT:ZL P; is therefore bounded
on LP(R) with bounds independent of m and L. More generally, if wy is not band limited we
can always find an isometry on LP(R) mapping the wavelet packet system onto a band limited
Shannon type wavelet packet system (by Theorem 2.10). The case 2 < p < oo follows easily by

a duality argument. |

2.3 Growth in LP-norm of Wavelet Packets

It was proved in [6] that the family {wy, }, of basic wavelet packets associated with a Meyer filter
is not uniformly bounded in L”(R)-norms for p large. The technique used was to prove that the
family {0, }, is not bounded in L'-norm. This works because the Meyer low-pass filter mq is a
nonnegative functions so each w, is just a modulation of a nonnegative function. It is therefore
possible to recover the L*®-norm of w, from the L'-norm of w,. However, this technique

fails in general since finite filters associated with a multiresolution analysis are not nonnegative
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functions. In this section we use the following fundamental result about multiresolution analyses

to calculate the LP(R)-norm of wavelet packets associated with finite filters.

Lemma 2.27 ([29]). Let {V;} be a multiresolution analysis with associated scaling function ¢
satisfying |p(z)| < C(1 + |z]) "1~ for some € > 0. Then there exist finite constants c,,Cp > 0
such that for every finite sequence {cy}rez, C C we have

al{adlowm < || Y ade )| < Gliadtoe),
kEZ

The following lemma gives us a sharp estimate of the LP(R) norm of a wavelet packet

associated with a multiresolution analysis.

Lemma 2.28. Let (mg, my) be the filters associated with a multiresolution analysis for which
the scaling function ¢ satisfies |p(z)| < C(1 + |z|)~'17% for some & > 0. Then there exist finite
positive constants ¢, and Cp such that the LP(R)-norm, 1 < p < oo, of the wavelet packet wy,
defined by

p(/2M),

N .
(€)= [H me, (€20)
7=1

is bounded by
2" 27V {er lm(zy < llwallp < Co2V 27N [ {ex (),

where

Me (g)mszv_1 (25) s Mgy (2N71§) = Z Ckeikg.

kEZ
Proof. We have N
W (§) = [H me, (5/29')] $(¢/2"),
j=1
SO

N—-1
Wy (2V¢) = [ 11 mgNj(sz)] $(€). (2.9)
j=0

Taking the inverse Fourier Transform of (2.9) shows that 2=w,, (2= z) is a linear combination
of the functions {¢(z — k) }, and that the expansion coefficients are given by the coefficients of

the Fourier series

Me (g)mszv_1 (25) s Mgy (2N71§) = Z Ckeikg.

kEZ

Note that |27 Nw, (27N )|, = 27 N2N/P||w, ||, for 1 < p < co. Tt now follows from Lemma 2.27

that there exist constants ¢, and C), (independent of n) such that

34



2V 27N e I (zy < Nwallp < Cp2V27 NP {ek H oo (2)-

In what follows, we will restrict our attention to subsequences of the form {won_1},. The
main reason is that the binary expansion of 2" — 1 consists of n — 1 1’s and nothing else, which
simplifies the estimates given by Lemma 2.28. The key to getting good estimates is to consider

the following operator.

Definition 2.29. Let m(£) = 3oy 91€™¢ be a finite high-pass filter. We define the bounded
operator S on P(Z), 1 < p < o0, by

(Se)i = Zgiﬂj% 1 € 2. (2.10)
JET

S is called the (stationary) subdivision operator associated with the filter my. We let 0,[5]
denote the spectral radius of S on ¢P(Z).

Note that S is just the bi-infinite matrix (g;_2;)i; considered as a bounded operator on /7(Z).

It is also easy to check that S can be represented (formally) as the multiplication operator

Sf(&) =mi(§)f(28),

for f(€) = Ypeq cne’™.

We are interested in calculating the spectral radius of S on ¢P(Z). The multiplication

representation of S suggests that the product

m1(&)ma (26) - -ma (2"71¢)

might be useful for that purpose. Indeed, the product is the key to calculating the powers of

the matrix S as the following lemma shows

Lemma 2.30. Let mq(&) = Zivzflgkeikg be a finite high-pass filter, and let S = (gi—2;)i; be

the associated subdivision operator. Then

(5™)ij = gi"onj> (2.11)
where

ma (E)mn (2€) -+ (218) = 3 gpre™.

kEZ
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Proof. We prove this by induction on n. If n =1 then (2.11) is trivially true. Suppose the
result is true for n, n > 1. Then, by the induction hypothesis,

(5" )i = S (5™ ()i

kEZ

= Z 9i" onkJk—2;

kEZ

= ZQ?_Qng_Qnﬂjgé- (2-12)
LETL

On the other hand,
M (§)ma(2€) -+ ma (27€) = D ey et

PEL qEZ

=33 grgeeitvere

PEZL LETL

= Z ( Z gg—?”ﬂgﬂ) e,

k€7 LETL
Thus,

n+1 _ n
9ion+1j = Z 9i—on+1j_onp9e;
LEZ

so from (2.12) we see that (2.11) is true for n + 1, and we are done. [ |

The spectral radius 0,[S] of S on ¢P(Z) can be calculated by as follows

Theorem 2.31 ([15]). Let my be a finite high-pass filter, and let S be defined by (2.10). Define
the sequence {g} }r by

3 gre™ = my (€)ma(26) - ma(2V1).

keZ

Then
op[S) = Tim |{f bl sy

Proof. First, we claim that there is an integer K (independent of n) such that (S™);; =0
whenever |27"i — j| > K. To verify this, we note that there is an integer K such that (S);; =0
if |2 — 27| > K since m, is a finite filter. Suppose (S™);; # 0. We have,

(Sn)i]‘ = Z (S)iél (S)flfz e (S)ln—lj'

L1y ln—1

so there are #1,%s,... ,%, 1 such that

|0 —20,11] < K, r=0,1,... ,n—1,
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where ¢y =4 and ¢, = 5. Put p, =4, — 20,1 forr=0,1,... ,n — 1. Then
27— =2 + 2 o+ + 27 g

Hence

n
27— | <) 279K < K.
q=1

Next, we let
Q={r+Q2K+1)j:j€Z},

for |r| < K. Note that whenever j; and jo are distinct members of Q, we have |j; —jo| > 2K +1.

We define the matrices J” for |r| < K by

r (Sn)a ’iEZ,jEQ

(J")ij = l] '
0, L €7, & Q.

We have

St= YT,

r|<K

since {Q}|,|<x partitions Z. Take any (cy) € £°(Z). Then
157 ellnz) < 2K + 1) max{ | " clln(z) : Irl < K} (2.13)
We claim that, by construction, there is no 7 € Z such that for distinct 71, jo € Z we have
(J")ij (J")igy # 0. (2.14)

Indeed, suppose (2.14) holds. Then j; and js must belong to the same €2, and thus |j; — jo| >
2K + 1. But we have already seen that (J");;,, (J")ij, # 0 implies that

277 — i, |27 " — o] < K.
Hence,
71— g2l < 27" = ji| + 12770 — ja
< 2K,

a contradiction. It follows that the columns of J", denoted by J;, do not have common nonzero

elements. Hence,

1T ey = S 1P I
JEZ

< sup{||J5 5o () : 7 € Z} - llellfn ()

37



From (2.13) and Lemma 2.30 we get

= (2K + 1) sup{[|S} ller(z): 7 € Z}
= (2K + D[{gx Y ller (7)-

15" ler—er < 2K + 1) sup{[|} len(z) : Ir| < K, j € Z}

Hence,

0p[S] < lim inf |[{g Hljo -

To get a lower bound on ¢,[S] note that
{9 Yellerzy = 155 lev(zy = 1S ({056 30) lew ) < [1S™ Lo,
from which we have
. 1
tim sup | {gf }e o s < op[S]:
n—o0
Finally, we combine the above inequalities to get

. 1
oplS] = Tim |{g be il

We combine Theorem 2.31 and Lemma 2.28 to obtain the following useful result about the

asymptotic behavior in LP(R) of the subsequence {wan_1}, of a given wavelet packet system

{wn}-

Corollary 2.32. Let {wp}52, be the wavelet packets generated by the finite filters (mg, my)

associated with a multiresolution analysis. Define op, 1 < p < 00, by
P . n l/n
op = lim_{lwzn [,/
Then &, exists and G, = 2'~/Pq,[S)].
Proof. We have, using the same notation as in Lemma 2.28,
2" 27" PI{ci @) < lwan—1llp < Cp2*2 P ([{c} }H v ),

The result follows from taking n’th roots of the above inequalities and letting n — oo. |

Finding the asymptotic behavior of the subsequence {won 1}, in LP(R) thus reduces to calcu-
lating the spectral radius o,[S]. Unfortunately, there is no general method available to calculate
0p[S]. However, the following lemma shows that we only have worry about o4 [S] to estimate

op[S] for p large. Note that the lemma is a Bernstein type inequality.
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Lemma 2.33. Let {wy,} be a wavelet packet system associated with a multiresolution analysis
{V;}. Let n >0, 2/=1 <'n < 27, Then there is a finite constant Cp, independent of j, such that
for p € [1,00]

lwnlloo < Cp2//7||wnll,-

Proof. We have w,, € V; so

wp (r) = Z CkPj ks

kEZ

for some finite sequence {c;}. Then, using Lemma 2.27,

[wnlloo < Coo2//|[{ek Hlgoo (2
< Co2”|{erHler(z)
= Co 21202710 (e }Hlow 2]
< Cp2/P |y .

And we have

Corollary 2.34. Let {w,} be a wavelet packet system associated a multiresolution analysis.
Then

Gy > 27 VP65

2.3.1 Lower Bounds for o.

We are left with the following problem; how do we obtain a lower bound for 04 [S]|? It turns
out that the calculation of 0, [S] can be reduced to a finite dimensional problem. We need the

following definition and theorem

Definition 2.35. Let Ay and Ay be two n X n-matrices. The joint spectral radius of Ay and
Ay is given by

Poo(Ap, A1) = limsup max ||A; A., -+ A, ||1/T,
r—oo c€{0,1}7

where || - || is any (matriz) norm on R**™.
We have

Theorem 2.36 ([15]). Let mq(§) = Z,]:r:_l gn€'™ be a high-pass filter associated with a mul-

tiresolution analysis. Form the two matrices
N-1 N—-1
Ay = (gfi+2j)i,j:_17 A= (glfi+2j)i,j:_1-
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Then
o[ S] = poo(Ao, Ar).
Proof. Set Q = {—1,0,... ,N —1}. Note that if i € Q and j € Z\Q then g._;,2; = 0 for
e =0,1. Fix i € Z, and write i = 2i; + ¢ for ¢ € {0,1}. Let £ € Q. Then

(Sc)i—e = Z Gi—0—2;Cj

JET

= Z 9e—042kCiy —k

kEZ

= Z 9e—t+2kCiy —k

keQ

= Z(Ag)gkcil_k. (215)

ke

Let Jg : £°°(Z) — £°°(Q2) be defined by
(Jec)e = ci—r, Leq.

It follows from (2.15) that J;S = A.J;,. Thus, if i = 2i14+¢,, i1 = 2ia+ep1,... , 4p—1 = 26, +€1
then
JS"T=A. - A i,

Now, we can prove the claim. Given n > 0, we let R be a positive constant such that for
any € € {0,1}" and r > R, we have ||A., --- A, || < (poo(Ao, A1) +n)". Fix i € Z, and let r > R.

We write ¢ on the form
=6+ 28 1+ + 27 ey + 270, ex €{0,1}, 4, € Z.
Hence for ¢ € £°°(Z) and £ € Q, we have
[(S"¢)i—el < |ITiS"cllgoo(y = | As, -+ Acy il (02)
where 1 = J; c. Since this holds for all « € Z, we have
15" clle(7) < (Poo (Ao, A1) +m)[|clle= (7).
It follows that 05[S] < poo (Ao, A1).
For the other direction, let 7 > 0 and choose R so that ||S"c[|se(z) < (060[S] 4 0)"l|¢ll o (2)

holds for every r > R and ¢ € ¢>°(Z). Take any p € £°°(2) and write it as u = JyA for some
A € £2°(Z) with ||| g () = | Allgoe(z)- For e € {0,1}" define i by

i=¢er +25 14+ - +27 ey +27-0.
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Then
[Ae, - Aey plleo (@) = 11iS" Mleeo () < (00[ST+ 1) | A |l ¢ ()

and it follows that pso(Ap, A1) < 0s[S]. |

It is, in general, difficult to calculate the joint spectral radius of the matrices Ay, A; introduced
in Theorem 2.36. G. Grippenberg gives an example in [16] where one has to perform a very
significant number of matrix multiplications to get decent two-sided estimates of the joint
spectral radius even for 2 x 2-matrices. However, we just want a lower bound for o4, so for our
purpose it suffices to notice that poo(Ag, A1) > max{p(Ap), p(A1)}. Hence, the spectral radius
of the matrix Ay gives us a lower bound on o4, i.e., we have reduced the problem to a finite

dimensional eigenvalue problem that can be solved (numerically, at least) for any finite filter.

2.3.2 Growth in IP-norm of Some Familiar Wavelet Packets

We now apply this method to some much used filters. We have calculated lower bounds for &4,
for some of the standard Daubechies filters, least asymmetric Daubechies filters, and Coiflet
filters (see Tables 2.1, 2.2, and 2.3). It is interesting to note the difference in the estimates
obtained for the Daubechies filters and the least asymmetric Daubechies filters of the same
length since their transfer functions agree in absolute value. It suggests that the phase of the

transfer function does influence the behavior of the associated wavelet packets in LP(R).

The following result generalizes the results obtained in [6] for the Meyer wavelets.

Theorem 2.37. For each wavelet packet system associated with one of the filters listed in
Tables 2.1, 2.2, and 2.3 there is a po > 2 such that for p > py we have a constant r, > 1 such
that [fwan 1|, > Cpry.

Figure 2.2 shows the first few elements of the sequence {wqn_1 } associated with the Daubechies
filter of length 4.
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Dauby Lower bounds for
&1 Foo 5160 Po
2 | 0.918558 | YILLV3 | 1159376 | 4.687617
3 |0.946828 | 1.182094 | 1.119240 | 6.153068
4 | 0.964076 | 1.128085 | 1.087560 | 8.257957
5 | 0975229 | 1.178557 | 1.149363 | 4.979198
6 | 0.982686 | 1.120631 | 1.101229 | 7.188270
7 | 0.987780 | 1.088578 | 1.075275 | 9.550474
8 |0.991312 | 1.120338 | 1.110605 | 6.607374
9 | 0.993788 | 1.081554 | 1.074836 | 9.604556
10 | 0.995538 | 1.050467 | 1.045780 | 15.48460
11 [ 0.996783 | 1.077456 | 1.073990 | 9.710528
12 [ 0.997673 | 1.053657 | 1.051206 | 13.87991
13 | 0.998313 | 1.023405 | 1.021679 | 32.31807
14 | 0.998774 | 1.047230 | 1.045946 | 15.42983
15 | 0.999107 | 1.034474 | 1.033551 | 21.00407
16 | 0.999349 | 1.007608 | 1.006952 | 100.0505
17 | 0.999524 | 1.027401 | 1.026913 | 26.10002
18 | 0.999652 | 1.021871 | 1.021515 | 32.56199
19 [ 0.999745 | 1.001009 | 1.000754 | 919.3268
20 | 0.999813 | 1.015251 | 1.015061 | 46.36799

Table 2.1: Lower bounds for &1, 5+, and pg for the first 20 Daubechies filters (with filterlength
from 4 to 40). The estimates have been calculated using Maple V.3 and checked using the
Power Method and Matlab.
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Least Asym. Dauby

Lower bounds for

o1

To0

5'1 5'00

bo

0.964076

1.192708

1.149862

4.963745

0.975229

1.087374

1.060439

11.81179

0.982686

1.146192

1.126374

5.825744

0.987780

1.133295

1.119446

6.143067

0.991312

1.111158

1.101505

7.169679

O |0 ||| Ot

0.993788

1.047619

1.041111

17.20426

10

0.995538

1.084002

1.079118

9.095479

Table 2.2: Lower bounds for &1, 64, and pg for the least asymmetric Daubechies filters with
filterlength 8 to 20. The estimates have been calculated using Maple V.3 and checked using the
Power Method and Matlab.

Coiflet i Lower bounds for

Table 2.3: Lower bounds for 61, 64, and pg for the ”Coiflet” filters with filterlength 6 to 30.
The estimates have been calculated using Maple V.3 and checked using the Power Method and

Matlab.

a1

To0

5'1 5'00

bo

0.939727

1.075437

1.010617

65.63136

0.967122

1.197928

1.158542

4.710071

0.984923

1.151143

1.133787

9.520289

12

0.992775

1.114805

1.106750

6.833865

15

0.996445

1.086199

1.082338

8.760274
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0 1 2 3 4 0 1 2 3 4

W, 7 W, 8.
Figure 2.2: The first 8 elements from the subsequence waon _1 associated with the Daubechies
filter of length 4. Note the growth in L*-norm.
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We would like to know if the previous theorem is sharp in the sense that there is a p,
2 < p < po, such that sup,, ||wan_1||, < co. The answer is, in general, negative as the following

result shows.

Theorem 2.38. Let mg be the Daubechies filter of length / and let {wy,} be the associated
wavelet packets. Then

lwan 1 [, === o0

for every p > 2.

Proof. If we can prove that ||wan_1]i ——= 0 then the result will follow by Holder’s

inequality since ||wan_1]]o = 1. It suffices to show that o1[S] < 1. Note that if we can find an
N such that 3, || = @ < 1, where

m(€)---mi (2N =) e,

keZ

then 01[S] < a!'/N < 1. But one can check that

el = 9517 + 13043v/3
7| =

39763 < 0.98.

kEZ

2.3.3 Wavelet Packets Generated By Nonnegative Low-Pass Filters

We have included the following result for the sake of completeness. Note that Theorem 2.40
tells us that the only way to avoid growth in L°°-norm of wavelet packets associated with
nonnegative filters is to choose the filter to be the characteristic function of some measurable

set.

Theorem 2.39 ([21]). Let {w,} be the wavelet packet basis associated with the filters (mg,mq).
Suppose

|wi(&)] > do >0 on [a—¢,a+ €]
0 <|mo(&)| <1 on M C [—m, 7]

holds for some € > 0, point a € R, and set M of positive measure. Then there exist constants
C >0 and r > 1 such that

277 N elh > Cr

2J§n<21+1
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Theorem 2.40. Let {w,} be the wavelet packet basis associated with the filters (mg, my). Sup-
pose the system satisfies the hypothesis of Theorem 2.39 and myq s a nonnegative function then

there exist constants C > 0 and r > 1 such that

e, [loo > Cr?

for some subsequence {n;} C N.

Proof. Let C and r be the constants from Theorem 2.39. We pick from each set {27,2/ +
1,...,27t1 —1} an index n; such that | (11 > CrJ (possible since that average of the L!(R)-
norms grows like Cr/ within scale j). Note that Wy, is just the modulation of a nonnegative

function. Hence, [lwp, [|oc = (2m) ™" ||thy, ||y and we are done. [ |

2.4 Failure of Some Wavelet Packet Systems to be a Basis for
LP(R)

We have proved that the Walsh and Shannon wavelet packets do constitute Schauder bases for
LP(R), 1 < p < o0, so one might conjecture that such results hold for any reasonable wavelet
packet system. However, it turns out that the assertion is not true for many nice finite filters
such as the Daubechies, least asymmetric Daubechies, and Coiflet filters. They all fail because

of the following result:

Lemma 2.41. If {wy(z — k) }kn is a Schauder basis for LP(R), 1 < p < oo, then there exists

a finite constant C), such that
[wnllpllwnlly < Cp, n=0,1,.... (2.16)

Proof. It is a well known result that a Schauder basis {e,} in a Banach space B with

associated coefficient functionals { f,} satisfies
sup [len|| 5[l fnlls- < +o0.
n

So it suffices to show that w, € L?' (R) is the coefficient functional of w, € LP(R). Also, since
{wy(z — k) }nx is an orthonormal system in L?*(R), we just have to verify that {wn(z — k)}n
is dense in LP(R). Now, the wavelet system {t;;} is dense in LP(R), but each t;;, 7 >0, is a
finite linear combination of the functions {wy,(z — k)},  since the filters my and m; are both

finite, and we are done. |

The idea is to find a subsequence of a given wavelet packet system for which (2.41) fails.

We have the following useful result.
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Corollary 2.42. If
&I[S]&OO[S] =a>1,

then the associated wavelet packet system {wy (- — k)}n i fails to be a Schauder basis for LP(R)
for p > po, where py = 1/logy(c).

Proof. Since the functions {wy} all have support contained in some fixed finite interval,

we have ||wyl||1 < Cp|lwy]|p. Thus, for p > 2,

[war 1[Iy lwar —1llp = Cpllwan 1 [l1[[war 1]l
> Cp2 P ||wan_1 |1 |wzn —1]lso,
where we have used Lemma 2.33. Note that

2P |wan 1 |1 [|wan —1 oo~ 00

for p > pg, so Lemma 2.41 shows that {w,(z — k)}, fails to be a Schauder basis for such
I7(R). n
We already have estimates of 0,[S]. The following result takes care of o1[5],

Lemma 2.43. Let my(&) be a finite high-pass filter with real coefficients associated with a
multiresolution analysis. Then
o1 [S] > [ma (27/3).

Proof. Note that the set {—%”, %”} is invariant under the transformation & — 2¢ (mod 2).
Also, |m1(%)| = |m1(—2F)| since m; has real coefficients. Thus,

[ (BF) - ma (23| = fma ()™

Let
Z cpe™ = my(&)ma(28) - my (277" €).
kEZ
Then
Ima (B5)|™ < [lma(€) - -ma (2" 1€) | Lopo,om < Z |k
keZ
and the results follows from Lemma 2.31. [ |
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Example 2.44. Let us apply Lemma 2.43 to the Daubechies filter of length 2N. We have

Thus,

Note that o1 < 1 since the subsequence ||won_1||1 is bounded because the wavelet packets associ-
ated with my are compactly supported with support contained in some fized interval independent

of n. Moreover,

N1 . N-1 ,
N—=1+7\,v3\2 3\ N—1 N-1+7\,-
) ()7 <(3) , 2
j=0 J j=0 J
3\ N=15N-1
(5) 2
— gN-1
Hence,
N—1 .
N -1 ;
o1 > (|1 —272N ( ) ﬂ)({’)%z 1—4-N3N-1 1
— j
‘]7
as N — oo. |

We have the following unfortunate result about the basic wavelet packets associated with
one of the filters listed in Tables 2.1, 2.2, and 2.3.

Theorem 2.45. For each wavelet packet system {wy} associated with one of the filters listed
in Tables 2.1, 2.2, and 2.3 there exists a (finite) py > 2 such that for p > po, the system
{wp(- — k) }nk (in any ordering) fails to be a Schauder basis for LP(R).

2.4.1 Some Wavelet Packets Generated Using Infinite Filters

Suppose my is a finite low-pass filter for some multiresolution analysis. Then it is easy to check
that |mg| is also a low-pass filter for some multiresolution analysis (see Cohen’s condition;
Theorem 1.3), and one would expect that the wavelet packets associated with |mg| are “worse”
than those associated with my, since |myg| is not a finite filter. Indeed, we have the following

result.
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Theorem 2.46. Let mg be a finite low-pass filter with associated wavelet packet system {wy,}.
Let mg® = |mg| with associated wavelet packet system {we*}. If {w,} fails to be a Schauder
basis because

“wnkHoouwnkHoo > Cr*

for some subsequence {wy, } and r > 1 then {w2} also fails to be a Schauder basis for some

LP(R) spaces since

i pllwy |y — oo,
for p large.
Proof. We have |lwp, ||so < 5= [t |1, and
o, 11 = by = 2|t oo

since wggs is just a modulation of a nonnegative function. By Bernstein’s inequality, applied to
Wy, , we have

Hwabs“p = ||, |lp > Clln, |l

since the Fourier transform of w,, has support contained in some fixed interval given by the

filter length of mg. Moreover, by the Hausdorff-Young inequality, for p € [1,2),
w2bs || <Cllwil,.

Hence, ||wabs||p > C|tp, || for p € [1,2) and ||wabs||Oo > ||wp, ||lso- The result then follows
from Lemma 2.41. |

We now apply the above result the filters listed in Tables 2.1, 2.2, and 2.3.
Corollary 2.47. Theorem 2.46 applies to the filters listed in Tables 2.1, 2.2, and 2.5.

Proof. We know that the subsequence {wan_1} grows exponentially in LP(R)-norm for p

large. Furthermore, with ¢ the associated scaling function,
ldbon 1|0 > [iban—1(2" FF)| = ma (31)[M|S(3F)| > Clma ()|,

since |$(€)] > C on [—m,7]. The result then follows from the values listed in Tables 2.1, 2.2,
and 2.3. ]
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2.4.2 Fourier Transforms of Wavelet Packets

The definition of the Shannon wavelet packets shows that the Fourier transforms of these

functions are well behaved in LP(R), 1 < p < oo. In fact, we have the following easy theorem.

Theorem 2.48. The Fourier transforms of the Shannon wavelet packets in frequency order
form a Schauder basis for LP(R), 1 < p < 00.

Proof. We have Flw, (- — k)](¢) = X[nw,(n+1)w(|f|)€7ik§ so the statement follows from the
fact that {e?™*€}; 7 form a Schauder basis for LP[0,1), 1 < p < oo. [ |

So, one might conjecture that the Fourier transforms of any reasonable wavelet packet

system are equally well behaved. However, we have the following Corollary to Lemma 2.41.

Corollary 2.49. Let {wy} be a wavelet packet system associated with a finite filter mgy. If, for
some p € (2, 00)

[ [loollwny, lp — o0

then the Fourier transforms of the wavelet packets fail to be a Schauder basis for LP(R).
Proof. By the Hausdorff Young inequality,
[wn lp < Cllin,[lp,
and Bernstein’s inequality shows that ||y, ||, > C||wy, |lec sO
[ NIpll o |y = Cllwn[lpllin, (oo,
and the result follows. |

Corollary 2.50. Theorem 2.49 applies to the wavelet packets associated with one of the filters
listed in Tables 2.1, 2.2, and 2.3.

Proof. We know that the subsequence {won_1} grows exponentially in LP(R)-norm for p

large. Furthermore, with ¢ the associated scaling function,
ldbon —1 lloo > |dban—1(2" 50)] = |mi (F)["$(3)] > Clma (3)]",

since |$(€)] > C on [—m,7]. The result then follows from the values listed in Tables 2.1, 2.2,
and 2.3. |
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2.5 A Formula for o, for p Even

In this section we generalize the results expressing o~ as a joint spectral radius of two finite
dimensional matrices. First we need the following generalization of the joint spectral radius
(introduced by Jia in [23]).

Definition 2.51. Let Ay and Ay be n X n matrices. We define the p-norm joint spectral radius
for 0 <p < oo by

1/pn
pp(Ao, A1) = limsup( > A A - --Aenup) "
"m0 N egfo,}n

In what follows we let dy denote the sequence {0y }rez, and let S be the subdivision
operator introduced in Definition 2.29. We define the operators Ay and A; by their matrix
representations

(Ac)ij = Get2i—j>

where mq (&) = chv:flgkeikg is a finite high-pass filter. Note that Ay, Ay are essentially the
transpose of the matrices appearing in Theorem 2.36. The reason is that the new Ay and A;
have nice invariant subspaces of finite dimension, which was first observed by L. F. Villemoes

in [42]. The following lemma is well known and can be found in, e.g., [24].
Lemma 2.52. Fori=¢, +2e9 +---+ 2" e, + 2"k we have
(8700)i—j = (Ae, A,y -+ Ay )1y
Proof. We use induction on n. For n = 1 and 7 = ¢; + 2k we have
(S60)i-5 =Y _ Gicj—20001 = Ger42k—j = (Ae)kj-
JAsY/
Suppose the claim is true for n — 1. For i = &1 + 2k; with ki = €9 + -+ - €,2" + 2" 'k we have

(8"00)i—j = Z Gi—j—20(S" 60)s
ter

= Geria(bi—0)—5(S" 1 60)e
ez

= gerr203(S" " 60)k, e
tez.

=Y gerroej(An, -+ Ay ke
LET

= Z(AEI )Zj(AEn Ay ke
LEZ

= (AEnAfnfl s AE1)kj-
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It is easy to verify that ¢P([—1, N — 1]) is invariant under both Ay and A; so it follows that
Vo, the minimal invariant subspace under Ay and Ay containing dj, is finite dimensional. We
let P ={Ap, A1} and define

Proy= 3 Al Aldy,
ee{0,1}n
and
1/p
||7>"60||p=( T ||AEI---AEnao||p) |
ee{0,1}n

The following lemma gives us what we want, an expression for ¢, in terms of two finite dimen-
sional matrices. The first equality in the lemma is a new observation, the second equality was

proved in [24].

Lemma 2.53.
03lS] = pp(Aolvs, Ailig) = lim [[P"doll;/™.

Proof. For i = ey +2e9 +--- + 2" ¢, + 2"k we have

(Sn(SO)Z = (A&‘n e Aé‘l)k[] = (A&‘n e A8160)k7

SO
SUS™0)ilP = > Y I(Ac, - Ay So)il?
icz cc{01}n keZ
= [|P"dol5-
Hence,

0p[S] = lim ||P 5o,/
To get the second equality, we note that Vj is finite dimensional so it has a basis of the form
B={A: A 00,5 =0,...,d}.
It follows that there is a constant C' such that
|P"b||, < C||P"dp]|p, forbe B,
and for which

n <C ng
1P o llp < Igleagllp s
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SO
1P vollp < ClIIP"dollp-

Clearly,
1P™dollp < IP" v lIplld0 -
Thus,
T n 1/n _ s n 1/n
pp(Aolvo, Ailvg) = lim [[P" [y [[," = Tim [|P" ]|,

We have the following amazing result by D.-X. Zhou ([50]3) that provides a finite dimensional

method to calculate the spectral radius of our subdivision operator on ¢2%(Z), k = 1,2,...

Theorem 2.54 ([50]). Fork € N and P = {M;y,Ms,---, My} a finite collection of real valued
n X n-matrices, we have

1/2k
pulP) =p( 3 @)

MeP

where A = A, AUt = A @ AUl and @ denotes the Kronecker product.

Unfortunately, the size of the matrix appearing in Theorem 2.54 grows exponentially in k
so the method is only feasible for k < 4 and n < 10 unless one has access to a very powerful
computer. We have applied the method to the Daubechies filters of length 4, 6, and 8 to
calculate 64 = 23/454[S]. The results are listed in the following Table:

Dauby 04
4 1.07197
6 1.03306
8 1.02014

Table 2.4: &4 associated with the Daubechies filters of length 4, 6, and 8.

2.6 Uniformly Bounded Nonstationary Wavelet Packets

We have seen that the basic stationary wavelet packets associated with some of the most
widely used filters are not uniformly bounded functions. In this section we prove that using the
nonstationary construction of wavelet packets one can obtain uniformly bounded basic wavelet

packets. The price we have to pay is that we have to use a sequence of filters with an increasing

*T would like to thank Lars Villemoes for bringing Zhou’s paper to my attention.
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number of nonzero coefficients. A consequence is that the diameter of the support of the basic
wavelet packets grows with the frequency. We propose a new construction of wavelet packets
in the next section to avoid such support problems.

The following two lemmas give us some basic information on the geometry of the Daubechies
filters.

Lemma 2.55. Let m)) be the Daubechies filter of length 2N. Then
mg (€) < [sin()|V !, for m/2 < J¢[ < .

Moreover,
S(€) = [mg () + m{’ (€ +m)| <1+ [sin(§)V ™, ¢eR,

and

1SN 12 ((p )22y = L+ O(1/VN).

x
27

Proof. We have, for n/2 < [{| <,

[mi (€)* = cos®™ (¢/2)| Py (€)%,

where
2_N_1 N-=1+7\ . o
LEES (V7)) smeer)
- N_ (N ‘jl I ) 2sin?(¢/2)1/2
< [2sin?(¢/2))V ! NZI <N ! +j> 277
=0 J
= [2sin*(¢/2)]V ! | Py (n/2))?
= [4sin®(¢/2))V 7,

mg’ (§)[* < cos®™ (£/2)[[4sin®(€/2)]V ! < [4cos®(€/2) sin®(£/2)]Y ! = | sin(¢)]N V.
To get the second part, we just notice that for 7/2 < |¢| < 7
Img (&) < [sin(&)|M",  and  |mg (€ +m)| < 1.
For |¢] < 7/2 we have, using |sin(¢ + )| = | sin(¢)],

Imo ()] <1, and  |mg’(§ + )| < |sin(&)[V1,
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Finally,

3 | S@dr <t g [ 1sn@PY 4 2lsino)l 1 de

—T

Assume N is odd (the case N even is similar). We have

1 sin@N*?)(g)dg_ 3-5.-(2N =3) _ 1

2 4-6---2N -2) = /(N - )’
and

% " sinVD () de = i 2 E N f; < 7T(N1— —
so, using V1 +a2 <1+ a?/2 we get estimate we want. |
Moreover,

Lemma 2.56. Let {m(() o1 be a family of Daubechies low-pass filters. Suppose there are
constants ¢ > 0 and C > 0 such that d, = deg(m (v )) > Cp?*e. Then there exists a constant
B < oo such that

[ i @m® e mD@ gl < B2, =L

for any choice of (e) € {0,1}.
Proof. Fix e € {0,1}", and define I; x =I5 5, J > K, by

L(€) = 25 ml =[O €ml = AV (2¢) - ml) (25¢).

EJI-K EJT-K+1

It suffices to find a constant A such that f " I;7-1(¢)d¢é < A, independent of J and the choice
of e. Let Sk (&) = |mEJ X ( )|+ |m5 (5 + )| (note Sk does not depend on e;_x which
follows from the CQF conditions). Then

/ U L(e) de = 2K / " =) UKD (2) ) (25 )| de

-

pL / =K (©miI K40 (2¢) . ) (2K g) | de
201 [l Qml 0 28) i) (2 ) e

=2 [ e/ ml KD @m I E) - m (2K ) e

™

= [ Sk(&/2)Ir,k-1(§)d¢ (2.17)

—T
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We have
2 <Ijo<1Ij1 <---<Ijk,

which follows from (2.17) and the fact that Sk (£) > |mg;}{() O + |mg;}{() (E+m)? =1 for

K =1,2,.... Thus, using Lemma 2.55 and Holder’s inequality,

||IJ,K||L1([7W,W],%) = ||IJ,K—1(')SK(§)||L1([77r,7r],glfﬁ)

<k -1C)Sk (G pass (-, 22
< k1S G Fasa gtz
S Mgl e m, 2o 1K (D 2,229

Hence,

J—1
157 1HL1 [ 42 (l—m], 2) H 155 (5 ||L2 ([~m,m], 2y
7=1

Clearly ||IJ’0||L1 dz ) < 2, so it suffices to prove that H ||Sj(§)||L2 [ d2) is uni-

[=m,m],

formly bounded in J. By Lemma 2.55,

1S (21,21, 22) = 1+ O/ dy-k)

and by assumption

Zm Z <CZ]1+/2 0-

7j=1

The claim now follows from the Weierstrass product test. |

We use the above Lemma to obtain the following result.

Theorem 2.57. Let {h(p)};io be a family of Daubechies CQF’s with associated transfer func-
tions {mgp)}. Suppose there are constants € > 0 and C' > 0 such that length(hP)) > Cp?*e.
If [ (€)| < B(1 + [£])7'7¢ for some constant B then the Fourier transforms of associated
nonstationary wavelet packets are uniformly bounded in L'-norm and the wavelet packets are

consequently uniformly bounded.

Proof. Take n: 2/t <n < 2742 Then

b (€) = m (€/2)m =D (/4) - m®,_ (£/271)d(e/27H).
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Also, since |p(€)| < B(1 + |€])~'~¢ we have

fo'e) 2J+17r+k2J+27r
/ on(E)]de =3 / o (6)]

—00 kez ) —27in+k27Hm
2T +1n
J J—1 0 J+1 —1-¢
< [ D AmE O el (62| de 3011+ 2k
<52/t [ 0, (©ml) (20) -+ mlD(2e)
and the claim follows from Lemma 2.56. [ |

Remark. It is an unfortunate consequence of the above nonstationary construction that the
diameter of support for the nonstationary wavelet packets grows just as fast as the filterlength.
This problem will be eliminated in the next section using a generalized construction of wavelet

packets.

2.7 Highly Nonstationary Wavelet Packets

This section contains a generalization of stationary and nonstationary wavelet packets. The
new definition induces more flexibility into the construction, and thus allows for construction of
functions with better properties than the corresponding nonstationary construction. We have
named the new functions highly nonstationary wavelet packets (HNWPs) and the definition is

the following

Definition 2.58 (Highly Nonstationary Wavelet Packets). Let (¢,1)) be a scaling func-
tion/wavelet associated with an MRA, and let {m5"} ,en1<4<p be a family of CQFs. Let wy = ¢
and wy = ¢ and define the functions w,, n > 2,27 <n < 271, by

i (&) = mBHE/2)mIP (€/4) - ml (€/27 (¢ /27),

where n = Ejill ;271 is the binary ezpansion of n. We call {w,}>, a family of basic highly
nonstationary wavelet packets (HNWPs).

Remark. It is obvious that the definition of highly nonstationary wavelet packets includes the

stationary and nonstationary wavelet packets as special cases.

The following result shows that the integer translates of the basic HNWPs do give us an

orthonormal basis for L2(R), just like the basic nonstationary wavelet packets.

Theorem 2.59. Let {wy,}°°, be a family of highly nonstationary wavelet packets. Then {wny(-—
k)}n>0,kez is an orthonormal basis for L*(RR).
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Proof. Recall that -
2®-voe (W),
n=j
and by definition w, € Wy for 27 < n < 27%! so it suffices to show that

{wn (- — k) }or <n<27+1 keZ

is an orthonormal basis for W ;. However, this follows at once from the first .J steps of the induc-

tion argument in the proof of Theorem 2.3 using the filters mgp) = mo‘]"]_p+1, forp=1,---,J.1

The following corollary to Lemma 2.56 shows the added flexibility in the definition highly

nonstationary wavelet packets allows one to get better joint time-frequency localization.

Corollary 2.60. Let {h(”) };OZO be a family of Daubechies CQFs with associated transfer func-
tions {mgp)}. Suppose there are constants € > 0 and C' > 0 such that

C1p*te < length(hP) < Cp~ =27,

Let {wp}n be the highly nonstationary wavelet packets associated with my? = mSQ) for p >
1, ¢ < p, and some pair (¢,1p). If [o(€)] < B(1 + |£])~1=¢ for some constant B then the
Fourier transforms of associated nonstationary wavelet packets are uniformly bounded in L'-
norm and the wavelet packets are consequently uniformly bounded. Moreover, if wy has compact
support then there is a K < oo such that supp(wy,) C [—K, K] for all n > 1.

Proof. The first statement follows directly from the proof of Theorem 2.56. The second

follows from the fact that the distribution defined as the inverse Fourier transform of the product
H;:1 mg)(f/2)d;(§/2‘]) has support contained in
a[ — Z]‘-le length(mg)ﬂ*j, Z]‘-le length(mg))Z*j] C [—IE', IE'],

whenever wy = 1) has compact support (a < oo depends on the diameter of the support of wy).
|
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Chapter 3

Periodic Wavelet Packets

Wavelet packets have been introduced to provide a flexible method for time-frequency anal-
ysis combining the advantages of wavelet analysis and windowed Fourier analysis. Similarly
periodic wavelet packets provide an alternative to Fourier series. Although there are a number
of similarities between periodic wavelet packets and the trigonometric system, we show in this
chapter that the similarities end when the systems are considered in LP[0,1) for p # 2. We show
that, unlike the trigonometric system, periodic wavelet packets are not, in general, uniformly
bounded in every LP[0,1)-space, and they may fail to be a Schauder basis for such spaces.

We also prove that certain periodic HNWPs do form Schauder bases for LP[0,1), 1 < p < oo.

3.1 Periodic Wavelet Packets

It was proved in [29] that by periodizing any (reasonable) orthonormal wavelet basis associated
with a multiresolution analysis one obtain a multiresolution analysis for L2[0,1).

The same procedure works equally well with wavelet packets,

Definition 3.1. Let {wy}2, be a family of (possibly) nonstationary basic wavelet packets sat-
isfying |wp(z)] < Cu(1 + |z|)~'=%" for some g, > 0, n € Ny. For n € Ny we define the

corresponding periodic wavelet packets w, by
Wy (z) =Y wp(z — k).

Note that the hypothesis about the pointwise decay of the wavelet packets w,, ensures that
the associated periodic wavelet packets are well defined functions contained in LP[0, 1) for every
p € [1,00].

The following result shows that the above definition is useful.
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Theorem 3.2 ([22]). The family {w,}°, is an orthonormal basis for L*[0,1).

Proof. Note that w,, € WA//J for 2771 < n < 27 (WA/; is the periodized version of the wavelet
space W;) and that WA/; is 277! dimensional (see [29] for details), so it suffices to show that

Wy }°2, is an orthonormal system. We have, using Fubini’s Theorem,
n=0 y g

[ e = [ S - 0% wn -

> q/E? ( ); (z —r)
= wp (T — W (x — 1) dx
qcz.”0 ! rez
= / wn(x)z W (z — ) dz
> rEZ
= wp () wm (z — ) dx
z/.
= 5m,n-

3.1.1 Periodic Wavelet Packets and the Trigonometric System

It was observed by Hess-Nielsen in [22] that there are some important similarities between
periodic wavelet packets and the trigonometric system. Most strikingly is the fact that the
periodic wavelet packets share the translation property of the trigonometric system, although

the property is more complicated for the periodic wavelet packets.

Let G : Ny — Ny be the Gray-code permutation. For n € N we write

o
2n = Z 02", 1 <k(n) < oo,
{=k(n)

with e,y = 1 and ¢; € {0,1} otherwise. Define the number 7, by
m=1-— 9—(k(n)+1) 4 gk(n)ﬂ(n) . (g—k(n) 1), neN.
Readers interested in the origin of 7,, should consult [22]. The result by Hess-Nielsen is then:
Theorem 3.3 ([22]). Forn € N: g2, (%) = Wa2n-1)(T — M)
This theorem shows that the periodic wavelet packets (in frequency order) resemble the

trigonometric system in the sense that each f € L2[0,1) has the convergent expansions

o
f=ap+ Z {an cos(2mnz) + by, sin(2mnz) },

n=1
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and
f=ao+ Z {antg(on) + gan(znq)}, (3.1)
n=1

where Wg (2, is a translate of Wg(2,_1)-

We would like to know if the expansion given by (3.1) converges in other spaces that L2[0,1).
In the following section we show that the expansion works just fine in LP[0,1), 1 < p < oo, for
the periodic wavelet packets associated with the Walsh type wavelet packets introduced in the
previous chapter. However, the convergence property may fail for the LP[0, 1)-spaces for p # 2

even for “nice” periodic wavelet packets. This will be proved in section 3.4.

3.2 Periodic Walsh Type Wavelet Packets as a Basis for L”[0, 1)

The periodic version of the Walsh system is the Walsh system itself due to the fact that the
support of each Walsh function is contained in [0, 1), so the periodic Walsh system is indeed
a Schauder basis for LP[0,1) (R. Paley’s original result) for 1 < p < oo. The next theorem

generalizes Paley’s result to the periodic Walsh type wavelet packets.

Theorem 3.4. Let {wy,}, be a wavelet packet system satisfying the hypothesis of Theorem 2.12.
Then the associated periodic system {wp}n is a Schauder basis for LP[0,1) for 1 < p < co.

Proof. We claim that the periodized system {wy,}, is dense in LP[0,1). To verify the claim
we let Py be the projection onto the closed linear span of {w,})_,. By the construction of
the periodic wavelet packets we have Poxv | = P‘~,N, where I~/N is the periodized version of the
multiresolution space V. But P‘~/N f — f for f € L?[0,1) and the claim follows. So it suffices
to prove that supy || Pylzr(0,1)—1r0,1) < 00. Suppose not. Note that each P, is bounded on
LP[0,1) since its kernel is bounded on [0,1)2, so by the Banach-Steinhaus Theorem there exists
f € L?[0,1) such that

Sl}\lrp “PNf“LP[O,l) = 00. (3.2)
According to the proof of Theorem 2.12 there exists a constant Cj, such that
N
Y (grwn(- = k)wa(- = k)| < Gyllgll, (3-3)
n=0 p

for every N > 1, k € Z, and every g € L?(R). Fix K such that supp(w,) C [-K, K] for n > 0.
Then, for z € [0,1)
K+1

Wn(z) = Y wn(z —k). (3.4)

k=—K
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Choose N such that

N
> (fswn)wn > (2K +2)*Cpl fllLofo,1), (3.5)
n=0 Lp[O,l)
which is possible by (3.2). We insert (3.4) into (3.5);
K+1 K41 N
> Y AS [ e m ) > (2K +2°Cyl fllnion)
k1=K ko——K “n=0"0 Lr([0,1),dy)
By Minkowski’s inequality
K+1  K+1 N
Z Z {Z/ f(x)wn(x—kl)dazwn(y—kQ)}
ki=—K ka=—K ‘n=0"0 Lr([0,1),dy)

K+1 K+1

<2 2

1=K ko=—K

N e
/ f(@)wp(z — k1) doewy(y — ko)
n=0 0

Lr([0,1),dy)

so we can find k; and ko such that

Coll fllzrio,1y = Cpllxio,n) fll e

N o
< 7;)/0 f(@)wy(z — k1) dewy, (y — ko)

LP([0,1),dy)

IN

N o
nz_;)/o f(@)wp(z — k1) dewy, (y — ko)

LP(R,dy)

’

LP(R,dy)

N _—
= |3 [ byt =Ry ety k)

which contradicts (3.3). Hence, our assumption that supy || Pn||zr[0,1)-1r[0,1) = oc is false and

we are done.

3.2.1 A Counterexample in L'[0,1)

This section contains the analog to the counterexample of Theorem 2.14, the expansion in the

periodic Walsh type wavelet packets fails in L'[0, 1).

Theorem 3.5. Let {wy,}y, be a family of smooth Walsh type wavelet packets and let J be defined
as in Definition 2.9. Choose L € N such that supp(wys 1) C [-L+1,L—1] and choose M € N
such that 2M > 2L. Let N(k) = k3 + M + 1, and define K : N — N recursively by letting
K() =27 +1, K(2n) = 2K(n), and K(2n 4+ 1) = 2K (n) + 1. Define f by

9N (k) +2k3+1_1

f (@) =§:1%( > m(gg)>.

n=2N (k) 4 2k3
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Then f € L'[0,1), but the periodic wavelet packet expansion of f diverges in L'[0,1)-norm.

Proof. Let 1 < 2/ < n < 2/*tL Tt is clear from the construction of K and the recursive
definition of the wavelet packets that wg(,) € span{wK(l)(Qjaz — k)} and the expansion coef-
ficients are given by the expansion coefficients of W,, in the Haar wavelets h(2/z — k). From
this observation and the well known fact that the Walsh functions and the Haar wavelets are

related by the Hadamard Transform we get (see Appendix A)

201
WK (n) (z) = Z W, o (32_9)w}((1)(23$ —38)
s=0
SO
201
Z W, i (s277) ZwK (29 — 2r — )
re7
27 —1 .
= W, pi(s277)gj ()
s=0

We now use the fact that for z € [0,1) (see Appendix A)

2N(k:)+2k3+1_1 2k3+1 1
k3
Yo Waiva(@) = D Wale) = Wy (0)2" x50 (@)
n=2N (k) 4-2k3 n=2k3

to get

i

2N(k)+2k3+171 2N(k) 1

Z { Z oV (8 N(k))QN(k),s(ﬁﬁ)}

n=2N (k) 4 2k>

2N(k)+2k3+171

Yo k()

n=2N (k) y2k3

1
dxz/
0

| oN(k)—k3 _1
3 —
=2k i > Wye(s27V®)gng,s ()| dz
oN(k)—k3_
< 9k d
<2 > \ ) gn )0 (@) de

s=0
< 2R Nk 9= Ny 1y [ 1y

= llwg )l w)

Thus, f € L'[0,1). Define the sequence a,, by

o for 2VB) 498 < < 2N 4ok e
QAp =

0 otherwise.
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Then f=>, an%. Define n; by
J . J .
Nngj = Z 222 and n2j+1 = Z 22Z+1,

and note that ngs_o < 2" for k € N. Let us estimate the difference between the following two

partial sums of f

) 2N(k)+2k3+nk3_2_1 2N(k)+2k371
> aWEm(2) = Y anlg(n)(z)|dz
0 n=0 n=0
R Eakaie! V12 mys -1
[ X Wl O] do
0 s=0 n— 2N(k)+2k‘3
1 2N0) nk3 27
)XW Z W2 P g o(0)| do
and using the fact that W, is constant on [p2~**+1) (p 4+ 1)2-F*+1) for p < 287,
n ok3+1_1 ngs_o—
/ Z i3 p2 (k® +1 Z W ( k3+1))
o(N(k)—k3—1) 4
Z QN(k),pz(N(k>—k3—1)+s(33) dz
s=0
Define {I, }Qk e C [0,1) by
I, = {z[2" ¥z € [p2NE)=F*=1) L T (p 4 1)2NR)=R*=1) _ 1y
_ [p2—(k3+1) + 2—N(k)L’ (p+ 1)2—(k3+1) _ 2—N(k)L]
Suppose z € I;. Consider
o(N(k)—k3-1) _
Z Z wK(l)(ZN(k)x — Nk _ p2(N(k)_k3_1) —5). (3.6)

rez

Note that

S p)2(N(k)_k3_1) +L—r2N®) s (141 — p)2(N(k)_k3_1) — L—r2V®) _ g,
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Using that p € [0,28°+! — 1] and s € [0,2N®)=*¥*~1 _ 1] we get the bounds

(1 —p)2NW=k*=1) | [ poN(k) _ s> oN(k) _poN(k) 4 [, 4 q
(1+1 _p)Q(N(k)—k3—1) L — 2Nk _ g < 9N () _ [ poN(k)
from which we deduce that it is only the terms with » = 0 that contribute to (3.6) since

supp(wg(1)) C [=L +1,L — 1]. A similar argument using the definition of I;, the fact that
o(N(k)=k*=1) — oM 2L, and the compact support of wg (1), shows that for = € I;

2N (k)—k3—1)_1 ZwK(l)(2N(k)fE —r) forp=I
Z Z wK(l)(ZN(k)x—2N(k)r—p2N(k)7k371—3) =< rez
r€L 0 for p # 1.
Hence,
2k: +1_q nk37271 2(N(k:)—k:3—1)71
_ (3
Z ok3 p2 (h? H)) Z W (p2 (k H)) Z gN(k),pQ(N(k)—k3—1)+5($) dz
l n=0 s=0
nk3_2 1
= Z Wn(ZZ*(kSH)) / Z’U)K ®) g — )| dz
n=0 Il ez
ng3_,—1

= Z Wn(l2_(k3+1)) /() ‘ZwK (z —r)|ds
Nk[l

MR3—27 . (l+1)2M7L
= Z W, (12~ F°+1)y |9~ N (k) / ‘ ZU)K(l)(l" — r)‘ dx
2M4L

rez
nk372—1
= Z Wn(ZZ_(k3+1)) 2~N / ‘Z’U)K z—r)|ds
n=0 rez

Finally we use the following fact about the Lebesgue constants for the Walsh system (see
Theorem A.2)

i

ok?+1_q

d:E — 27(k3+1) Z

=0

nk3_2—1

3 _
5 Wn(l2(’“3+1))‘ > 5552+

n=0

g3 _o—

ZW
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to get the estimate we want

1 2N(k)+2k3+nk_3_271 2N(k:)+2k'371
Z an%(az) — Z an%(x) dz
0 n=>0 n=0
1 2k3+171 2k3+1 1 nk3_2—1
(k> — (k3
> / Z o (27 D) ST g (2 )

n=0

o(N(k)—k3—1) 4

Z QN(k),pz(N(k>—k3—1)+s(33) dx
s=0
2k3+1_1 nk_3_2 1
3
— LY S mee +1>>‘2 NI (@M a1 x
=0 n=0
/ ZwK x—r)|dr
rel
N3 _o—
2M—2L/\ZW (z—r)|dr2” M/ Z Wi
rez
1 1/k3—2
>ﬁ(2M—2L / > wrayle —r)|dz2 M2( 5 +1>
rez
> Ck
for some C' > 0. We conclude that the partial sums
PK(2N(k)+2k3+nk3_2—1)f - PK(2N(k)+2k3—1)f
diverge in L'[0,1) as k — oo. This proves the Theorem. |

3.2.2 Pointwise Convergence for Periodic Walsh Type Wavelet Packet Ex-
pansions

We have the following corollary to Theorem 2.16.

Corollary 3.6. Let {wy}, be a wavelet packet system satisfying the hypothesis of Theorem
2.12. Then the expansion of each f € LP[0,1), 1 < p < oo, in associated periodic system {wy }y

CONVETgeS a.e.

Proof. Let f € LP[0,1), and define N as in the proof of Theorem 2.16. Note that

m N+1 N+1
> (f ) (z) = > Z {Z/f y)wn(y — kl)dywn(x—kz)}
n=0 ki=—N ks=
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so it follows at once from the proof of Theorem 2.16 that the Carleson operator associated with

the periodic Walsh type wavelet packets is of strong type (p,p) for 1 < p < oc. |

3.3 Growth in LP-norm of Periodic Wavelet Packets

We have seen that wavelet packets generated by the Daubechies or Coiflet filters (other that
the Haar filter) are not uniformly bounded in LP(R)-norm for p large, and this growth in norm
prevents the wavelet packets from being Schauder bases for the LP(RR) spaces. One could hope
that periodizing the wavelet packets would somehow collapse their LP(R)-norm and hopefully
give us some new nice bases for L?[0, 1). However, this is not so as will be show in this section.
But first we need a technical result about multipliers for Fourier series. The result can be
deduced, with some work, from a result by de Leeuw (see [12, Corollary 4.6]). We present a

more direct proof here.

Lemma 3.7. Let {my}rez be a 2" -periodic sequence with o = infy, |my| > 0. Then the operator

T, defined on L?[0,1) by
T{ Z ak62m'kx} — Z my, ak62m'kx,
kEZ keZ

extends to an isomorphism on LP[0,1), 1 < p < co.

Proof. Fix 1 < p < oco. First step is to prove that {xyvy;(k)}rez is a p-multiplier. Since
the shift operator (i.e. multiplication by e>™/7) is an isometric isomorphism on LP[0, 1) it suffices
to prove that {xo~n7(k)}kez is a p-multiplier. We prove this by induction on N. Suppose N =1
and let Ty be the operator induced by the sequence {x2z(k)}rez. Let p(z) = 3 ape®™*® be a

trigonometric polynomial. Then, for [ =1,2,...,

1 1
/ |p($)|21 dx = Z T Z Ajy gy " Gy Gy / PTG (3.7)
0 0

Ji J21

However,
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1
/ 627rz(]1—Jz+"'+92l—1—]2l)x dr 20 j1—jo+ -+ Joy_1 — Joy = 0,
0

and j; — jo + -+ + jor—1 — jor = 0 only if the number of odd indices in the set {ji,j2,...,Jo}
is even. Let p(z) = 3 c(k)ape®™**, where c(k) = 1 — 2(k mod 2). The above argument shows
that if j1 — jo - -+ + joy—1 — jor = 0 then

ajyGjy - -+ G110, = c(J1)ag, c(j2)az, - - c(Jar—1) )y, (j21) sy
Thus, it follows from (3.7) that $(z) has the same L?[0,1)-norm as p(z). So
1 .
||T2p||L2l[0,1) = 5“1’(93) +p($)||L2l[o,1) < ||p||L2l[0,1)7

and Ty thus extends to a bounded operator on L?[0,1) for I = 1,2,... The Riesz-Thorin inter-
polation theorem and a duality argument (7% is obviously self-adjoint) shows that T, extends

to bounded operator on every LP[0,1) for 1 < p < oo.

Suppose the result holds for N —1, N > 2. Let T} be the operator induced by {x2i7(k)}rez-
Note that

Tnf(a) = To[(Tn-1f)(2' 7N )]V 2)

so Ty is bounded on LP[0,1).

We now apply the above 2V times to obtain

2N71 . .
Z H Z CkeQMkIHLz’[o,l) =< CPQNH che%ml“m[o,l)'
J=0  ke2N7Z+j keZ

Hence, using Minkowski’s inequality,

2N 1
HZCW%MIHLP[UJ) = Z f Z Ck‘emmHLP[O,l)'
ke Jj=0  ke2NZ+j

Returning to the operator T we have, using {m;.} is 2" -periodic and

0< i%f|mk| < sup |myg| < oo,
k
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2N _1

Hkacw%m\|m,n = Z [ Z mkc’“e%mHL”Ul

keZ = ke2N7+j
omik
- Z [ Z cre” IHLP[O,I)
Jj=0 ke2NZ 45

1R

N1
ZH Z CWZ““Hmp,g

Jj=0  ke2NZ4j

~ || Z Cke?ﬂkaLP[O,l)’

keZ

which shows that T is an isomorphism on LP[0,1) and we are done. |

The following result shows that periodizing most compactly supported wavelet packets will

not collapse their LP-norm significantly.

Theorem 3.8. Let {wy,}, be a wavelet packet basis associated with the finite filters (mg,mq).
Choose N such that diam supp(wy,) < 2V. Fiz L € 2277 4+ 1. If

(mz(0) Um (0 (Uz (27 +1)7) =

then there ezist finite constants c,, Cp, > 0 (depending on L) such that

—~——

cpllwan 1l < lwpnsn_plliepoay < Cpllwan allp, — forn 52N — L >1.

Proof. We have, using that m;(kr) = —(k mod 2),

—~——

Wontn_p(z) = Z Ugnin 1 (27k) TR

kEZ
= Zml k) me, 7’7) "ng(;r_k)’LlA)anl(;r—k)GQka
kEZ
2041 N 20+1 ; ;
= — ngz . ((QT)W) on_ 1 (( o )W)627r22l:re27rzx,
LET
where €1, ¢€3,... ,e; are the first J bits of the binary expansion of 2"V — L. Note that ¢; = 1
since L is odd and €9,... ,e5 do not depend on n, only on L. Thus,
N 20+1 2041y 2041 , )
|wan+n g [lLp0,1) = ngz(( ) EJ(( 2N)7f) 3 (( 2N)7")627r22€ze2mx
Lr[0,1)
LET
2041 20+1 2041 .
- ngz(( 2 )W)"'maj((gizv)ﬂ)w% 1(7( 7 g2mizte
Lr[0,1)
LET
2041 204+ D)7y 2041 .
= Zmaz(( -lQ_ )ﬂ—) e maj((;—iN)ﬂ)’UJQn_l(i( ;;V)W)GZMZI .
¢eZ. r[0,1)
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Note that

2041 2041
{rmey (P50 o, (P50},
is a 2V-periodic sequence. Moreover, the sequence is non-vanishing (by assumption). Hence,

by Lemma 3.7 for 1 < p < o0,

||w2n+N,L||I£p[0’1) ~ H Zw2”71((27]v)7r)827m&c

ter. Lrio.1)
_ 9—N ~ 2Ur | w\2mi2 N P
=2 H D1 (5F + 5 )e Lr[02N)’
LeZ
However,
27NZ,LD2“_1(22£% + 2%)627”2_1\7“
LEZ
is just the Fourier series on [0,2") of the function
o) = 3 fla—2)
kEZ
c— N . .
where f(z) = won_1(x)e™2 " ™. Also, 9/l 010,27y = [lwan—1]|Lr(w) since diamsupp(wan_1) <
2V . So we conclude that for 1 < p < oo
[wgnin g llzvo.1) = llwan—1llLe(r)s
for n sufficiently large. |

Corollary 3.9. Let {wy}, be a wavelet packet system generated using one of the filters listed
in Tables 2.1, 2.2, and 2.5. Fix L € 2Z7" + 1. Then there is a py > 2 such that for p > pg there
is a constant r, > 1 (depending on L) such that

lwar LIl 1rj0,1) = Cprys
for n large.

Proof. Follows at once from Corollary 2.37 and Theorem 3.8, since the combined zero-set
of the filters mg and my is 7Z, and (2¢ +1)/27 € Z for j > 1. [ ]

Corollary 3.9 can be used to generalize Theorem 2.37. The following result emphasizes that

it is the high-pass filter (mq) that causes the growth in LP-norm of the wavelet packets.

Corollary 3.10. Let {wy}, be a wavelet packet system generated using one of the filters listed
in Tables 2.1, 2.2, and 2.5. Fix L € 2Z" + 1. Then there is a py > 2 such that for p > py there
is a constant r, > 1 (depending on L) such that

lwan —r || Lr®) > Cprp's

for n large.
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Proof. Follows at once from Corollary 3.9, Minkowski’s inequality, and the fact that the

wavelet packets all have support contained in some fixed interval. |

We have the following result analogous to Theorem 2.38.

Corollary 3.11. Let mg be the Daubechies filter of length 4 and let {wy} be the associated

periodic wavelet packets. Then

|wan 1| Lpj0,1) —— 00
for every p > 2.

Proof. We just have to prove that

“w2"*1“L1[0,1) 220

since ||'L;2_;;/1||L2[0,1) = 1. But “’(m“Ll[O’l) < ||’w2n,1“L1(R), and we have
n—00

|wan 1]l L1y —— 0

by the proof of Theorem 2.38, and we are done. |

3.4 Failure of Some Periodic Wavelet Packets to be a Basis

We proved in the previous chapter that compactly supported wavelet packets may fail to be
Schauder bases for the LP(R)-spaces. We show in this section that a similar (unfortunate) result
holds true for periodic wavelet packets. The failure is due to the following analog of Lemma
2.41.

Lemma 3.12. If {w,}5%, is a Schauder basis for LP[0,1), 1 < p < oo, then there exists a
finite constant C, such that

l@all ool oy < G m=0,1,.... (3.8)

Proof. Same as for Lemma 2.41. [ |

The main theorem is the following

Theorem 3.13. Let {wy}, be a wavelet packet system generated using one of the filters listed
in Tables 2.1, 2.2, and 2.3. Then there is a py > 2 such that for p > py the periodic wavelet
packet system {wy}, (in any ordering) fails to be a Schauder basis for LP[0,1).
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Proof. Choose py such that

for each p > pg. Fix p > pg. Then here is a constant ¢, € (0,00) and an integer N such that

—~—

lwan+n 1|l oo 1y lwansn 1l 2epo,1) = epllwan 1l lwar 1 lp-

Hence,

sup [lwan 1 ||y |wan 1], = o0,
n

—_~—

—_~ e~

sup ||w2f71||Lp’[0,1)||w2j71||Lp[0,1) = 00.

J

The result then follows from Lemma 3.12.

3.4.1

The results in this section are the periodic analog of the results from Section 2.4.1. Again, for

certain technical reasons we have to restrict our attention to transfer functions that are given

Some Periodic Wavelet Packets Generated Using Infinite Filters

by the absolute value of a transfer function for a FIR filter.

First, we check that the Bernstein type inequality from Lemma 2.33 can be generalized to

periodic wavelet packets.

Lemma 3.14. Let {V;} be the periodization of a multiresolution analysis {V;} with associated

scaling function ¢ satisfying |p(z)| < C(1+|z|) 1%, for some € > 0. Then there is a constant

Cp such that for f € Vn;

£l zoepo,1) < 2n/pCpr||Lp[o,1)-

Proof. We have f = Ziiﬁl ck(in,k for some sequence {c;}. Thus,

1f z0010,1)

We also have

1
o = /0 F(2)8? ()

SO

2" —1

=X«
k=0

> 2292 a - q) — k)|

o0
qEL

< 2n/2||{0k}“l°°(Z)H Yl — q)|Hoo

qQEL
< C2"?|{ei e (z)
< C2"?|{ci ez

qgl/p’

g (T)dz,

~ 1// 1 ~ l/p
el < 1asl oy ([ 17 @PYnatallas)
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Hence,

2" —1 2" —1

1 ~
Z el? < Z sl / (@) P|du ()| de

oy e S e - o) e

qEZ

IN

IN

1
é(gn/p’gn/2p’2n/2p)p/ |f(2)[P da.
= é(2n/p2in/2) “f“Lp 0,1)

Thus,
1flloeony < C27P[2%227 P {ci Ml zy] < C2P(If | Loios

and we are done. [}

We have the following result

Theorem 3.15. Let mg be a finite low-pass filter with associated wavelet packet system {wy,}.
Let m@ = |myg| with associated periodic wavelet packet system {w@bs}. Suppose mq only van-

ishes on (2Z + 1)m and suppose there is an r > 1 such that

[[2n—1][oc[[wan—1]loc = CT".

Then there is a py > 2 such that for p > po, {webs} fails to be a Schauder basis for LP[0,1)

since

HU’%SAHLP[0,1)||w§331]|Lp,[0’1) oo o

Proof. Fix 2 < p < co. By the proof of Theorem 3.8 there is an N > 1 such that

ngEiN 1||Lp [0,1) — H Z’UA)S‘ES 1 QLN)eZﬂ'ikx
keZ

L' jo,1)’

so by the Hausdorff-Young inequality

—~——

~abs
w3 10,1y > CI{WEE1 (B + 25 ellenz)
By Theorem 2.19 we have
{057 1 (35 + 55 ) Y llenz) = lldan 1 [lp,
and using Bernstein’s inequality (note, w,, is band-limited), we get

—~——

S el I
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Also,

12010 < [{abzn -1 (27K) eller (z) = 3R 4 ]loo,

since @32 | is a modulation of a nonnegative function. Hence, using Lemma 3.14,

—~

10325 ] ojo,0) [088% 41 0.y > C27"Plaban 1 |oo B2 oo

—_~

e~

> C27™P|[ign _1 || oo ||w2n—1 ||

> C27™P||ton 1 ||| wan—1 |l
> C27P|[adbgn _i || o |[won—n _y e (®)s

but

2P by oo a1 () 22 00

for p large and we are done. |

An immediate corollary of the above result is
Corollary 3.16. Theorem 3.15 applies to the filters listed in Tables 2.1, 2.2, and 2.5.

Proof. Same as for Corollary 2.47. |

3.5 Periodic HNWPs With Near Perfect Frequency Localiza-

tion

The Shannon wavelet packets are not contained in L'(R) so one has to be careful trying to
periodize the functions. We can avoid this problem by viewing the Shannon filter as the limit
of a sequence of Meyer filters. For Meyer filters, N. Hess-Nielsen observed that periodic wavelet
packets in frequency ordering are just shifted sine and cosines at the low frequencies. More

precisely, for n € N we use the binary expansion 2n = > ,° 02" to define a sequence {x,} by

o0
K, = Z ler — eoq 2771
=0

Then the result is

Theorem 3.17 ([22]). Choose ¢ such that 7/6 > ¢ >0, and let N € N be such that e <27V,
For my a Meyer filter with my(§) = 1 for £ € [-5 + =%, 5 — —=] we consider the periodized

T—e? 2 T—€

wavelet packets {wy }y in frequency order generated using mo and the associated high-pass filter.

They fulfill

Wan (z) = \/§cos[27m(x — Kn)]

Wop—1(x) = \/§sin[27m(x — Kn)l,
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for each n, 0 <n < 2N-1,

The periodized version of the Shannon wavelet packet system should correspond to the limit

of the above results as we let € — 0. This consideration leads us to the following definition:

Definition 3.18 (Periodic Shannon Wavelet Packets). We define the periodic Shannon
wavelet packets {3;} (in frequency order) by So =1 and for n € N:
Son(z) = V2 cos[2mn(z — ky)]
527;_/1(36) = V2sin[2mn(z — k).

This system has all the useful properties one can hope for:

Theorem 3.19. The system {Sp}, is an orthonormal basis for L2[0,1) and a Schauder basis
for LP[0,1), 1 < p < 0.

Proof. The L? result follows from the fact that any finite subsystem of {gn}n is a subset of
the orthonormal basis considered in Theorem 3.17 for sufficiently small €. To get the LP result
it suffices to notice that for any sequence (J;)rez C R, {€?™#(=0%)}, is a Schauder basis for

LP[0,1), which follows easily by calculating the associated partial sums

Z (f, e—27rik:6k 627rik->627rik(ac—6k) _ Z 627rik6k (f, 627Tik'>6—27rik5k e?m’kx

[k|<N k|<N
_ Z (f eZm'k-)eZﬂ'ikx
- ? 7
[k|<N
where we have used that the coefficient functional of e2™(* =) is just e2™(# ) gince {27k (@—%)}
is an orthonormal system in L2[0, 1). [ |

3.5.1 Periodic Shannon Wavelets

Our goal in this section is to construct periodic HNWPs that are equivalent in LP[0,1) to small
perturbations of the periodic Shannon wavelet packets. To get such results we need some results
on the periodic Shannon wavelets. The Shannon wavelet is not in L'(R) so it does not really
make sense to try to periodize it. However, if we view the Shannon filter as the limit of a
sequence of Meyer filters, we obtain the following natural definition of the periodized Shannon

system

Definition 3.20 (Periodic Shannon Wavelets). Let ¥y = 1. For n = 27 + k0 < k<
27, J >0, we define 33, by
S (z) = fr(z—277k),
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where

2J
frlz) =277 37 be) [ePit/2TT g2t om2mit/2T 2wt
=271
and

1/V2, if € € {27};>0,

1, otherwise.

b(e) =

We call {3,}52, the family of periodic Shannon wavelets.
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Figure 3.1: The function f3(- — 1/2). Figure 3.2: The function f4(- — 1/2).
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Figure 3.3: The function f5(- —1/2). Figure 3.4: The function fg(- — 1/2).

Since any finite subset of {£,},>0 is a subsystem of a periodized Meyer wavelet system
(the Meyer wavelet needed depends on the subset of {¥,},>0, of course), it follows that the
system is indeed an orthonormal basis for L2[0, 1). First, let us show that the periodic Shannon

wavelets are equivalent to the Haar system in LP[0,1). We will need the following lemma by P.
Wojtaszczyk,
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Lemma 3.21 ([48]). Let f be a trigonometric polynomial of degree m. Then there exists a
constant C > 0 such that

Mf(z)>C sup [f(8)],
jt—al<m/n

where M 1is the classical Hardy-Littlewood mazimal operator,
to get the following Theorem. The proof is in the spirit of Wojtaszczyk’s work [48].

Theorem 3.22. The periodic Shannon wavelets are equivalent to the (periodic) Haar wavelets
in LP[0,1], 1 < p < o0.

Proof. First, we have to introduce and analyze some auxiliary functions. For n = 27 +
k, 0 <k <2’ we define

271
O, (z) = 9~ (/=1)/2 Z exp {2m's <33 _k —;}/2> }

s=2J—1

Note that

27-1-1
€—2J—12qu)n($) — o milk+1/2)9—(J=1)/2 exp {27ris <ZE _k —;}/2) } (3.9)
=0

S

In particular, {®2, },>0 and {®2,_1 }n>1 are both orthonormal systems, since each of the blocks

{@2n}2132n<21+1 and {¢2n—1}2132n_1<21+1

is a unitary image of the orthonormal system

2]7171 2]7171

{2(11)/2 Z e27ris(xfk/2‘]’1) }
s=0

Moreover, it is easy to check that

k=0

2m'nx}2‘7*1—1

Span{%n}ogzmw = Span{@2n—1}0§2n—1<21 = span{e n=0

Let {a}r>0 C C and define

flz)=e 272 N o)

27 <2< 27 +1
2 k 1
— 9= (J=1)/2,—in/2 Z a21+2k{ exp {27r7l3 <x By W) }} (3.10)
0<2k<27 5=0

In particular,

|f(21%1 + 21%” = %2J/2|a21+2£|,
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since
27711

(&
=0

It follows form Lemma 3.21 and (3.10) that

2mi(f—k)s/27 1 _ 21715£’k‘

M Y wta)020 ¥l @l 61

27 <20<2J+1 27 <20<2J+1

Hence, by using the Littlewood-Paley theorem and the Fefferman-Stein inequality for vector

valued maximal functions,

oo (o)
D am®on|| =|lacPo+ Y Y. an®y
n=0 P J=02J <20<27+1 p
1 o0 2\ p/2 1/p
> </ <|a0@0|2+z > au®y > div)
0 J=0 27 <2027 +1
1 00 2\ p/2 1/p
> Cp(/ <|ao|2 +Z M< Z a%@%) > dﬂﬁ) :
0 J=0 27 <20<2T+1

and by (3.11),

1 ) 2\ p/2 1/p
ch( / (|ao|2+2( T |a2é|[|h2é|+|h2z+1|]> ) dx)
0 J=0

27 <20<2J+1

> G,

o.¢]
> aon[hon + hanii]
1=0

(e.0)
Z aonhop
=0

where we have used the unconditionality of the Haar system (in particular, the projection onto

p

> G,

9
p

the even numbered Haar functions is bounded on LP[0,1), 1 < p < 0o). A similar proof shows

that
o¢] o @]
> agn-1Pan > aom-1hon-1
n=1

n=1
Actually, it is the opposite inequalities we really need. However, since span{®s, },>o is dense

> G,
p

p
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in H?0,1), for f = a2, P2, and € > 0 there is a g = ) bop, Poy, with ||g||4 < 1+ € such that

“f“p —e< |<Z a2n(1)2n7 Z b2n(1)2n>|
= |<Z CLthQn, Z b2nh2n>|
< H Z aonhop Z banhan
p q

< CH Za2nh2n ZbZn@Zn

p q

Since ¢ was arbitrary, we have

H Z a2y ®op|| <C Z aophay

)
p

and similarly,

H Z a1 Pont1|| <C Z a2n+1hont1

P P
Finally, we can prove the theorem. Let R denote the Riesz projection, i.e. the projection onto

{e?mine}, ~o. Then for any finite sequence {ax}r>o C C we have

o0 o0 o0
Zanﬁn < ZanREn + Zan(l —R)X,
n=0 p n=0 p n=0 p
0 0
< Z aonR¥o, || + Z aop—1RYon_1
n=0 p n=1 P
o0 o0
+ 1D a1 =R)Dan|| + | D asm—1(1=R)Tons (3.12)
n=0 p n=1 p

Let P : LP[0,1) — LP[0,1) denote the bounded projection! onto the frequencies {62"i2jx}j20.

We have, using Khintchine’s inequality for lacunary Fourier series (see [45, 1.B.8]),

<
P

o
> agn PRy,
n=0

<o

'The operator P is bounded since for 2 < p < oo,

i2ig g
Cyje Cyjie

i>0 i>0

00
Z a2n(1 - P)REQn
n=0

o0
Z aonRYop +
n=0 p

p

o0
Y a2, PR,

n=0

+
2

00
Z a2n(1 - P)REQn
n=0

)

ikx
Cr€

kEZ

<C

L2[0,1)

<C

L2]0,1)

<C

r[0,1)

ikx
Cré

kez

b
LP[0,1)

where we have used Khintchine’s inequelity for lacunary Fourier series. The case 1 < p < 2 follows by duality.
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A direct calculation shows that

— —im w2 g
p< Z a2J+2£R22J+2£>=2 (J+1)/2{<6 /2 Z a21+2£>62 2

0<20<27 0<20<27
+ (e—m Z a21+2g> 627ri21x},
0<20<27
whereas,
P( Z a21+2éq>2J+2£> — 2—(J—1)/2 (e—iﬂ'/Q Z a21+2g> 627'('2.2‘]711;-
0<20<27 0<20<27
Thus,
o0 (o)
D a9 PR, || < |1 090 PBon||
n=0 2 n=0 2
and we get
o o0 o0
> amREan|| < 0( D PPoy|| + || Y asn(l — P)RTs, >
n=0 p n=0 2 n=0 P
o0 (0.0
< O( > a3 PPoy + Y az(1 — P)YREg, >
n=0 n=0 p
oo (o)
= O( > POy + Y as(l— P)®oy )
n=0 n=0 p
(o)
=C| > ao®on
n=0 p
o
< C| > aznhan
n=0 p
Similarly, we obtain
(o) o0
ZGQn—1R22n—1 <C Z az2n—1hon—1
n=1 p n=1 p

The remaining two terms in (3.12) can easily be estimated by assuming (w.l.o.g., of course)
that {ax} C R and taking complex conjugates of the above estimates (note, the coefficients at

negative frequencies of ¥, are just the conjugate of the coefficients at positive frequencies). We

<of <o
p p

conclude that

00
D> an%n
n=0

)

p

00 00 1)
5 aanhon| + 5 a2p—1hop—1 E anhy
n=0 p n=1 n=0

80



where we have used that the projection onto the even numbered Haar functions is bounded on
LP[0,1). To obtain the opposite inequality, we let € > 0 and let f = > a,h,. The Haar system
is dense in L?[0,1] so there is a function g = ) b, hy, € span(hy,) with [|g||; < 1+ ¢ such that

Hf”p — £ S |<Z anhnazbnhnH
< H > anSal| D baZn
p

< C’H Zanzn Z bnhn
p
Zanﬂn

where we have used the orthonormality of the system X,,. Since € was arbitrary we have

H Zanhn < C’H Zanﬂn
p

and we are done. [}

q

q

<C(l1+¢)

)
p

)

p

The following Theorem is the periodic analog to Theorem 2.10. The proof is new, but the
result is due to Meyer ([28])

Theorem 3.23. Let {VU,}, be a periodic wavelet system associated with a wavelet 1 satisfying
|p(z)| < C(1+ |z|) 275, Then {U,}, is equivalent to the (periodic) Haar wavelets in LP[0,1].

Proof. By duality, it suffices to prove that

o0 o0
Z an¥Uyull >C Z anhny,
n=0 P n=0 P
We have, by the Fefferman-Stein inequality,
00 00 2/+1_1
Zan\yn = |lag¥y + Z ( Z ak\I/k>
n=0 p J=0 k=2J p
1 0o (2711 2\ p/2 1/p
> C(/ (|a0|2 + Z Z ar Uy > dl‘)
0 J=01 =27
1 o) 27+l 1 2\ p/2 1/p
> C(/ (|a0|2 + Z M( Z ak\I/k> > d;C)
0 J=0 k=27
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It follows form [46, p. 208] that for n = 27 + Fk,
|, (z)| < C272(1 + 27 |& — /27 )12, (3.13)

Hence, for € [k277, (k +1)277) (see [39, pp. 62-63]),

27+l

Ianl=‘/01< > ae%(?J))Wdy‘SC?_J/QM(

(=27

|

> ak‘l’k>($),

k=27

where we have used the estimate (3.13), which shows that 27/2|¥,,| is an approximation of the
identity centered at k27. Thus

2J+171 2-]+1,1
M( T m) >0 S Jallhl,
k=27 k=27
and we have
0 1 oo 127t —1 2\ p/2 1/p
Zan\I/n 20(/ (|a0|2+z Z |ar| A ) dx)
n=0 p 0 s=0 k:2J
o0
>C Zanhn
n=0 p

The following corollary is immediate

Corollary 3.24. Let {U,}, be a periodic wavelet packet system associated with a wavelet 1)
satisfying [(x)| < C(1+ |z|)"275. Then {U,}, is equivalent to the periodic Shannon wavelets
in LP[0,1], 1 < p < oo.

We let {wy,}, be a HNWP system for which |wy(z)| < C(1+ |z|)~27¢, and let {w, }, be the
corresponding periodic system. For 27 < n < 274! write

2J+1

’[En(m) = Z Cn,s\ys(w)a

s=2J
where ¥, is the corresponding periodic wavelet. Define a new system {w; } by

2J+1

@g(az) = Z Cn,s 2 (T),

s=2J

where Y is the periodic Shannon wavelets. Then we have the following result
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Corollary 3.25. The systems {wy }n and {w }, are equivalent in LP[0,1), 1 < p < oo, in the

sense that there exists an isomorphism @Q on LP[0,1) such that
Q, = ..

Proof. Take @ to be the isomorphism from Corollary 3.24 defined by Q¥,, = X,. |

Remark. The significance of the previous Corollary is that when dealing with periodic HNWPs
{Wp}, in LP[0,1), we may assume that the wavelet 1) = w; is a Meyer wavelet )™ with
arbitrarily good frequency localization, i.e. () = 1 for |[¢| € (7 + 0,2m — ) for a small
number §. To see this, let {{172/[ ’5}n be the periodic HNWP system obtained using the same
filters that generated {w, }, but with ¢»/M* as the wavelet. From the previous discussion of the
periodic Meyer wavelets we see that by periodizing w;.\j[k"; we get exactly E; for n < N(§), where
N(6) — oo as § — 0. Hence, wy = @M for 4 < N, and @ can be mapped onto w, by the

isomorphism of Corollary 3.25.

3.5.2 Perturbation of Periodic Shannon Wavelet Packets

We need the following perturbation theorem by Krein and Liusternik (see [49])

Theorem 3.26. Let {z,} be a Schauder basis for a Banach space X and let {f,} be the
associated sequence of coefficient functionals. If {yn} is a sequence of vectors in X with dense

linear span and if

00
Z Hl'n _ynHX ) an”X* <00

n=1

then {yn} is a Schauder basis for X equivalent to {z,}.
to prove our main theorem on periodic HNWPs;

Theorem 3.27. Let {d,}>2, C 2N be such that d, > Cnd™log(n+1) for some constant C' > 0.
Let {wy }n, be a periodic HNWP system (in frequency order) given by the filters {mg}n>11<q<n,
where
dn
m(€) = m{™(€), ¢=1,2,... ,n,

is the Daubechies filter of length dy,. Suppose |wi(z)| < C(1 + |z|)"27¢ for some e > 0. Then
{Wn}n is a Schauder basis for LP[0,1), 1 < p < oo.

Proof. By the remark at the end of the previous section, we may assume that wy is a Meyer

wavelet with arbitrarily good frequency localization. We note that since {wy, },, is orthonormal
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in L2[0,1), a simple duality argument will give us the result for 2 < p < oo if we can prove it
for 1 <p < 2. Fix 1 < p < 2. Define the phase functions 7, : R — [0,27) by

n —iNn dn
m™ ()] = e mig™ (©).
Define a family of low-pass filters by
m(g) = O

where méw 9 s a Meyer filter with localization 8. Take ™+ as the wavelet and consider the
corresponding periodic HNWPs {{E%J}n. For fixed n, there is a &, > 0 such that 0 < 8,8 < §,
implies that oM 0 — ! 9 Tet wM denote this limit function. Tt follows from Theorem 3.17 and
the proof of Theorem 3.19 that {w 12° , is a Schauder basis for LP[0,1), 1 < p < oo, consisting
of shifted sines and cosines (more precisely, W) is a shifted version of §n) The property of
this new basis we need, is that the Fourier coefficients of w} have the same phase (but not the
same length) as the the Fourier coefficients of w,. We want to apply the perturbation result

(Theorem 3.26), so we need to show that
o o0
D M — @ N - g llg = D Nl — @yl < oo
n=0 n=0
However, by Holder’s inequality
o0 oo
~ ~ N ~ ~ N
Z ||’U)n - wy ||p < Z ||wn - Wn “27
n=0 n=0

so it suffices to estimate ||w, — WM |l2. To ensure that
oo
>l = @l < o0 (3.14)
n=0

we will show that for 27 < n < 271,
@, — DM e < €277 T Hog(J) 2,

with C' a constant independent of J.

The Fourier series for {E,];/[ is particularly simple and contains only two non-zero terms, equal
to e @271/2 where & € R depends on the phase of the Daubechies filters used to generate
{Wn}n. We want to estimate the corresponding two most significant coefficients in the Fourier

series for w,. We have, for 27 <n < 27+,

W () =Y 1 (2k) €2 ™FT
kEZ
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and we can choose w; = 1M+ to be a Meyer wavelet with sufficiently good frequency localization
so this reduces to the following trigonometric polynomial
Wn(z)= Y n(2mk)e?™R
27 1<k|<27
Recall that
n (€) = m{ (€/2m{57) (€/4) - -m{ED (€ /270 (€/27),
where G(n) = Zj;rll €727~ is the binary expansion of of the Gray-code permutation of n. Let
k, be the positive index corresponding to the significant coefficient of w. We deduce from
Theorem 3.17 that

m{) (2nky, /2)m) (2nky, /4) - - - M) 21k, /27 )p M (27, /27

has exactly one factor equal to 27'/2 in absolute value, namely the factor with argument 27%27k,,
satisfying
2rk, T
25 € 5 + 27TZ

The arguments of the remaining factors are at least a distance of 2!~/ from the set /2 +277Z.
Moreover, Theorem 3.17 shows that the arguments of the remaining J factors are situated
where the respective m.’s are “big”, i.e. in the set [—7/2, /2] for the low-pass filters appearing
in the product and in the set [—m, —7/2] U [r/2, 7] for the high-pass filters appearing in the
product.

Notice that, by construction, the Fourier coefficients of w, and w) have the same phase.
Also, the Fourier series of w contains only two non-zero terms and w,, is normalized in L?[0, 1).
From this we see that to show ||w, — @M |s < C277J 1 log(J)72, for 27 < n < 27+1 it suffices
to verify that

|m£:?) (QWkn/Q)mggJ)(Qﬂkn/‘L) T ng)(27rkn/2j)1/;M’5(27rkn/2J)| > 2~ 1/2 <1 - ﬁm)a
(3.15)
for some constant C independent of J. The d;’s have already been chosen, so we will work

our way back to see that everything works out. We now consider (3.15) as an inequality in
dy = N(J). Hence, (3.15) will be satisfied if

(N() - c_\"
2-2" > |1l - ——— . 3.16
w2 =2 ) > (1= ) (3.16)
By the CQF conditions, (3.16) is equivalent to
2/7
(N (- jg 4 ol T 2 < 1 (1 ¢ ) _
s (/2 + I < 27 log?(.J)

85



From lemma 2.55 we have
N (w2 4 21T m)| < [ cos(2 ) [N,

which gives us an explicit way to pick a sequence N(J) that works. We put

2/
cos@ 0 <1 (1O
27 Jlog®(J)

A simple estimate shows that

C 2 C
') Sorroa
27 Jlog”(J) 27 Jlog®(J)
Hence,
2(N(J) = 1)logcos(2' ™7 m) < C — (J 4 log(J) + 2loglog(J))
Using
1
log cos(z) = —51‘2 +0(z"), asz—0,

in (3.17), we see that choosing
N(J) > CJ2* log(J)

for any C' > 0 will work. This is exactly our hypothesis about the d;’s.

(3.17)

Remark. It follows from the above estimates that the factor log(n + 1) in the hypothesis

about the sequence {d,} can be replaced by «, with {«a,} any positive increasing sequence

with o, — oo.
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Chapter 4

Modified Hilbert Transforms

The classical Hilbert transform defined on L2[0,1) is given by
H (e?™%) = —jsgn(n) ™7, (4.1)

and it is well known that H extends to a bounded operator on LP[0,1). Note that an equiv-
alent definition of H is given by requiring that H(1) = 0, H(cos(2mnz)) = sin(27nzx), and
H(sin(2mnz)) = — cos(2mnz) for n > 1. We emulate this last definition, using certain Walsh
type wavelet packets in place of the trigonometric system, to get a family of transforms bounded
on LP[0,1) for each 1 < p < oc.

4.1 A Modified Hilbert Transform for the Walsh System

Guided by (4.1), we want to define a modified Hilbert transform for the Walsh system {W,,}°° .
First, we define the binary operator + : Ny x Ny — Ny by

oo
m4n = Z lm; — ni|2°,
i=0
where m = Y"2° m;2¢ and n = Y% n;2%, and define the notion of Zy-linearity

Definition 4.1. Let T : Ny — Ny be a permutation. T is called Zo-linear if T(m + n) =
T(m) +T(n).

The most important example if such an operator is given by the Gray-code permutation:

Example 4.2. One important example of such a map is the Gray-code permutation G : Ny —
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No, defined by G(n); = n; + nijy1. To see that it is Zo-linear note that

G(n+m); = (n; +my) + (nip1 +mip1)

= (n; +nip1) + (mi + mizq)
= G(n); + G(m);.
We can now define the transformation.

Definition 4.3. Let T' be any Zso-linear permutation of Ny. We define the modified Hilbert
transform Hr by

0, ifn =0,

HT(WT(H)) = Y Wrm-1) if n is even,

~Wrmsr), if nis odd.
Thus, we let cos(2rnz) correspond to Wrap)(z) and sin(27nz) correspond to Wra,—1). It is
obvious that Hr is bounded on L2[0,1) (of norm 1). The Walsh system and the trigonometric
system share a number of properties, however, they are not equivalent bases in LP[0,1) for

p # 2 (see [35]) so Hr is not trivially bounded on LP[0, 1). The main result of the next section
is that Hp can be extended to a bounded operator on LP[0,1) for 1 < p < oo.

4.1.1 Boundedness of the Operator H

The following Lemma shows that there is an important metric relationship between the Walsh

systems {W,,(z)}72q and {Wr,)(z)};, for T any Zy-linear map.

Lemma 4.4 ([35]). Let T : Ny — Ny be a Za-linear permutation. Then there exist measure
preserving mappings M, M :[0,1) — [0,1) such that

Wy (z) = Wn(M(z)),
Wi (z) = Wy (M(z)).

We use Lemma 4.4 to prove the following result.

Lemma 4.5. Let T : Ny — Ny be a Za-linear permutation. Then {Wy}32q and {Wremytno
are equivalent Schauder bases for LP[0,1), 1 < p < oo.
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Proof. Let f = Zﬁ;o anWhp, and f = Zﬁ;o anWr(n)- Then, for 1 < p < oo,
N

1
1= [ | S abito] do

n=0

1, N »
= / Z aan(M(:v))‘ dz
0 n=0

1, N »
=/ ZanWT(n)(:ﬁ)‘ dz
0 "n=0
= [If15-

It follows that {W;,}72, and {Wr(,)}n2, are equivalent systems on LP[0,1). Since {Wy};% is
a Schauder basis for LP[0, 1), the Lemma follows. [ |

We also need the following result:

Lemma 4.6 ([35]). The operators WE) : L2[0,1) — L?[0,1), defined by
WEW, = Wi,

where we let W_1 = 0, extend to bounded operators on LP[0,1) for 1 < p < oo.

Lemma 4.5 shows that there is an isomorphism on LP[0,1), 1 < p < oo, mapping W, onto
Wr(n). Using this result, Lemma 4.6, and the next Lemma, we can decompose Hr into a sum

of bounded operators.

Lemma 4.7. Let P: L?[0,1) — L?[0,1) be the operator defined by

2N N
P{ Z anWT(n)} = Z aznWr(an)-
n=0 n=0

Then P extends to a bounded operator on LP[0,1), 1 < p < oo.

Proof. First we prove that P extends to a bounded operator on L2* [0,1) for k=1,2,... . Let
f= ZTJLO anWr(n) be a Walsh polynomial with real coefficients. Then

N N N
2k __ . .
FE=00 D aiaiy e aig WGy Weg) - Wry,)
11=0142=0 19k=0
N N N
=YD iy Qi WG i i)
11=01i2=0 19k=0
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Hence,

N N N 1
AR =D > ailaz'?"'aizk/o Wiy Ligdo i) (T) d.

11=0142=0 12k=0
Note that )
/ WT(il—i—iz—i—---—i-igk)(x) dx 75 0 < T(’il + 19 +---4 'izk) =0,
0

and that T(11+22++22k) = 0 if and only if i1 FigF--Figp =0 .Buti;F+igt---di9, =0

only if the number of odd indices in the set {i1,42,...79;} is even. Let

1 if n is even

c(n) = ,

—1 ifnisodd

and let f = ETJ:[:O ¢(n)anWr(n). The above argument shows that if i) 4 iz - + iz = 0 then
Qi) Gy -+~ Ay, = C(01) a4, €(52) Gy - - - (2 ) Qi -

We conclude that f and f have the same L?#[0,1)-norm. Hence,

1P fllok = 517+ Flas < 1l

The family {Wr,)}52, is a Schauder basis for L?%[0,1) so it follows that P extends to a
bounded operator on L?¢[0,1). Using the Riesz-Thorin interpolation theorem, we conclude
that P extends to a bounded operator on LP[0,1) for 2 < p < oo. A simple duality argument
shows that P is also bounded on LP[0,1) for 1 < p < 2. |

We are ready to prove the main result.

Theorem 4.8. Let T : Ny — Ny be a Zo-linear permutation. Then the operator Ho : L? [0,1) —
L?[0,1) extends to a bounded operator on LP[0,1) for 1 < p < oo.

Proof. It follows from Lemma 4.6 that there exists an isomorphism, K, on LP[0, 1) such that
KWy, = Wr(,). We have,

Hr = KW K™'Pr — KW K=Y(I — Pr),

a composition of bounded operators on LP[0,1) for 1 < p < oo. |
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4.1.2 Walsh Exponentials

An important fact about the trigonometric system is that it is a Schauder basis for LP[0, 1), 1 <

p < oo, and we have

lim Z f(n)627rinx — f,

for every f € LP[0,1), with convergence in LP[0, 1)-norm. A closely related property is that the

Riesz projection, given by

R{ f: f(n)ezmm} Z f e2mine.

n=-—00
is bounded on LP[0,1). We want to emulate the exponential system using Walsh functions.

One way to do that is to define a set of Walsh exponentials by the following.

Definition 4.9. Let T be any Zo-linear permutation of Ny. Then we let eq(z) = 1 and define
en () \[ {Wrep (@) +isgn(n) Wy —n(z)},  neZ—{0}.

It is immediate that {e,}nec7 is an orthonormal basis for L2[0,1). Moreover, the Walsh expo-

nentials and {e?™"®}, <7 share the following property.

Theorem 4.10. The system {ey, }nez is a Schauder basis for LP[0,1), 1 < p < 0o, in the sense
that
lim Y (fien)en=f (4.2)

M ,N—00
—M<n<N

for all f € LP[0,1), 1 < p < oo, with convergence in LP[0,1)-norm.

Proof. Clearly, {ey, }nez is dense in LP[0, 1) so it suffices to prove that the partial sum operators
S_mn(f), defined by

S un(f)= D, (fren)en,

—M<n<N
are uniformly bounded on each LP[0,1). Let f = >20% j a, Wi,y € LP[0,1). Note that (f,1) =
ap, and

(Fren) = 5 {apn —isgn(m) azopi}. neZ— (o, (43)

We have
S un(f)=D, (frien)en

—M<n<N

= Z (f,en)en + (f, 1)1+ Z (f,en)en
—M<n<0 0<n<N

=T+ IT+1I1I.
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Clearly, |11, <|[fllp- Let SN(f) = > pcn<n @nWr(n) and let K be defined as in Theorem 4.8,
P be defined as in Lemma 4.7, and W*) be defined as in Lemma, 4.6. Then, using (4.3) and
Definition 4.9,

var= ). {%wWT(zw) — 1agin|Wr(ajn-1) + 1021 -1 Wr(2jn|)
—M<n<0

+ a’2|n\71WT(2\n|fl)}
= [PSy — iKWK PSy + iKW KT — P)Sy + (I — P)Su](f),

where all the operators inside the brackets are bounded on LP[0,1). The same argument can
be used to estimate 17, and (4.2) follows. [ |

An easy corollary of the proof of Theorem 4.10 is the following.
Corollary 4.11. The Riesz-projection, defined for f = ZT]:[:_M(f, en)én by

N N
'R{ Z (f,en)en} = Z(faen)ena

n=—M n=0

extends to a bounded operator on LP[0,1), 1 < p < oo.

Proof. Follows from the estimate of IT and I1] in the proof of Theorem 4.10. |

4.2 Periodic Walsh Type Systems

We now want to extend all of the results to the periodic Walsh type wavelet packets. First
we deal with the shift operator and the projection operator onto the even numbered periodic

Walsh type wavelet packets.

4.2.1 The Shift and Projection Operator

The next lemma shows that the shift operator is bounded for the periodic Walsh type wavelet
packets. We show later in this chapter the such a result may fail for more general periodic

wavelet packets.

Lemma 4.12. Let {wy}, be a wavelet packet system satisfying the hypothesis of Theorem 2.12,
and let {wy,}, be the associated periodic system. Then the shift operators ST, defined by
Si@ = ’Lz;z\i/la

with w—1 =0, are bounded on LP[0,1) for 1 < p < oo.
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Proof. Since {w,}, is a Schauder basis for LP[0,1) it suffices to prove that the family
{S*P,1>°,, with P, as in Theorem 3.4, is a uniformly bounded family of operators on LP[0, 1).
Suppose not. Note that each S*P, is bounded on LP[0,1) (since its kernel is bounded on
[0,1)2). Hence, by the Banach-Steinhaus Theorem, there exists f € LP[0,1) such that

sup ||5ipnf||Lp[0,1) = 00. (4.4)

Let W]%, be the operator defined on LP(R) by

N

Wig = (g, wn(- — B))wpsi (- — k).
n=0

It is easy to check that {W31_, is a uniformly bounded family of operators on LP(R) since
the shift operator is bounded for the Walsh system and we have the equivalence given by (2.2).
Let Cp = sup,, Wil zr[0,1)10[0,1)- By (4.4) we can find N > 1 such that

N
> {f, Wn)int > (2K +2)°Cp| £l Lrjo,1), (4.5)
n=0 Lr[0,1)
with K defined as in Theorem 2.2. We have
K+1 K+1
Z Z {Z/ f(@)wn(z — kl)dfﬂwnil(y kZ)} > (2K + 2)2Cp’|f“LP[O,1)a
ki=—K ko=— LP([O,I),dy)

and proceeding as in the proof of Theorem 3.4 we can find k1 and ko such that

Coll fllze0,1) = Collxo,) fllzew)

N 1 .
< Z/ f(@)wp(z — k1) de w11 (y — k2)

n=0"0 Lr([0,1),dy)

N 1 .
< Z/ f(@)wp(z — k1) doe wpt1(y — ko)

LP(R, dy)
- / [Xto.) (2)F (@) Yo (& — ) o s (y — o) ,
LP(R, dy)

which contradicts the definition of C),. Hence, our assumption that
+
sup ||S PnHLP[O,l)HLP[O,l) =00
n

is wrong and we are done. |

Next we show the the projection onto the even numbered Walsh type wavelet packets is
bounded on LP[0,1) for 1 < p < oco. It is interesting to note that the proof works for any type
of periodic wavelet packets not just the Walsh type.
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Lemma 4.13. Let {w,}, be a wavelet packet system satisfying the hypothesis of Theorem 2.12,
and let {w, }5° be the associated periodic system. Then the projection P onto {wan}5%, is

bounded on LP[0,1) for 1 < p < co.

Proof. Note that for £ > 0 we have

wye(x) =Y g (2mhk)e* kT
kEZ

= Z mo (k)b (k)T ike
kEZ

— Z @4(271'8)627ri(2 s)x

SEZL

and

Wop+1 (ZE) = Z ’LlA)Qg+1 (27Tk)62mkx
keZ

= ma (k)i (k)™
kEZ

== ai((2s + 1)m)e”C T,
SEZ

Thus, wyy is made up entirely of even frequencies and m is made up entirely of odd frequen-
cies. The claim therefore follows from the fact that the projection onto {e?™*?}, o7 is bounded
on LP[0,1) (see the proof of Lemma 3.7). [ |

4.2.2 Boundedness of the Hilbert Transform

We can now generalize all of the results obtained for the Walsh functions to the periodic Walsh
type wavelet packets. The proof of the following is a trivial consequence of the results from the

previous section.

Corollary 4.14. Substitute Wrp(,) by % in Definitions 4.3 and 4.9. Then Theorem 4.8,
Theorem, 4.10, and Corollary 4.11 hold for the system {57?(7)}30:0-

4.3 Failure of the Hilbert Transform

One of the important results needed to prove boundedness of the modified Hilbert Trans-

(+) is bounded on

form for periodic Walsh type wavelet packets is that the shift operator S
LP[0,1), 1 < p < oo. However, as we shall see in this section, the shift operator is not bounded

for general periodic wavelet packet systems. The reason is that the periodic wavelet packets
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are not, in general, uniformly bounded in LP[0, 1).

First we prove the following result about the lacunary subsequence {wan} of the periodic
wavelet packets. The result shows the the subsequence essentially agrees with the Rademacher

functions.

Theorem 4.15. Let {w,}%°, be any periodized wavelet packet system for which w; € C(R)
has compact support, and let {W,,}>2, be the Walsh System. Then the following subsystem are
equivalent in LP[0,1), 1 < p < oo,

{WantnZo < {wan 152
{Waan }olo < {wszn 1oly,
in the sense that there exists an isomorphism @ on LP[0,1) mapping one subsystem to the other.

Proof. Let WE be the periodized smooth Walsh type wavelet packets defined in the proof
of Lemma 2.11 generated using the wavelet w;. It suffices to prove that w, = WE whenever
n € {27}, U{3-2"}2° , (see Corollary 3.24). Note that the Fourier expansion of wy, is is given
by

W () =) 1 (2k) €2 ™FT.
kEZ
In particular,

Win () = Y _ 1y (2k) > ™K
k€EZ

=" mo(km)iy (kr)e* ™k
kEZ

— Z ’(Dn(k"]r)QQka

ke2Z

_ Z wn(27rl)627ril(2z)
leZ

= W (22). (4.6)

So, it suffices to prove that w; = Wl, Wy = WQ, and w3 = W3 Surely, wy = W1 since they are
the periodized version of the same wavelet. It follows from (4.6) that ws = W2 since they have

identical Fourier series. Also, a calculation similar to (4.6) shows that

o Z &((2,{ + 1)7r)82(2k+1)7rix.
keZ

Hence, w3 = Wg, and we are done. |

The above theorem is bad news for shift operator on L0, 1).
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Theorem 4.16. There is a periodized wavelet packet system {wy,}5° for which the shift oper-
ator WE) | defined by W w,, = wn11, fails to be bounded on LP[0,1), p # 2.

Proof. By duality, it suffices to prove the result for W(~). Note that W) maps wy= onto
wan_1. Theorem 4.15 shows that the system {w3n } is uniformly bounded in L?[0,1), 1 < p < oo.
Hence, any system for which sup,, [|wan_1|l, = 0o, p > 2, provides a counterexample since a
bounded operator cannot map a bounded sequence onto an unbounded one. See Theorem 2.38

for such a counterexample. |

We can also use each of the periodic wavelet packet systems associated with one of the filters

from Tables 2.1, 2.2, and 2.3 to get more counterexamples if we limit Theorem 4.16 to large p.

The same type of argument used in Theorem 4.16 can also be used to obtain the following
results, which shows that general periodic wavelet packet systems behave nothing like the Walsh
system in LP[0, 1).

Corollary 4.17. The the systems {w,} and {m} are, in general, not equivalent in LP[0,1), p #
2.

Proof. Note that G(2" — 1) = 2" and use the same argument as in Theorem 4.16. [ |

Corollary 4.18. The modified Hilbert Transform is, in general, not bounded on LP[0,1), p # 2,

for the periodic wavelet packet system in Paley order.

Proof. The modified Hilbert Transform restricted to {wan } is just the shift operator. W
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Appendix A

The Walsh System

This appendix contains some results on the Walsh system that are used in the previous chapters.
All the results are taken from the two monographs [14, 35] that both contain much more about

the Walsh systems than we have included here.

A.1 Definitions and Properties

We need two equivalent definitions of the Walsh system on [0,1). The first one fit into the

wavelet packet scheme
Definition A.1. The Walsh system {W,}°°, is defined recursively on [0,1) by letting Wy =
X[o,1) and
Waon(z) = W, (22) + W, (22 + 1)
Woni1(z) = Wy (2z) — W, (22 + 1).

It is not hard to see that the Walsh system is the basic wavelet packets associated with the
Haar multiresolution analysis. It turns out that the Walsh system is closed under pointwise
multiplication, but this is hard to verify using Definition A.1. An alternative definition of the

Walsh system can be given in terms of the Rademacher functions. Consider the function

1 forze€l0,1/2),

ro(r) =
-1 for z € [1/2,1).

Extend ry to the real line and define r,(z) = r9(2"x). Then the Walsh system can be obtained

by taking all possible finite products of the Rademacher functions. More precisely, for n =
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S0, ni2' € Ny, we define

o0

wn (@) = [[ (i) xq0,1) ()

i=0
To see that the definitions agree, we just have to note that wy = x[o,1) and, using the properties

of the Rademacher functions,

n(22) + wp (22 + 1)
n(22) — wp (22 + 1),

wop () =

Wap+1 (33) =

i.e Wy, = w, for n € Ny. Using the multiplicative definition, it follows easily that the Walsh
system is closed under pointwise multiplication. In fact, define the binary operator + : Ny x
Ng — Ng by

e -
m4n = z:|mZ —n;|2,
1=0

where m = 2% m;2¢ and n = Y% n;2°. Then

Win(2)Wn(z) = Wi in(2). (A1)

Moreover, (A.1) shows that the Walsh functions are characters for the group of all binary

sequences (indexed by Ny) under bitwise addition.

Theorem A.2. Let {Ly,}nen be the Lebesque constants for the Walsh system defined by

Define ng, k €N, by nos = 30 2%, and nos1 = Y.i_ 22T, then for all k € N

1(k
L - =+1).
nk>2<2+>

Proof. See [14, Chapter 2]. |
Theorem A.3. Let )
n—
Dy(z) =) Wil(z)
k=0

Then
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Proof. We prove the result by induction on k. If £ = 0 the the result is trivial (wy =

Suppose the result holds for some k& > 0. Note that, using (A.1),
2k+1_q

D2k+1( ) D2k Z W
n=2k
2k—1
= Dok () + Wor (2 Z Wi
= (1 +7rk(2)) Do (96),
and
(14 rg(z ‘ z€[0,2k) = 2X[0,2—(k+1))(x)-
Thus by induction hypothesis
Dyes (&) = (14 () Dy (a)
= 2X[0,27(k+1))($)2kX[0,2—k)(33)

= 2k+1X[0,2—(k+1))($)-

Lemma A.4. Let f; € L?(R), and define {fn}n > 2 recursively by

fonte(x) = fu(22) + (=1)" fn(20 — 1).
Then for n,J €N, 27 <n < 27+ we have

271

Z ot (s27) 127 — s).

Proof. Proof is by induction on n. First, note that for n = 2,3,

fa(z) = f1(2z) + f1(2z — 1) = Wp(0) f1(2z) + Wo(1/2) f1 (27 — 1),
f3(z) = f1(2z) — f1(2z — 1) = W(0) f1(2z) + W1(1/2) f1 (22 — 1),

and for the inductive step observe that

fQ[IEJ,y"El}Q-I—E( ) f[l&‘J 1-€1]2 (217) ( 1)8f[1&“] 1-€1]2 (21"_]')
2/-1_1

> Wiy e (827 f1 (273 — )
s=0
2711

XJo, 1))-

(=D Y Wi, (27T 27 - 27 ),

s=0
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and using (A.1),

271

- Z W[al—l'--alé}(32_J)f1(2jm - 3)-

s=0

Remark. The matrix H € R’ %27 defined by
Hyj=2""Pw,(27),  ij=0,1,...2" — 1,

is called the Hadamard Transform, and it follows from the previous lemma that the expansion
coefficients of Wavelet packets generated by Haar filters can be expressed in terms of this

transform.
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