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Preface

This doctoral thesis is concerned with certain aspects of m-term nonlinear
approximation with a (possibly redundant) function dictionary. It is based on
twelve selected papers [A-L] (see page 2) produced over a period of six years.

The thesis consists of four parts. The first part deals with nonlinear approx-
imation using dictionaries with minimal assumptions on dictionary structure.
The second part concerns approximation with structured wavelet-type dictio-
naries, where the wavelet structure leads to stronger and more refined results
than for general dictionaries. The third part deals with approximation with
time-frequency frame dictionaries in decomposition-type smoothness spaces.
The final part concerns sparse representation of signals in a finite dimensional
space.

I owe thanks to many friends, collaborators, and colleagues around the world.
Most of all, I would like to thank my close collaborators Rémi Gribonval and
Lasse Borup. I am indebted to my former colleagues in the Department of
Mathematics at the University of South Carolina–Columbia; their approach to
approximation theory significantly influenced this thesis. I would also like to
thank my current colleagues in the Department of Mathematical Sciences at
Aalborg University for providing a friendly and inspiring professional environ-
ment. In particular, Arne Jensen is acknowledged for his encouragement and
constant support since my days as an undergraduate.

Aalborg, September 2007 Morten Nielsen
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Gröchenig about nonlinear approximation with localized frames. J.
Fourier Anal. Appl., 10(4):433–437, 2004.

[H] R. Gribonval and M. Nielsen. Nonlinear approximation with dictio-
naries. I. Direct estimates. J. Fourier Anal. Appl., 10(1):51–71, 2004.

[I] R. Gribonval and M. Nielsen. On approximation with spline gener-
ated framelets. Constr. Approx., 20(2):207–232, 2004.

[J] R. Gribonval and M. Nielsen. Nonlinear approximation with dictio-
naries. II. Inverse estimates. Constr. Approx., 24(2):157–173, 2006.

[K] R. Gribonval and M. Nielsen. Beyond sparsity: recovering structured
representations by l1-minimization and greedy algorithms. Adv. Com-
put. Math. (in press), 2007.

[L] R. Gribonval and M. Nielsen. Highly sparse representations from
dictionaries are unique and independent of the sparseness measure.
Appl. Comput. Harmon. Anal., 22(3):335–355, 2007.

2



Contents

Preface 1

List of papers 2

Chapter 1. Introduction 4

Chapter 2. Some basic notation and results 7

Chapter 3. Approximation with general dictionaries 10
3.1. Sparseness classes 10
3.2. Jackson-type estimates 12
3.3. Bernstein-type estimates 13
3.4. Greedy bases 16

Chapter 4. Approximation with wavelet-type systems 20
4.1. Wavelet frames with smoothness and vanishing moments 22
4.2. Wavelet frames with few vanishing moments 26
4.3. Approximation with wave packets 29

Chapter 5. Approximation with time-frequency frames 31
5.1. Decomposition spaces and sparse time-frequency representations 31
5.2. Case study: α-modulation spaces 35

Chapter 6. Sparse representations 39
6.1. Sparse representations through optimization 39
6.2. Beyond sparsity: structured representations 42

References 46

Dansk resumé 53
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CHAPTER 1

Introduction

The fundamental problem of approximation theory is to resolve a possibly
complicated target function by simpler functions called approximants. By in-
creasing the complexity of the approximants, we can hope to obtain a better
resolution of the target function, and one of the main goals of constructive ap-
proximation theory is to obtain quantitative estimates for the trade-off between
resolution and complexity.

In this thesis we study a specific approximation model. We choose a Ba-
nach space X whose elements are considered target functions, and we form ap-
proximants by taking linear combination of m elements from a fixed countable
system D ⊂ X, called a dictionary. We call such an approximant an m-term ap-
proximant with respect to D, and we use m as a measure of its complexity. The
Banach space norm is used to measure the distance (error) between the target
function and the approximant in question.

We have great freedom in our choice of strategy to construct the m-term ap-
proximants using D. The path we follow here is consider so-called best m-term
approximation. We fix a target function and m ≥ 1. Then we (formally) cre-
ate the approximant by requiring that the m-terms we select give the smallest
possible error among all possible m-term approximants. This approximation
procedure is nonlinear in the sense that the approximants are not given by a lin-
ear operator on the space of target functions. The main theoretical importance
of best m-term approximation is that it provides a benchmark that can be used
to evaluate the quality of any other method (or algorithm) to construct approx-
imants. Another strong argument in favor of this type of approximation is that
the procedure makes sense for any dictionary D, even dictionaries without any
type of structure.

For best m-term approximation, we study the following problem. Given a
dictionary D, we would like to characterize the family of elements Aα ⊂ X
for which the error of the best m-term approximation from D decays at the rate
O(m−α). The approximation class Aα consists of objects that can be compressed
“well” by using relatively few elements from D. From a practical point of view,
we would like to obtain a large approximation class Aα without increasing the
size and complexity of D too much. One important question is what happens
when we go from a non-redundant dictionary, such as a basis, to a redundant
dictionary. Intuitively it is clear that we should be able to gain “something” by
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1. INTRODUCTION 5

using an overcomplete dictionary D compared to, say, an orthonormal bases.
Quantitative estimates of the trade-off between the structure of D and the “size”
of Aα are at the core of the work presented here.

The history of nonlinear approximation is very rich and here we mention
only some of the highlights related to m-term approximation. Motivated by
problems related to integral equations, E. Schmidt [93] was the first to study
m-term approximation with a dictionary. Ismagilov [69] was the first to obtain
error estimates in m-term approximation that showed an advantage over linear
methods. He obtained estimates for best m-term trigonometric approximation
in L∞ for specific functions.

The systematic study of nonlinear approximation was initiated in the 1950’s,
where this area of research took off inspired by problems in spline approxi-
mation (approximation with piecewise polynomials). In particular, the work
of Birman and Solomjak [6] on adaptive spline approximation was influen-
tial. Later Brudnyi [11] and Bergh and Peetre [4] introduced various abstract
smoothness spaces in order to better understand adaptive spline approxima-
tion. A breakthrough came with Petrushev’s [90] characterization of univariate
free knot spline approximation in terms of Besov spaces. Petrushev was thus
the first to explain the advantages of nonlinear approximation in terms of clas-
sical smoothness spaces. The m-term approximation approach was first used
for multivariate splines by Oskolkov [85].

Another highlight came in the 1980’s where wavelet bases and other multi-
scale methods were introduced. Wavelets are especially remarkable since they
provide unconditional bases for many of the smoothness spaces studied in ap-
proximation theory such as Besov and Sobolev spaces. Moreover, wavelets pro-
vided a non-redundant version of the Littewood-Paley decomposition, simpli-
fying the analysis of the operators studied in harmonic analysis, see [25,82]. The
problem of characterizing best m-term approximation in Lp with wavelet bases
was completely settled by DeVore, Jawerth and Popov [33]. Later, Temlyakov
[97] showed that the approximation results with wavelets in Lp can be under-
stood in terms of so-called greedy bases for Lp.

Wavelets have also turned out to be a very efficient tool in signal process-
ing. In particular, they provide an efficient tool for compressing images. The
reason is that the wavelet representation of a natural image is often sparse. Re-
cently the search for more efficient methods to obtain sparse representations of
natural images has shown that new (often redundant) decomposition systems
can produce sparser representations of certain natural images than wavelets.
One important new decomposition system is the curvelet frame introduced by
Candès and Donoho [12]. Sparse representations of signals relative to a redun-
dant dictionary is another topic considered in this thesis.

Let us describe the contents of this thesis in detail. The work presented is
divided into four main categories.
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1. Nonlinear approximation with general dictionaries. Based on the papers [E, G, H,
J], and presented in Chapter 3. We study nonlinear approximation with general
dictionaries in a Banach space. The notion of a sparseness class for a general
dictionary is introduced and Jackson type estimates are obtained for very gen-
eral dictionaries. It is also demonstrated that for some structured redundant
dictionaries it may not be possible to obtain a complete characterization of the
associated approximation classes. In the final part of the chapter, we consider
a class of non-redundant dictionaries, the so-called greedy bases in a Banach
space. For such dictionaries, a complete characterization of the approximation
classes is obtained.

2. Approximation with wavelet-type dictionaries. Based on the papers [A, B, I], and
presented in Chapter 4. The results of Chapter 3 show that it may be impossible
to get characterizations of the approximation classes unless the underlying dic-
tionary is very structured. In Chapter 4, we study wavelet frame dictionaries.
Wavelet frames are (possibly) redundant dictionaries with the same structure
as classical orthonormal wavelet bases. The wavelet structure enables us to ob-
tain much more refined results than in Chapter 3. The main result is a complete
characterization of the approximation classes associated with m-term wavelet
frame approximation in Lp. The result is an extension of the result of DeVore,
Jawerth and Popov [33] to the redundant wavelet frame case.

3. Approximation with time-frequency frames. Based on the papers [C, D], and

presented in Chapter 5. A construction of tight frames for L2(Rd) with flex-
ible time-frequency localization is considered. The frames can be adapted to

form atomic decompositions for a large family of smoothness spaces on Rd, a
class of so-called decomposition spaces. The decomposition space norm can be
completely characterized by a sparseness condition on the frame coefficients.
This leads to natural Jackson-type estimates for m-term approximation. In par-
ticular, we consider approximation with time-frequency frames in so-called α-
modulation spaces. In the univariate case, greedy bases for α-modulation spaces
are constructed and a complete characterization of the approximation classes
associated with m-term approximation is given.

4. Sparse representation of signals. Based on the papers [F, K, L], and presented in
Chapter 6. In this final chapter, we change the point of view slightly and con-
sider a computational problem. Given a finite dimensional space, a redundant
dictionary, and a target function; how do we efficiently compute a sparse rep-
resentation of the target function relative to the dictionary? A sparse represen-
tation can be used to compute an efficient approximation to the target function.
We give several sufficient conditions on the target function to ensure that a cer-
tain polynomial time algorithm will recover the sparsest representation.

Chapter 2 contains some basic notation and some fundamental results on
approximation theory.



CHAPTER 2

Some basic notation and results

Let us introduce some notation that will be used throughout this thesis. Let
X be a Banach space, and let D = {gk}k∈F ⊂ X be a countable collection of
non-zero elements, called a dictionary. The nonlinear manifold of m-term ap-
proximants with respect to D is given by

(2.1) Σm(D) :=

{

∑
k∈Λ

ckgk : gk ∈ D, Λ ⊂ F; |Λ| = m

}

,

where the ck’s are arbitrary scalars in X. The error of best m-term approximation
to f ∈ X is defined as

(2.2) σm( f ,D)X := inf
g∈Σm(D)

‖ f − g‖X.

Often we will use σm( f ,D)X as a theoretical benchmark for approximation with
D. No matter which procedure (or algorithm) that is used to create an m-term
approximant from D, we cannot obtain a smaller approximation error than
σm( f ,D)X . In general, we will be very happy with an algorithm if it produces m-
term approximants with approximation error that is proportional to σm( f ,D)X .
At present, no such algorithm is know for a general dictionary.

To get a more precise classification of the elements in X, we define ‖ f‖Aα
s (D) :=

‖ f‖X + | f |Aα
s (D), where

(2.3) | f |Aα
s (D) :=







( ∞

∑
m=1

[mασm( f ,D)X ]q
1

m

)1/q

, 0 < q < ∞,

supm≥1 mασm( f ,D)X , q = ∞.

Then we define
Aα

s (D) =
{

f ∈ X : ‖ f‖Aα
s (D) < ∞

}
.

The class Aα
q(D, X) is thus basically the set of target functions f that can be

approximated at a given rate O(m−α), 0 < α < ∞, by a linear combination of
m elements from the dictionary. The parameter 0 < q ≤ ∞ is auxiliary and
gives a finer classification of the approximation rate. It turns out that Aα

q(D, X)

7



2. SOME BASIC NOTATION AND RESULTS 8

is indeed a linear subspace of X, and the quantity ‖ · ‖Aα
q (D,X) is a (quasi)norm,

see [35, Chapter 7]. Moreover, Aα
s (D) is continuously embedded1 in X.

With the notation in place, we can precisely state one of the main problems
studied in this thesis:

• Given a dictionary D in X, characterize the approximation class Aα
s (D).

To approach this characterization problem, we need two fundamental estimates
of approximation theory, the so-called Jackson and Bernstein inequalities. Let Y
be a semi-normed space continuously embedded in the Banach space X. Sup-
pose that for r > 0, the following two fundamental inequalities of approxima-
tion theory hold

(Jackson inequality) σm( f ,D)X ≤ Cm−r| f |Y, m = 1, 2, . . . ,(2.4)

(Bernstein inequality) |S|Y ≤ Cmr‖ f‖X , S ∈ Σm(D).(2.5)

The importance of the Jackson and Bernstein estimate is made clear by the fol-
lowing fundamental result by DeVore and Popov, which gives a complete char-
acterization of Aα

q(D). We use (X, Y)θ,q to denote the interpolation space (using

the real interpolation method) between X and Y with parameters (θ, q), see [3].

THEOREM 1 ( [36]). If the Jackson inequality and the Bernstein inequality are both
valid for some r > 0, then for each 0 < γ < r and 0 < q ≤ ∞ the following relation
holds between approximation spaces and interpolation spaces

Aγ
q (D) = (X, Y)γ/r,q,

with equivalent norms.

In many cases it will be possible to characterize (X, Y)γ/r,q in terms of clas-
sical spaces. For example, this will be the case when we study approximation
with wavelet-type systems in Chapter 4, where the approximation spaces are
identified as Besov spaces.

Theorem 1 is actually valid in an even more general setup, see [35] for addi-
tional information. The proof of Theorem 1 is also quite illuminating; it shows
that it makes sense to consider the two inequalities (2.4) and (2.5) separately.
The Jackson inequality alone can be used to derive the following continuous
embedding, which we will refer to as a Jackson embedding,

(2.6) (X, Y)γ/r,q →֒ Aγ
q (D).

Notice that the Jackson inequality gives a “minimal size” estimate of Aγ
q (D); it

must at least as large as (X, Y)γ/r,q. The Bernstein inequality on its own can be
used to derive the Bernstein embedding

(2.7) Aγ
q (D) →֒ (X, Y)γ/r,q.

1We use the symbol →֒ to denote a continuous embedding
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The Bernstein embedding gives a “maximal size” estimate of Aγ
q (D); it cannot

be larger than (X, Y)γ/r,q.
By separating the Jackson and Bernstein estimates we can still derive in-

teresting results in cases where one of the estimates cannot be obtained. We
mention here that the Bernstein inequality, in general, is much more difficult to
derive than the Jackson inequality, and in Chapter 3 we often study the Jackson
embeddings separately.

Another aspect that has to be considered is how to choose the embedded
space Y? If we have no good candidate for Y, then the Jackson/Bernstein ap-
proach is obviously not a possible path forward. In Chapter 4 where we con-
sider wavelet-type approximation, it turns out that we have a good candidate
for Y, namely a suitable Besov space. However, in Chapter 3, we consider the
abstract problem of m-terms approximation with a dictionary. In that case we
have to introduce a suitable abstract space Y that is built using the dictionary.

We conclude this chapter by recalling the definition of the Lorentz (quasi)-
norms for 0 < τ < ∞ and q ∈ (0, ∞]. The Lorentz norms are used in Chapter
3 to build suitable candidates for smoothness/sparseness classes for a general
dictionary. For any scalar sequence {am}m∈N we define

(2.8) ‖{am}∞
m=1‖ℓτ

q
:=







( ∞

∑
m=1

[m1/τa⋆
m]q

m

)1/q

, 0 < q < ∞

supm∈N
m1/τa⋆

m, q = ∞,

where {a⋆
k} denotes a decreasing rearrangement of {|ak|}, i.e., |a⋆

k | ≥ |a⋆
k+1| for

all k ≥ 1. For 1 ≤ q ≤ τ < ∞, ‖ · ‖ℓτ
q

is a norm for the Lorentz space

ℓ
τ
q = {{ck} : ‖{ck}‖ℓτ

q
< ∞}.

It can be verified [35] that for 1 < τ ≤ q, the quasi-norm ‖ · ‖ℓτ
q

can be replaced

by an equivalent norm on ℓτ
q . In such a case we always assume that we use the

norm on ℓτ
q instead of the quantity defined by (2.8). For all values of τ, q, the

Lorentz spaces ℓτ
q are (quasi)normed Banach spaces and satisfy the continuous

embedding ℓ
τ1
q1

→֒ ℓ
τ2
q2

provided that τ1 < τ2 or τ2 = τ1 with q1 ≤ q2. The
standard ℓτ-norm is defined by ‖ · ‖ℓτ

:= ‖ · ‖ℓτ
τ
.



CHAPTER 3

Approximation with general dictionaries

In this chapter, we consider the problem of characterizing approximation
spaces for m-term approximation with a general dictionary in a Banach space.
Depending on the amount of structure of the dictionary, we derive several types
of Jackson embeddings. We begin by studying dictionaries with essentially no
structure, and later we require additional structure to improve the estimates.
The corresponding Bernstein estimates turn out to be harder to obtain, and we
demonstrate that there may not be any such estimate even for nice dictionar-
ies. In the finite dimensional case, we derive a Bernstein estimate for so-called
incoherent dictionaries. The final part of the chapter is concerned with non-
redundant dictionaries that form so-called greedy bases.

The problem of characterizing approximation spaces for m-term approxima-
tion with dictionaries has been considered by a number of authors in various
settings. We mention here that general dictionaries are considered in [12,28–30,
37–39]. Spline dictionaries are studied in [6, 11, 71, 87, 89, 90]. Approximation
with Gabor systems is studied in [67], while wavelet-type systems are treated
in [2, 21, 33, 34, 77, 78, 97]. The history of approximation with dictionaries is dis-
cussed in detail in the articles by DeVore [31] and by Temlyakov [98].

3.1. Sparseness classes

In order to study Jackson-type estimates, we need to introduce a suitable
candidate for the embedded space Y that is needed in the Jackson inequality
(2.4). In the study of nonlinear wavelet approximation in Lp, it is customary to
take Y to be a Besov space, i.e., a classical smoothness space, see [33]. How-
ever, in a general Banach space, the equivalent of a smoothness spaces has to be
defined in terms of the dictionary since no other structure is assumed. The defi-
nition below follows DeVore and Temlyakov [37] and is inspired by the classical
principle that smoothness is often equivalent to sparseness of expansion coeffi-
cients. Thus, we use a sparseness space in place of a classical smoothness space.

A dictionary D = {gk} is in X is called quasi-normalized if infk ‖gk‖X > 0
and supk ‖gk‖X < ∞. For a quasi-normalize dictionary D, we define the sparsity
classes Kτ

q (D, X) as follows. For τ ∈ (0, ∞) and q ∈ (0, ∞] we let Kτ
q (D, X, M)

10



3.1. SPARSENESS CLASSES 11

denote the set

closX

{

f ∈ X, f = ∑
k∈I

ckgk, I ⊂ N, card(I) < ∞, ‖{ck}k≥1‖ℓτ
q
≤ M

}

.

Then we define Kτ
q (D, X) := ∪M>0Kτ

q (D, X, M) with

| f |Kτ
q (D,X) := inf{M, f ∈ Kτ

q (D, X, M)}.

It can be proved that | · |Kτ
q (D,X) is a (semi)-(quasi)norm on Kτ

q (D, X). The defi-

nition of Kτ
q (D, X) in terms of a certain relative closure may seem rather techni-

cal, but the good news is that for many dictionaries there is a much simplified
definition. We need the class of ℓτ

q -hilbertian dictionaries.

DEFINITION 1. A dictionary D is called ℓτ
q -hilbertian if for any sequence c =

{ck}k≥1 ∈ ℓτ
q , the series ∑k≥1 ckgk is convergent in X and

∥
∥
∥
∥ ∑

k≥1

ckgk

∥
∥
∥
∥

X

. ‖c‖
ℓτ

q
.

We notice that the convergence of ∑k ckgk in Definition 1 is necessarily un-
conditional, provided that ℓτ

q is not one of the extremal non-separable spaces

such as ℓ∞. Also notice that any dictionary is ℓτ-hilbertian for 0 < τ ≤ 1.
The hilbertian structure of D makes it possible to get a nice representation

of the sparsity spaces Kτ
q (D). For an arbitrary dictionary D = {gk}, we define

the “reconstruction” operator

T : {ck} 7→ ∑
k

ckgk

on the space ℓ0 of finite sequences c = {ck}. We have the following representa-
tion result, giving a more direct interpretation of Kτ

q (D) as a sparseness class.

THEOREM 2 ( [H]). Assume that D is ℓ
p
1 -hilbertian for some p > 1. Let τ < p

and 1 ≤ q ≤ ∞. For all f ∈ Kτ
q (D), there exists some c ∈ ℓτ

q which realizes the

sparsity norm, i.e., f = Tc and ‖c‖
ℓτ

q
= | f |Kτ

q (D). In case 1 < τ, q < ∞, c = cτ,q( f )

is unique. Consequently

(3.1) | f |Kτ
q (D) = min

c∈ℓτ
q , f =Tc

‖c‖
ℓτ

q
,

and

Kτ
q (D) = Tℓ

τ
q =

{

f ∈ X, ∃c, f = ∑
k

ckgk, ‖c‖ℓτ
q

< ∞

}

is a (quasi)Banach space which is continuously embedded in X.

Let us mention an important application of Theorem 2. Suppose D1 and

D2 are both ℓ
p
1 -hilbertian dictionaries for some p > 1. Let 0 < τ < p and
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1 ≤ q ≤ ∞. Then for D = D1 ∪D2

Kτ
q (D, X) = Kτ

q (D1, X) +Kτ
q (D2, X).

Thus, whenever the individual sparsity spaces Kτ
q (D1) and Kτ

q (D2) do not

coincide, we gain by using the redundant dictionary D = D1 ∪ D2 in the sense
that the joint sparseness class is strictly larger that the individual sparseness
classes. Consider, as a specific example, the case of D1 a nice univariate wavelet
basis and D2 a local Fourier basis (see [23]) in X = L2(R). The individual
sparsity spaces are respectively a Besov space Kτ

τ(D1, X) = Bα
τ,τ(R) and a mod-

ulation space Kτ
τ(D2, X) = Mτ(R), see [67, Theorem 2]. In this particular case,

we have Kτ
τ(D1 ∪D2, X) = Bα

τ,τ(R) + Mτ(R).

3.2. Jackson-type estimates

In this Section we consider two Jackson-Type estimates. The first estimate is
valid for arbitrary quasi-normalized dictionaries. We have the following Jack-
son embedding.

THEOREM 3 ( [H]). For any τ < 1 and q ∈ (0, ∞], there is a constant C = C(τ, q)
such that for D an arbitrary quasi-normalized dictionary in an arbitrary Banach space
X,

Kτ
q (D) →֒ Aα

q(D), with α = 1/τ − 1.

Theorem 3 is not really satisfactory since substantial sparseness is needed
before any useful estimate is obtained. The main problem is that without any
assumptions on the dictionary, we just cover too many cases.

It was noted in [H] that Theorem 3 cannot be extended to the range τ > 1.
In fact, suppose D = {gk} is a normalized dictionary in an arbitrary Banach
space X and assume g ∈ X is an accumulation point of D. There exists an index
sequence {kn}n≥0 such that ‖g − gkn

‖X ≤ 2−n. Note that ‖gk‖X = 1, k ≥ 1,
implies ‖g‖X = 1. For all N ≥ 1

∥
∥
∥
∥

g − 1

N

N

∑
n=1

gkn

∥
∥
∥
∥

X

≤ 1

N

N

∑
n=1

‖g − gkn
‖X ≤ 1

N

N

∑
n=1

2−n ≤ 1

N
.

It follows that |g|Kτ
τ(D) ≤ N1/τ−1 for all N. Hence, for all τ > 1, |g|Kτ

τ(D) = 0.
This clearly implies that we cannot extend Theorem 3 to get a Jackson inequality
with any rate of decay for τ > 1.

The above example also gives an idea of how to assess whether a given dic-
tionary is “good” or “bad”. The “good” dictionaries are the ones without (too
many) aligned elements, while too much alignment (in the extreme case, with
an accumulation point) is not beneficial. We also notice that alignment of the
dictionary elements works against the dictionary being p-hilbertian for p > 1.

There is a much closer connection between the p-hilbertian property and
Jackson-type estimates. The following complete characterization holds true.
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THEOREM 4 ( [H]). Let D a dictionary in a Banach space X, and p > 1. Then
properties (3.2) and (3.3) are equivalent

∀ τ < p, ∀ q, ∀ α < 1/τ − 1/p Kτ
q (D) →֒ Aα

q(D),(3.2)

∀ τ < p D is ℓ
τ
1 − hilbertian.(3.3)

Moreover, for 1 < p < ∞, τ < p, 0 < q ≤ ∞, there is a constant C = C(τ, q, p) such

that for any ℓ
p
1 -hilbertian dictionary D in X,

(3.4) ‖ f‖Aα
q (D) ≤ C| f |Kτ

q (D) with τ = (α + 1/p)−1,

for all f ∈ Kτ
q (D).

Notice that Theorem 4 extends Theorem 3 to the range τ > 1 for hilbertian
dictionaries. In fact, a more general version of Theorem 4 is proved in [H] for
variations on the approximation space Aα

q(D), defined in terms of thresholding

approximation and Chebyshev approximation. We refer to [H] for the details.

3.3. Bernstein-type estimates

We now turn our attention to the problem of obtaining a Bernstein estimate
for a redundant dictionary. We will demonstrate that Bernstein estimates are
much more fragile than Jackson estimates for redundant dictionaries, and con-
sequently the dictionary need to carry a lot of structure to support a Bernstein
estimate.

Bernstein estimates for non-redundant dictionaries have been considered by
several authors. The case of an orthonormal basis in a Hilbert space was stud-
ied by Stechkin [94] and DeVore and Temlyakov [37]. Bernstein estimates for
Lp-approximation with non-redundant wavelet dictionaries were obtained by
DeVore, Jawerth, and Popov in [33], and an extension to approximation in a
general Triebel-Lizorkin space was later obtained by Kyriazis [75].

In a few specific cases, a Bernstein estimate has been derived for redundant
dictionaries. For univariate rational approximation in Lp, a Bernstein estimate
was obtained by Pekarskiı̆ [87]. Petrushev derived a Bernstein estimate for Lp-
approximation with free knot splines [90] in the univariate case. Bernstein es-
timates in Lp for redundant dictionaries based on refinable functions were con-
sidered by DeVore, Jawerth, and Popov in [33] and by Jia [70].

In Chapter 4 we treat the case of dictionaries with wavelet structure based on
a refinable function. For such dictionaries it is also possible to derive Bernstein
estimates.

Localized frames and the Bernstein inequality. Let us consider the Bern-
stein inequality for a class of well structured dictionaries, the so-called localized
frames in a Hilbert space. For a general discussion on frames in a Hilbert space,
we refer to Christensen [17]. Localized frames were introduced by Gröchenig
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[66], and they are basically frames that resemble an orthonormal basis in a cer-
tain sense. In fact, Gröchenig showed that a localized frame can always be writ-
ten as a finite union of Riesz bases [65]. This closeness to orthonormal bases led
Gröchenig to speculate that it should be possible to derive a Bernstein estimate
for localized frames. However, as Theorem 5 below shows, localized frames are
very far from supporting a Bernstein estimate in general.

Let us first introduce some notation. Let ‖ · ‖
Rd be a norm on Rd, and let

K,N ⊂ Rd be two separated countable index sets, in the sense that infk,ℓ∈K,k 6=ℓ ‖k−
ℓ‖

Rd > 0 and likewise for N . Let B = {en}n∈N be a Riesz basis for H and

B̃ = {ẽn}n∈N its dual basis. A frame D = {gk}k∈K in H is polynomially local-
ized w.r.t. B with decay s > 0 if there exists a constant C < ∞ such that

max (|〈gk, en〉|, |〈gk , ẽn〉|) ≤ C (1 + ‖k − n‖
Rd)

−s .

It is exponentially localized w.r.t. B if for some λ > 0 and C < ∞

max (|〈gk, en〉|, |〈gk , ẽn〉|) ≤ C exp (−λ‖k − n‖
Rd) .

An important property of localized frames is the equality with equivalent norms

(3.5) Kτ
q (B) = Kτ

q (B̃) = Kτ
q (D) = Kτ

q (D), q ∈ (0, ∞]

which is valid for d/s < τ < 2 when D is polynomially localized with decay
s > d, and for 0 < τ < 2 when it is exponentially localized, see [L, 66]. It is thus
very easy to estimate the sparseness norm of a given element just by calculating
the Fourier coefficients of the element w.r.t. the orthonormal bases.

The main result of [I] shows that a Bernstein estimate cannot be obtained for
the class of localized frames. We have

THEOREM 5 ( [I]). Let H be an infinite dimensional separable Hilbert space with
an orthonormal basis B. Then there exist a frame F for H such that F is exponentially
localized w.r.t. B, and a sequence {hk}k∈N ⊂ Σ2(F ) such that for all 0 < τ < 2 and
q ∈ (0, ∞],

sup
k

|hk|Kτ
q (F )

‖hk‖
= ∞.

Notice that the Bernstein estimate fails already for two-term expansions, so
such localized frames are indeed very far from supporting any type of Bernstein
estimate.

An interesting consequence of Theorem 5 is that for 0 < α = 1/τ − 1/2,
q ∈ (0, ∞], we have

Aα
q(B) = Kτ

q (B) = Kτ
q (F ) →֒ Aα

q(F ),

where the approximation space Aα
q(F ) is strictly larger than Kτ

q (F ).
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The proof of Theorem 5 is based on a fairly simple idea. The frame F is
defined as a union of B and a very slight perturbation of B. The nearly co-
linear elements in the frame can be used to obtain the wanted estimate. The
same basic idea of using nearly co-linear elements to create “bad” dictionaries
was also used in [E] to construct a non-redundant system in a Hilbert space for
which the Bernstein estimate fails.

Incoherent dictionaries in a finite dimensional space. The example in the
previous section shows that one cannot expect a Bernstein estimate for a redun-
dant dictionary unless the dictionary has a lot of structure. In this section we
discuss a Bernstein estimate for a class of dictionaries in a finite dimensional
space. Of course, in finite dimensions, all norms are equivalent so the impor-
tant aspect of the Bernstein inequality will be that the Bernstein constant only
depends on a certain structure constant of the the dictionary. The structure con-
stant measures the coherence between pairs of elements of the dictionary, i.e., it
will detect if we have aligned elements in the dictionary.

For a general normalized dictionary D = {gk}k∈F in a Hilbert space H (not
necessarily finite dimensional) the coherence is defined as

(3.6) M(D) := sup
k 6=l

|〈gk, gl〉| .

The coherence naturally generalizes the measure of mutual coherence M(B1,B2),
see [42], defined for unions of two orthonormal bases to general dictionaries.
Notice that in general 0 ≤ M(D) ≤ 1 (since we assume the dictionary is nor-
malized). The extreme case are given by an an orthonormal basis B where
M(D) = 0, while any dictionary D containing two aligned elements has coher-
ence M(D) = 1. For a redundant dictionary D containing an orthonormal basis,

it can easily be shown that M(D) ≥ 1/
√

N. We say that a redundant dictionary

D containing an orthonormal basis is perfectly incoherent if M(D) = 1/
√

N. We
have the following Bernstein estimate.

THEOREM 6 ( [J]). Let D be a normalized dictionary in a finite dimensional Hilbert
space H of dimension N, and assume that D contains an orthonormal basis B. For any
0 < τ < 2, the Bernstein inequality for Kτ

τ(D) holds with exponent α = 2(1/τ −
1/2):

| fm|Kτ
τ(D) ≤ Cmα ‖ fm‖H , m ≥ 1, fm ∈ Σm(D),

where

(3.7) C = max
(√

2,
(
2M(D)

)2/τ−1
)

.

Moreover, the exponent α = 2(1/τ − 1/2) is sharp for the class of perfectly incoherent
dictionaries.

The sharpness of Theorem 6 means that among the class of perfectly incoherent
dictionaries, there is a subfamily for which the estimate cannot be improved.
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It does not rule out that some other family of particular perfectly incoherent
dictionaries satisfy an estimate with an improved exponent.

The exponent α = 2(1/τ − 1/2) obtained in Theorem 6 is surprising since
the corresponding exponent for an orthonormal basis is “twice as good”, α =
1/τ − 1/2.

Let us take a closer look at a specific dictionary for which the Bernstein es-
timate cannot be improved. Consider H = CN with N = P2, P ∈ N. Let

D1 := {δn}N−1
n=0 be the Dirac (standard) basis for H and let D2 := {en}N−1

n=0 be the

orthonormal Fourier basis for H. One easily checks that M(D1 ∪D2) = 1/
√

N.
We recall the identity

(3.8)
P−1

∑
k=0

δk·P −
P−1

∑
k=0

ek·P = 0,

which is a consequence of the fact that the “Dirac comb” is invariant under the
discrete Fourier transform. We form the dictionary D = D1 ∪ (D2\{e0}) with

M(D) = 1/
√

N = 1/P. From (3.8) we get

e0 =
P−1

∑
k=0

δk·P −
P−1

∑
k=1

ek·P,

so e0 ∈ Σ2P−1(D). Now consider an arbitrary expansion e0 = ∑
N−1
k=0 ckδk +

∑
N−1
l=1 dlel of e0 in D. By the Hölder inequality we have, with 1 < τ ≤ 2 and

1/τ + 1/τ′ = 1,

1 = |〈e0, e0〉| ≤ ∑
k

|ck||〈δk, e0〉| ≤
(

∑
k

|ck|τ
)1/τ

·
(

∑
k

|〈δk, e0〉|τ
′)1/τ′

≤
(

∑
k

|ck|τ
)1/τ

· N1/τ′ · M(D) =
(

∑
k

|ck|τ
)1/τ

· N1−1/τ · N−1/2

thus |e0|Kτ
τ(D) ≥ N1/τ−1/2 = P2(1/τ−1/2). The argument can easily be modified

to hold for τ = 1. It follows that we have found e0 ∈ Σ2P−1(D) which satisfies

|e0|Kτ
τ(D) ≥ 2−α(2P − 1)α‖e0‖H,

with α = 2(1/τ − 1/2).
The reader can consult [J] for additional Bernstein estimates for dictionaries

in an infinite dimensional Hilbert space built from incoherent finite dimensional
dictionaries.

3.4. Greedy bases

We conclude this chapter by studying a special class of non-redundant dic-
tionaries in a Banach space X. The dictionaries form so-called greedy bases
for X, a notion that turn out to be fruitful in order to generalize known result
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on m-term approximation with orthonormal bases in a Hilbert space. Greedy
bases and several related concepts were introduced in the abstract setting by
Temlyakov and Konyagin [73]. Greedy basis are closely related to properties of
wavelet bases in Lp, see e.g. [97]. Let us introduce some necessary notation.

DEFINITION 2. Let B = {gk}k∈N be a quasi-normed Schauder basis for the Ba-
nach space X with associated coefficient functionals {ck(·)}k∈N . For any f ∈ X and
m ≥ 1, a greedy m-term approximant to f from B is any vector Gm( f ,B, π) :=
∑

m
k=1 c⋆

k gπ(k), where {c⋆
k} = {cπ(k)} is a decreasing rearrangement of {ck( f )}. The

error associated to greedy m-term approximation to f form B is denoted by

(3.9) γm( f ,B, π)X := ‖ f − Gm( f ,B, π)‖X .

In the following, we suppress the permutation π and simply write Gm( f ,B)
and γm( f ,B)X . Any statement on these quantities will be assumed to hold for
all π such that {cπ(k)} is a decreasing rearrangement of {ck( f )}.

Greedy bases and the related notion of a quasi-greedy basis are defined as
follows.

DEFINITION 3. Let B = {gk}k∈N be a quasi-normed Schauder basis for the Ba-
nach space X. We call B a quasi-greedy basis if for each f ∈ X we have γm( f ,B)X →
0 as m → ∞. We call B a greedy basis if there exists a constant C < ∞ such that for
each f ∈ X, we have for all m,

(3.10) γm( f ,B) ≤ Cσm( f )X

Greedy bases and quasi-greedy bases were first introduced by Konyagin and
Temlyakov [73]. The equivalent definition of a quasi-greedy basis given above
is due to Wojtaszczyk [104].

We notice that quasi-greedy bases are exactly the bases for which decreas-
ing rearrangements converge in norm. Greedy bases are even better; the par-
tial sums corresponding to decreasing rearrangement give near-best m-term ap-
proximants.

A very nice characterization of greedy bases is given in [73]. A Schauder
basis for X is a greedy basis if and only if it is unconditional and democratic. By
democratic we mean the following:

DEFINITION 4. A Schauder basis B = {gk}k∈N is democratic if there exists a
constant C < ∞ such that for every two finite sets Λ, Λ′ ⊂ N of same cardinality
|Λ| = |Λ′| we have

∥
∥
∥
∥ ∑

k∈Λ

gk

∥
∥
∥
∥
≤ C

∥
∥
∥
∥ ∑

k∈Λ′
gk

∥
∥
∥
∥

.

Clearly, democracy implies that the basis is quasi-normed by taking |Λ| = 1
in the definition.
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The most important example of a greedy basis is the Lp-normalized Haar

system in Lp((0, 1)d), 1 < p < ∞, see [95, 97]. Greedy bases are clearly quasi-
greedy but the two notions are not equivalent. An example of a conditional
quasi-greedy basis is given in [73]. It turns out that most classical bounded
systems in Lp(0, 1) fail to be quasi-greedy. It was proved by Temlyakov [96]
that the trigonometric system in Lp(0, 1), 1 ≤ p ≤ ∞, p 6= 2, fails to be quasi-
greedy. Independently, and using a different approach, Córdoba and Fernández
[24] proved the same result in the range 1 ≤ p < 2. This negative result for
the trigonometric system was extended to weighted spaces Lp((0, 1); w) by the
author in [84]. The first example of a bounded conditional quasi-greedy basis
in Lp(0, 1), 1 < p < ∞, is given in [83].

Characterization of the approximation spaces. It turns out that the sparse-
ness class Kτ

s (B) defined in Section 3.1 is not quite flexible enough to obtain a
characterization of the approximation classes Aτ

s (B) for a greedy basis B. We
therefore introduce the notion of a generalized sparseness spaces Kτ

s (w,B) by
mimicking the definition in Section 3.1. This time we use weighted Lorentz
norms, with weights w = {wm} that form a slowly increasing sequence, i.e.,
w2m ≤ Cwm for all m. We define

(3.11) ‖{am}∞
m=1‖ℓτ

s (w) :=







( ∞

∑
m=1

[wmm1/τ|a⋆
m|]s

m

)1/s

, 0 < s < ∞

supm∈N
wmm1/τ |a⋆

m|, s = ∞.

Notice that for weights wm = m1/p, the weighted Lorentz spaces reduce to

standard ones ℓ
1/α
s ({m1/p}) = ℓ

τp
s , where 1/τp = α + 1/p.

For any basis B = {gk}k≥1, we define a sequence w(B) = {wn}n≥0 with
w0 = 0 and for any n ≥ 1 :

wn = max
(

wn−1,
∥
∥

n

∑
k=1

gk

∥
∥

)

.

It is proved in [E] that for a quasi-greedy and democratic basis B, w(B) is a
slowly increasing sequence. We now introduce the a variation on the approxi-
mation spaces Aα

s (B), the so-called greedy approximation spaces

Gα
s (B) :=

{

f ∈ X, ‖ f‖Gα
s (B) := ‖ f‖X +

∥
∥{γm( f ,B)X}m≥1

∥
∥

ℓ
1/α
s

< ∞
}

.

For B a greedy basis, Gα
s (B) = Aα

s (B) with equivalent norms

‖ · ‖Gα
s (B) ≍ ‖ · ‖Aα

s (B),

since σm( f ,B) ≍ γm( f ,B). We also mention that for a general conditional quasi-
greedy bases B, it is not known whether Gα

s (B) = Aα
s (B).
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The following result gives a complete characterization of the greedy approx-
imation spaces for a quasi-greedy democratic dictionary.

THEOREM 7 ( [E]). Let B be a quasi-greedy basis for a Banach space X. The fol-
lowing conditions are equivalent :

(1) B is democratic.
(2) For any α > 0 and s ∈ (0, ∞],

(3.12) Gα
s (B) =

{

f ∈ X,
∥
∥{ck( f )}

∥
∥

ℓ
1/α
s (w(B))

< ∞

}

,

with equivalent norms

(3.13) ‖ · ‖Gα
s (B) ≍ ‖{ck(·)}‖ℓ

1/α
s (w(B))

.

(3) Relations (3.12) and (3.13) hold for some slowly growing sequence w = {wm}
at some point α, s.

Theorem 7 was proved for orthonormal bases in a Hilbert space by Stechkin
[94] and DeVore and Temlyakov [37]. Variations on Theorem 7 have been proved
(independently) by Kerkyacharian and Picard [72] and Dilworth et al. [39]. Gar-
rigós and Hernández [59] have recently extended Theorem 7 to quasi-Banach
spaces.

An interesting characterization of quasi-greedy democratic bases has been
found by Dilworth et al. [39]. They prove that such bases are exactly the so-
called almost greedy bases, see [39] for details. For conditional almost greedy
bases, we have a characterization of Gα

s (B) but not of Aα
s (B). However, for a

greedy basis B, we deduce from Theorem 7 that

(3.14) Aα
s (B) = Gα

s (B) = K1/α
s (w(B),B).



CHAPTER 4

Approximation with wavelet-type systems

This chapter concerns m-term approximation in Lp with wavelet frame dic-
tionaries. Wavelet frames are defined as follows. Given a finite collection of
functions (wavelet generators) Ψ = {ψ1, ψ2, . . . , ψL} ⊂ L2(Rd) we use the nota-
tion X(Ψ) to denote the corresponding “wavelet” system,

X(Ψ) :=
{

2jd/2ψℓ(2j · −k) | j ∈ Z, k ∈ Z
d, ℓ = 1, 2, . . . , L

}
.

A wavelet bi-frame for L2(Rd) consists of two sequences of wavelets

Ψ = {ψ1, ψ2, . . . , ψL} ⊂ L2(R
d) and Ψ̃ = {ψ̃1, ψ̃2, . . . , ψ̃L} ⊂ L2(R

d)

for which the systems X(Ψ) and X(Ψ̃) are Bessel systems, and satisfy the perfect
reconstruction formula

(4.1) f =
L

∑
ℓ=1

∑
j∈Z,k∈Zd

〈 f , ψ̃ℓ
j,k〉ψℓ

j,k, ∀ f ∈ L2(R
d),

where
ψj,k := 2jd/2ψ(2j · −k), j ∈ Z, k ∈ Z

d.

This definition implies that both X(Ψ) and X(Ψ̃) are frames for L2(R
d) and in

fact the roles of Ψ and Ψ̃ are interchangeable in (4.1). The special case with
Ψ = Ψ̃ corresponds to a so-called tight wavelet frame. The first systematic
study of wavelet frames (in the non-continuous case) can be found in [26], but
wavelet frames also connect back to Grossmann and Morlet’s seminal work [68]
on the continuous wavelet transform.

Wavelet frames have the same structure as an orthonormal wavelet basis,
but in general they form redundant dictionaries in Lp. In the important special
case where the wavelet frame is based on a multiresolution analysis (MRA), the
expansion (4.1) is very attractive from a computational point of view since for
such frames, the standard discrete wavelet algorithm can be used for numerical
calculations. Wavelet frames based on an MRA are referred to as framelets.

Below we study approximation in Lp with X(Ψ). We consider three cases
depending on the properties of Ψ. In the first case, we assume that the wavelet
generators Ψ are all nice in the sense that they have smoothness, a number of
vanishing moments, and some decay at infinity. For compactly supported sys-
tems based on a multiresolution analysis, a complete characterization of m-term

20
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approximation in Lp is obtained for the dictionary X(Ψ). The second case is
where at least one of the functions in Ψ have few vanishing moments compared
to its smoothness. For such systems we show that it is possible to oversample
the dictionary X(Ψ) and obtain a complete characterization of the correspond-
ing approximation space. In the third case, we study approximation with com-
pletely general systems X(ψ) based on an MRA. For such general systems we
show that it is also possible to oversample the dictionary X(ψ) and obtain a
complete characterization of the corresponding approximation space.

Approximation with non-redundant wavelet systems have been considered
in various setups by a number of authors, see [19, 20, 22, 30, 32–34, 75, 97]. For
redundant system with wavelet structure, Jackson type estimates have been ob-
tained in [77, 78, 88].

Wavelet frames and extension principles. Let us briefly review the stan-
dard approach to constructing wavelet frames (framelets) based on a multires-
olution analysis using so-called extension principles. The extension principles
for constructing bi-frames were introduced independently in [18] and [27].

Let τ = (τ0, τ1, . . . , τL) and τ̃ = (τ̃0, τ̃1, . . . , τ̃L) be two sequences of 2πZd-
periodic essentially bounded functions. Assume that τ0 and τ̃0 both generate

refinable functions1

ϕ̂(2ξ) = τ0(ξ)ϕ̂(ξ) and ˆ̃ϕ(2ξ) = τ̃0(ξ) ˆ̃ϕ(ξ),

satisfying
lim
ξ→0

ϕ̂(ξ) = 1 and lim
ξ→0

ˆ̃ϕ(ξ) = 1,

with

ess supξ ∑
k∈Zd

|ϕ̂(ξ − k)|2 < ∞ and ess supξ ∑
k∈Zd

| ˆ̃ϕ(ξ − k)|2 < ∞,

where ϕ̂(ξ) is the Fourier transform of the function ϕ(x). We associate the
wavelets with τ and τ̃ as follows

(4.2) ψ̂ℓ(2ξ) = τℓ(ξ)ϕ̂(ξ), ˆ̃ψℓ(2ξ) = τ̃ℓ(ξ) ˆ̃ϕ(ξ).

The spectrum σ(ϕ) associated with ϕ is defined up to a null-set as

σ(ϕ) := {ω ∈ [−π, π]d : ϕ̂(ω + 2πk) 6= 0, for some k ∈ Z
d}.

1We define the Fourier transform by F ( f )(ξ) = f̂ (ξ) = (2π)−d/2
∫

Rd f (x)e−ix·ξdx, f ∈ L1 ∩
L2.
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The spectrum σ(ϕ̃) associated with ϕ̃ is defined likewise. Assuming that the
systems X(Ψ) and X(Ψ̃) are both Bessel systems, we define the mixed fundamen-
tal function of the parent vectors τ and τ̃ by

Θ(ξ) :=
∞

∑
j=0

L

∑
ℓ=1

τℓ(2jξ)τ̃ℓ(2jξ)
j−1

∏
m=0

τ0(2mξ)τ̃0(2mξ).

The following theorem proven in [27] is the main tool for creating bi-framelet
systems, the theorem is called the Mixed Oblique Extension Principle.

THEOREM 8 ( [27]; Mixed OEP). Let τ and τ̃ be the combined mask of the systems
X(Ψ) and X(Ψ̃), respectively. Assume that the systems X(Ψ) and X(Ψ̃) are Bessel
systems. Suppose there exists a 2π-periodic function Θ satisfying

a) Θ is essentially bounded, continuous at the origin, and Θ(0) = 1.

b) If ξ ∈ σ(ϕ) ∩ σ(ϕ̃) and ν ∈ {0, π}d such that ξ + ν ∈ σ(ϕ) ∩ σ(ϕ̃), then

(4.3) Θ(2ξ)τ0(ξ)τ̃(ξ + ν) +
L

∑
ℓ=1

τℓ(ξ)τ̃ℓ(ξ + ν) =

{

Θ(ξ), if ν = 0

0, otherwise.

Then X(Ψ), X(Ψ̃) is a bi-framelet system.

In many interesting cases the spectra σ(ϕ) and σ(ϕ̃) are both equal to [−π, π]d.
For example, if the integer translates of the scaling functions ϕ and ϕ̃ are Riesz
sequences, this is the case.

When X(Ψ) = X(Ψ̃), Theorem 8 gives the so-called Oblique Extension prin-
ciple, see [27]. If, in addition, Θ ≡ 1, Theorem 8 reduces to the Unitary Exten-
sion Principle, see [91, 92].

The reader can consult [18] and [27] for many explicit examples on how to
construct framelet systems using the different extension principles.

4.1. Wavelet frames with smoothness and vanishing moments

In this section we obtain approximation results in Lp for dictionaries X(Ψ)
under the assumption that the generators Ψ have a certain decay at infinity and
a number of vanishing moments.

General Jackson estimates. Let us introduce the following two function
classes.

DEFINITION 5. For N ∈ N and γ > 0 we let DN
γ (Rd) be the set of all functions

f defined on Rd with N derivatives and decay γ, i.e., for which there exists a constant
c < ∞ such that

(4.4) |∂α f (x)| ≤ c(1 + |x|)−γ for x ∈ R
d, α ∈ N

d, |α| ≤ N,
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where |α| is the usual length of a multi-index. Likewise, we let MN
γ (Rd) denote the set

of all functions f with N vanishing moments and decay, i.e., for which
∫

Rd
xα f (x)dx = 0 for α ∈ N

d, |α| < N,

and

(4.5) | f (x)| ≤ C(1 + |x|)−d−N−γ for x ∈ R
d.

For notational convenience, let us define the function

(4.6) Λ(x) = Λ(x, p, γ/d) :=







p(1 − x) for x ≤ 1 − 1/p,

(x + 1/p)−1 for 1 − 1/p < x ≤ γ/d − 1/p,

d/γ for γ/d − 1/p < x.

We have the general Jackson estimate. We refer to Triebel [99] for the defini-

tion of the Besov space Bs
p,q(Rd).

THEOREM 9 ( [A]). Let X(Ψ), X(Ψ̃) be a bi-frame. Suppose Ψ̃ ⊂ MN1
γ (Rd) for

some N1 ∈ N and γ > d and suppose there exist β, ε > 0 such that for all ψ ∈ Ψ ∪ Ψ̃,

ψ ∈ Cβ(Rd) and |ψ(x)| ≤ C(1 + |x|)−d−ε. Then, we have the Jackson inequality

σm( f , X(Ψ))p ≤ Cm−α‖ f‖Bdα
τ,τ(Rd)

for p ∈ (1, ∞), Λ
(

N1
d

)

< τ < p, and α = 1/τ − 1/p, with Λ(x) = Λ(x, p, d/γ)

given by (4.6).

We refer to [A] for the detailed proof, but let us discuss the basic idea of
the proof since it follows a fairly general and successful approach to obtaining
Jackson estimates for redundant wavelet-type systems. The idea is to consider
the following “change of basis” operator for p ≥ 1,

(
T(cj,k)

)

j′,k′ := ∑
j∈Z,k∈Zd

cj,k〈ηp
j,k, ψ

p′

j′,k′〉,
1

p
+

1

p′
= 1,

where {ηj,k}j,k is a nice smooth orthonormal wavelet such as a Meyer wavelet

(if d > 1, we just pick one of the 2d − 1 orthonormal wavelet generators), and

ψ
p
j,k := 2jd(1/p−1/2)ψj,k is ψj,k “normalized” in Lp. The smoothness and van-

ishing moments of Ψ ensure that the matrix [〈ηp
j,k, ψ

p′

j′,k′〉] is almost diagonal and

induces a bounded operator on ℓτ(Z × Zd) for τ in a suitable range. To prove

the result we now expand f ∈ Bdα
τ,τ(Rd) in the Meyer wavelet system. This

expansion is sparse according to classical results. Next we “change basis” to

the wavelet frame, and use the estimates on [〈ηp
j,k, ψ

p′

j′,k′〉] to conclude that the

wavelet frame expansion of f is also sparse. The general Jackson estimate of
Theorem 4 can then be used to conclude.
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Theorem 9 can also be used to obtain the following characterization of the
sparseness class Kτ

τ(Lp, X(Ψ)).

(4.7) Bdα
τ,τ(R

d) =
{

f ∈ Lp, {〈 f , ψ
ℓ,p′

j,k 〉}j,k,ℓ ∈ ℓτ

}

= Kτ
τ(Lp , X(Ψ)),

for α = 1/τ − 1/p and admissible τ (see the statement of Theorem 9).
The Jackson estimate provided by Theorem 9 is obtained by using the canon-

ical frame expansion. The smoothness and vanishing moments of Ψ ensure a
sparse wavelet frame expansion for a nice function f . Hence, we do not really
use the redundancy in any way to obtain the estimate.

The “change of basis” approach to obtaining Jackson estimates for redun-
dant wavelet-type systems has also been used by Petrushev [88], Kyriazis and
Petrushev [77, 78], and Kyriazis [76] to obtain approximation results in Triebel-
Lizorkin spaces. Approximation with tight wavelet frames in Sobolev spaces is
considered in [7]. The general idea of using sparse wavelet-type frame expan-
sions of smooth functions goes back to Frazier and Jawerth and their compre-
hensive study of the so-called ϕ-transform [56, 57].

Bernstein estimates and the approximation classes. We now turn our at-
tention to Bernstein estimates that will lead to a complete characterization of

the approximation spaces for X(Ψ). In the following we denote by Ws(L∞(Rd))
the Sobolev space consisting of functions with all s distributional derivatives in

L∞(Rd). Given a function ϕ ∈ L∞(Rd), let

Γ = {k ∈ Z
d : |{x ∈ (0, 1)d : ϕ(x − k) 6= 0}| > 0}.

We say that {ϕ(· − k)}k∈Zd is a locally linearly independent set if the set {ϕ(· −
k)}k∈Γ is linearly independent. Also recall that a function ϕ ∈ L2(Rd) is refin-
able if there exists suitable coefficients {ck} such that

ϕ(x) = ∑
k∈Zd

ck ϕ(2x − k), x ∈ R
d.

For bi-framelet systems we have the following Bernstein inequality, see [A].

LEMMA 1. Let X(Ψ), X(Ψ̃) be a bi-framelet system and assume that X(Ψ) is based
on a compactly supported refinable function ϕ where:

(1) ϕ ∈ Ws(L∞(Rd)) with s ≥ 0;
(2) (In case d > 1) {ϕ(· − k)}k∈Zd is a locally linearly independent set;
(3) The functions τℓ(ξ), 1 ≤ ℓ ≤ L, in (4.2) are trigonometric polynomials.

Then the Bernstein inequality

(4.8) |S|Bdα
τ,τ(Rd) ≤ Cmα‖S‖Lp(Rd), ∀S ∈ Σm(X(Ψ)), ∀m ≥ 1

holds true for each 0 < α < s/d, 0 < p ≤ ∞, with 1/τ := α + 1/p and C = C(α, p).
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Let us again outline the idea of the proof. The fundamental assumption
needed for the estimate is that ϕ is refinable, i.e., that the wavelet frame is based
on a multiresolution analysis. By a result of Jia [70], for each 0 < α < s/d, the
Bernstein inequality

|S|Bdα
τ,τ(Rd) ≤ Cmα‖S‖Lp(Rd), ∀S ∈ Σm(X(ϕ)),

1/τ := α + 1/p, 0 < p ≤ ∞, holds true for the system

X(ϕ) := {ϕ(2jx − k)}j∈Z,k∈Zd ,

provided that {ϕ(· − k)}k∈Zd is a locally linearly independent set with ϕ com-

pactly supported. Now, since X(Ψ) is based on ϕ, we have finite masks {bℓ
k}k

such that {ϕ(· − k)}k∈Zd is a locally linearly independent set with ϕ compactly
supported.

ψℓ(x) = ∑
k∈Zd

bℓ
k ϕ(2x − k).

Thus, for j ∈ Z and i ∈ Zd, we have

ψℓ(2jx − i) = ∑
k∈Zd

bℓ
k ϕ

(
2j+1x − 2i − k

)

That is to say ψℓ
j,i ∈ ΣK(X(ϕ)) for some uniform constant K depending only

on the length of the finite masks used above. Take any S ∈ Σm(X(Ψ)), then
S ∈ ΣKm(X(ϕ)) and the estimate follows.

We can now combine the Jackson and Bernstein estimates and use Theo-
rem 1 to obtain the main result of this section. A version of the result valid for
spline based wavelet frames is proved in [I].

THEOREM 10 ( [A]). Let X(Ψ), X(Ψ̃) be a wavelet bi-frame system and assume
that X(Ψ) is based on a compactly supported refinable function ϕ where:

(1) ϕ ∈ Ws(L∞(Rd)) with s ≥ 0;
(2) (In case d > 1) {ϕ(· − k)}k∈Zd is a locally linearly independent set;
(3) The functions τℓ(ξ) in (4.2) are trigonometric polynomials;

(4) Ψ̃ ⊂ Cβ(Rd) ∩ MN1
γ (Rd) for some β > 0, N1 ∈ N and γ > d.

Let p ∈ (1, ∞) and τ := (α + 1/p)−1 where we assume

(4.9) 0 < α < min







s

d
,

1

Λ
(

N1
d

) − 1

p






,

with Λ(x) = Λ(x, p, d/γ) given by (4.6). Then, for each 0 < β < α, q ∈ (0, ∞], we
have the characterization

(4.10) Aβ
q (Lp, X(Ψ)) =

(

Lp, Bdα
τ,τ(R

d)
)

β/α,q
.
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The approximation spaces are thus essentially Besov spaces, similar to situ-
ation for non-redundant bi-orthogonal wavelets, see [33]. Perhaps it is not sur-
prising that a nice smooth wavelet frame behaves the same as an orthonormal
wavelet basis.

An interesting derived question is what happens when the framelets have
few vanishing moments compared to the smoothness of the underlying scaling
function. This case will be treated below.

4.2. Wavelet frames with few vanishing moments

For wavelet frames with few vanishing moments compared to the smooth-
ness of the underlying multiresolution analysis scaling function, the approach
to consider a “change of basis” matrix from a nice orthonormal wavelet system
to the wavelet frame is no longer very useful. The matrix will have a relatively
slow off diagonal decay, leading to a restricted Jackson estimate. However, it
was first discovered in [I] that oversampling the wavelet frame dictionary is a
feasible way to overcome the lack of vanishing moments.

Given a wavelet bi-frame X(Ψ), X(Ψ̃) and R ≥ 1, we let XR(Ψ) denote the
oversampled system,

XR(Ψ) :=
{

2jd/2ψℓ(2j · −k/R)|j ∈ Z, k ∈ Z
d, ℓ = 1, 2, . . . , L

}
.

Just as the non-oversampled system, the oversampled one XR(Ψ) is a frame

in L2(Rd). It can also be verified that the oversampled frame XR(Ψ) is ℓ
p
1 -

hilbertian in Lp(R
d), 1 < p < ∞, after proper normalization, see [I] for a proof

in the case R = 2.
Let us first state a very general case where we can derive a Jackson estimate

for XR(Ψ). The following lemma was proved in [A].

LEMMA 2. Let X(Ψ), X(Ψ̃) be a wavelet bi-frame system, X({ψi}2d−1
i=1 ) a bi-

orthogonal wavelet basis and r > 0 such that

Bdα
τ,τ(R

d) = Kτ
τ(Lp, X({ψi}2d−1

i=1 )), 0 < α = 1/τ − 1/p < r.

Assume that for 1 ≤ i ≤ 2d − 1 there exists sequences {dℓ,i
k }

ℓ∈E,k∈Zd ∈ ℓ1/(r+1), such
that

ψi(x) =
L

∑
ℓ=1

∑
k∈Zd

dℓ,i
k ψℓ(x − k/R).

Then, for 1 < p < ∞, and 0 < α = 1/τ − 1/p < r, we have the Jackson inequality

σm( f , XR(Ψ))p ≤ Cm−α‖ f‖Bdα
τ,τ(Rd).
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We deal with the problem of how to obtain a sparse expansion

ψi(x) =
L

∑
ℓ=1

∑
k∈Zd

dℓ,i
k ψℓ(x − k/R)

below.
We can now state our main result on approximation with the oversampled

system XR(Ψ), where we obtain a complete characterization of the approxima-

tion spaces Aβ
q (Lp, X2N(Ψ)) even if the wavelet frame fails to have a significant

number of vanishing moments.

THEOREM 11 ( [A]). Let X(Ψ), X(Ψ̃) be a bi-frame system with X(Ψ) based on a
compactly supported refinable function ϕ where:

(1) ϕ ∈ Ws(L∞(Rd)) with s ≥ 0;
(2) (In case d > 1) {ϕ(· − k)}k∈Zd is a locally linearly independent set;
(3) The functions τℓ(ξ), 1 ≤ ℓ ≤ L, in (4.2) are trigonometric polynomials.
(4) X(Ψ), X(Ψ̃) satisfy the assumptions of Lemma 2 for R = 2N with parameters

s and r.

Then, for 0 < α < min{s/d, r}, 0 < β < α, q ∈ (0, ∞], we have the characterization

(4.11) Aβ
q (Lp, X2N (Ψ)) =

(

Lp, Bdα
τ,τ(R

d)
)

β/α,q
.

Expanding orthonormal wavelets in a wavelet frame. One obvious criti-
cism of Lemma 2 (and Theorem 11) is that the hypothesis is hard to check in the
general case. However, it was noticed in [I] that most univariate MRA-based
wavelet frames satisfy the hypothesis for R = 1. Let us explain why that is.
Suppose X(Ψ), X(Ψ̃) is an MRA-based univariate wavelet bi-frame system with
combined mask τ = (τ0, τ1, . . . , τL) and τ̃. Let ϕ be a univariate scaling func-
tion generated by the refinement filter τ0(ξ), and let P(ξ) := ∑k∈Z |ϕ̂(ξ − k)|2.
The standard orthonormal wavelet ψ associated with the scaling function ϕ is
defined by

ψ̂(2ξ) = e−iξτ0(ξ + π)
ϕ̂(ξ)

√

P(ξ)
.

We wish to express ψ as a linear combination

(4.12) ψ(·) :=
L

∑
ℓ=1

∑
k∈Z

dℓ
kψℓ(· − k/2), Ψ = {ψ1, ψ2, . . . , ψL},

where {dℓ
k} ∈ ⋂

τ>0 ℓτ. In the frequency domain the problem is to find “nice”
2π-periodic functions Qℓ(ξ) such that

ψ̂(ξ) =
L

∑
ℓ=1

Qℓ(ξ/2)τℓ(ξ/2)ϕ̂(ξ/2).
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We will look for Qℓ of the form Qℓ(ξ) = Q(ξ)τℓ(ξ). It is not difficult to see that
the problem will be solved if Qℓ has fast decaying Fourier coefficients and Q
satisfies

Q(ξ)
L

∑
ℓ=1

|τℓ(ξ)|2 =
e−iξτ0(ξ + π)

√

P(ξ)
.

Hence, we define for ξ 6= 0

Qℓ(ξ) :=
τℓ(ξ) · τ0(ξ + π)

∑
L
ℓ=1 |τℓ(ξ)|2

· e−iξ

√

P(ξ)
.(4.13)

In the case where ∑
L
ℓ=1 |τℓ(ξ)|2 has no zeros, one verifies that Qℓ can be extended

at ξ = 0. The factor

τℓ(ξ) · τ0(ξ + π)

∑
L
ℓ=1 |τℓ(ξ)|2

in (4.13) is a quotient of two trigonometric polynomials with no pole on the unit

circle, so its Fourier coefficients decay exponentially. Thus, whenever P−1/2 is
C∞, the sparse expansion (4.12) holds true.

An interesting follow-up question is whether is is possible to obtain the ex-
pansion (4.12) without any oversampling. This question has been studied in
detail in [I], and the answer is positive in certain cases. It is possible to obtain
(4.12) without oversampling for certain wavelet frames, while for other systems
it can be proved that oversampling by a factor two is indeed needed, see [I].

Fast algorithm for near sparsest framelet expansion: univariate case. In a
redundant dictionary, finding an expansion f = ∑k ckgk that (approximately)
minimizes the ℓ1 norm ‖{ck}‖ℓ1

is a computationally intensive problem. For a
twice oversampled wavelet frame dictionary, an O(N) algorithm based on an
expansion similar to (4.12) was introduced in [I].

The Euclidean algorithm can be used to solve for the Bezout relation that

yields the expansion coefficients {dℓ
k} in Equation (4.12). Then, a near sparsest

expansion of a function f in the framelet system can be obtained as follows. We
put into brackets the computational complexity for a finite dimensional signal
of size N.

(1) Using Mallat’s algorithm, perform a fast expansion [O(N)]

f (x) = ∑
j,m

〈 f , ψj,m〉ψj,m(x);
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(2) Using Equation (4.12), rewrite the above expansion in terms of framelets
[O(NLK)]

f (x) = ∑
j,m

L

∑
ℓ=1

K−1

∑
n=0

〈 f , ψj,m〉dℓ
n2j/2ψℓ(2jx − m − n/2)

= ∑
j,k,ℓ

∑
2m+n=k

〈 f , ψj,m〉dℓ
n

︸ ︷︷ ︸

cj,k,ℓ

2j/2ψℓ(2jx − k/2)

This expansion algorithm adapts to unknown sparsity of f just as a wavelet ex-

pansion does. The oversampled system is ℓ
p
1 -hilbertian in Lp so it follows that

the thresholding algorithm, which provides m-term approximants Am( f ) by keep-
ing the m largest Lp-normalized coefficients from the latter expansion, yields the
optimal rate of approximation. That is to say, for all f and α if

σm( f , X2(Ψ))Lp(R) = O(m−α), m ≥ 1

then
‖ f − Am( f )‖Lp(R) = O(m−α), m ≥ 1.

4.3. Approximation with wave packets

A closer analysis of the proof of Theorem 11 reveals a surprising fact. All
that is needed to obtain a Jackson estimate for XR(Ψ) is that some nice wavelet
can be represented sparsely by XR(Ψ). In [B], this idea was taken further. The
difficult part of Theorem 11 is to obtain an expansion like in (4.12), but it turns
out that this process can be simplified if we replace the orthonormal wavelet by
a wavelet-type ϕ-transform generator (see [56, 57]). Such a generator turns out
to be much easier to approximate.

Suppose ϕ ∈ L2(Rd) is a refinable function. An associated wave packet is a
function ψ given by

(4.14) ψ̂(2ξ) = m(ξ)ϕ̂(ξ),

where m is a trigonometric polynomial. We can now state the main result of [B].

THEOREM 12 ( [B]). Given s ≥ 0, let ϕ ∈ Ws(L∞(Rd)) be a compactly supported
refinable function with associated finite mask and let Ψ = {ψi}i∈F be a finite sequence
of wave packets with associated trigonometric polynomials {mi}i∈F, where at least one,
say mi0 , satisfies

mi0(ξ) 6= 0 for 0 < |ξ| < r

for some r > 0. If d > 1 we suppose {ϕ(· − k)}k∈Zd is a locally linearly independent
set (condition is void if d = 1). Then there exists K0 ∈ N0 such that for K ≥ K0,

Aα/d
q

(
Lp(R

d), XK(Ψ)
)

= Aα/d
q

(
Lp(R

d), XK(ψi0)
)

=
(

Lp(R
d), B

γ
τ,τ(R

d)
)

α/γ,q
,
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for 1 < p < ∞, 0 < α < γ < s, and 1/τ := γ/d + 1/p.

We remark that Theorem 12 holds some surprises in the case d = 1. For
d = 1, (12) is satisfied by any non-trivial trigonometric polynomial m, since its
zeroes are isolated. Thus, for d = 1, the conclusion of Theorem 12 holds true
for any ψ ∈ Span{ϕ(· − k) : k ∈ Z}, so X(ψ) need not even be close to a frame
or have dense span in L2(R). For d > 1 the condition (12) is more restrictive.
In particular, (12) is not satisfied for separable wavelet (or framelet) systems.
However, in the framelet case we can use the filter relation (4.3) to obtain an
equivalent result, see Proposition 4.2 in [B].



CHAPTER 5

Approximation with time-frequency frames

In this chapter we consider a general construction of smoothness spaces, a

subclass of so-called decomposition spaces, defined on Rd for which it is pos-

sible to find adapted tight frames for L2(Rd). Each frame forms an atomic de-
composition of the smoothness space, and the space can be completely char-
acterized by a sparseness condition on the frame coefficients. It is therefore
possible to compress the elements of such smoothness spaces using the frame,
and the sparse expansions naturally leads to Jackson estimates for m-term ap-
proximation with the frame.

The second part of the chapter contains a case study of so-called α-modula-
tion spaces. The family of α-modulation spaces was introduced by Gröbner [63]
and tight frames for such spaces are obtained from the general construction.
For univariate α-modulation, we construct orthonormal (greedy) bases for the
α-modulation spaces and completely characterize the corresponding approxi-
mation spaces.

Several authors have considered function spaces built using ideas related
to decomposition spaces. A very general method to construct decomposition
spaces was introduced by Feichtinger and Gröbner [49] and Feichtinger [46].
Gröbner [63] used the decomposition space methods in [49] to define the α-
modulation spaces as a family of intermediate spaces between modulation and
Besov spaces. Banach frames for α-modulation spaces have been considered
by Fornasier [55] and by Borup and Nielsen [10]. Group theoretical construc-
tions of function spaces, including smoothness spaces, have been studied by Fe-
ichtinger and Gröchenig [47,50–52,64]. Frazier and Jawerth constructed frames
(their so-called ϕ-transform) for Besov and Triebel-Lizorkin spaces in [56, 57].

5.1. Decomposition spaces and sparse time-frequency representations

Here we consider a general family of smoothness spaces based on structured

decompositions of the frequency space R
d. This is a fairly standard approach to

define smoothness spaces. For example, Besov spaces introduced by Besov in

[5] correspond to a dyadic decomposition of Rd, while the family of modulation
spaces introduced by Feichtinger [48] correspond to a uniform decomposition

Rd.

31
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Structured coverings and decomposition spaces. First we restrict the fam-
ily of possible covering of the frequency space to so-called admissible coverings

of Rd.

DEFINITION 6. A set Q := {Qi}i∈I of measurable subsets Qi ⊂ Rd is called

an admissible covering if Rd = ∪i∈IQi and there exists n0 < ∞ such that #{j ∈
I : Qi ∩ Qj 6= ∅} ≤ n0 for all i ∈ I.

In order to define smoothness space we need well-behaved resolution of the
identity adapted to a given admissible covering.

DEFINITION 7. Given an admissible covering {Qi}i∈I of Rd. A corresponding
bounded admissible partition of unity (BAPU) is a family of functions Ψ = {ψi}i∈I

satisfying

• supp(ψi) ⊂ Qi, i ∈ I,

• ∑i∈I ψi(ξ) = 1, ∀ξ ∈ Rd,

• supi∈I |Qi|1/p−1‖F−1ψi‖Lp < ∞, ∀p ∈ (0, 1].

Given ψi ∈ Ψ, we define the multiplier ψi(D) f := F−1(ψiF f ), f ∈ L2(Rd).
Also recall that a (quasi-)Banach sequence space Y on I is called solid if |ai| ≤
|bi| for all i implies that ‖{ai}‖Y ≤ ‖{bi}‖Y.

We can now give the definition of a decomposition space on the Fourier
side. For particular choices of coverings, the decomposition spaces yield classi-
cal spaces such as Besov and modulation spaces, see [D, 46].

DEFINITION 8. Let Q = {Qi}i∈I be an admissible covering of R
d for which there

exists a BAPU Ψ. Let Y be a solid (quasi-)Banach sequence space on I satisfying that
ℓ0(I), the finite sequences on I, is dense in Y. Then for p ∈ (0, ∞], we define the

decomposition space D(Q, Lp, Y) as the set of functions f ∈ S ′(Rd) satisfying

(5.1) ‖ f‖D(Q,Lp,Y) :=
∥
∥
∥

{∥
∥ψi(D) f

∥
∥

Lp

}

i∈I

∥
∥
∥

Y
< ∞,

We notice that Definition 8 can be used only for admissible coverings for
which there exists an associated BAPU (see Definition 7). This requirement
clearly imposes some structure of the admissible coverings. A special class of
structured admissible coverings for which an associated BAPU exists was intro-
duced in [D]. Structured coverings are obtained by applying a countable family

of invertible affine transformations on Rd to some fixed neighborhood of the
origin.

DEFINITION 9. Given a family T = {Ak · +ck}k∈N of invertible affine transfor-

mations on Rd. Suppose there exist two bounded open sets P ⊂ Q ⊂ Rd, with P
compactly contained in Q, such that

(5.2) {PT}T∈T and {QT}T∈T are admissible coverings.
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Also assume that there exists a constant K such that

(5.3) (AkQ + ck) ∩ (Ak′Q + ck′) 6= ∅ ⇒ ‖A−1
k′ Ak‖ℓ∞(Rd×d) ≤ K.

Then we call Q = {QT}T∈T a structured admissible covering and T a structured
family of affine transformations.

Let us briefly discuss how to construct a BAPU for a structured family of
affine transformations T , we refer to [D] for the technical details.. Pick a non-
negative function Φ ∈ C∞(Rd) with Φ(ξ) = 1 for ξ ∈ P and supp(Φ) ⊂ Q. For
T ∈ T , we let gT(ξ) := Φ(T−1ξ). We then define a BAPU by

ψT(ξ) :=
gT(ξ)

∑T′∈T gT′(ξ)
.

We also define an associated “square-root” of the BAPU by

(5.4) ϕT(ξ) =
gT(ξ)

√

∑T′∈T g2
T′(ξ)

, T ∈ T .

Tight frames for decomposition spaces. The system {ϕT}T defined by (5.4)

can be used for an easy construction of tight frames for L2(Rd) compatible with
the structured admissible covering. Consider a structured admissible covering

Q = {QT}T∈T . Suppose Ka is a cube in R
d (aligned with the coordinate axes)

with side-length 2a satisfying Q ⊆ Ka. For T· = A · +c, we let |T| = |det A|,
and we define

en,T(ξ) := (2a)−
d
2 |T|− 1

2 χKa(T−1ξ)ei π
a n·T−1ξ , n ∈ Z

d, T ∈ T .

and
η̂n,T := ϕTen,T n ∈ Z

d, T ∈ T ,

with ϕT given by (5.4). We can also obtain an explicit representation of ηn,T in
direct space. Suppose T = A · +c, and µ̂T(ξ) := ϕT(Tξ). Then

ηn,T(x) = (2a)−
d
2 |T|1/2µT(π

a n + A⊤x)eix·c.

It can be verified that for any N ∈ N,

|µT(x)| ≤ CN(1 + |x|)−N ,

with CN independent of T ∈ T . We notice that ηn,T is obtained by translating,
“dilating”, and modulating a unit-scale element µT. In some sense, ηn,T is a mix
between a Gabor and a wavelet system. It turns out (see [D] for details) that

{ηn,T} is a tight frame for L2(Rd). That is, we have a canonical expansion

(5.5) f = ∑
T∈T

∑
n∈Zd

〈 f , ηn,T〉ηn,T., ∀ f ∈ L2(R
d).
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We also claim that {ηn,T} is adapted to characterize the associated family of
decomposition spaces D(Q, Lp, Y) for suitable weights Y. We need the follow-
ing class of moderate weights relative to an admissible covering Q.

DEFINITION 10. Let Q = {Qi}i∈I be an admissible covering of Rd. A strictly

positive function w on Rd is called Q-moderate if there exists C > 0 such that w(x) ≤
Cw(y) for all x, y ∈ Qi and all i ∈ I. A strictly positive Q-moderate weight on I
(derived from w) is a sequence vi = w(xi), i ∈ I, with xi ∈ Qi and w a Q-moderate
function.

For Y a solid (quasi-)Banach sequence space on I, we define the weighted space
Yv := {{di}i∈I : {divi}i∈I ∈ Y}.

To simplify the statement of Theorem 13 below, we let

η
p
n,T := |T|1/2−1/pηn,T

denote the function ηn,T “normalized” in Lp(Rd), p ∈ (0, ∞]. We have the fol-
lowing characterization result.

THEOREM 13 ( [D]). Let Q = {QT}T∈T be a structured admissible covering.
Let Y be a symmetric (quasi-)Banach sequence space on T , and let v be a Q-moderate
weight. Then, for 0 < p ≤ ∞, we have the characterization

‖ f‖D(Q,Lp,Yv) ≍
∥
∥
∥
∥

{(

∑
n∈Zd

|〈 f , η
p
n,T〉|p

)1/p}

T∈T

∥
∥
∥
∥

Yv

,

with the usual modification for p = ∞.

The problem of obtaining general structured admissible coverings is studied
in detail in [D]. The approach followed there is to consider coverings given by

balls in a suitable homogeneous space over Rd. We refer to [D] for a number of
examples.

Jackson estimates. Let us introduce a family of sparseness spaces S
β
p,q asso-

ciated with a certain type of admissible covering and a special class of weights.

The spaces S
β
p,q have a very simple characterizations in terms of the frame coef-

ficients relative to {ηn,T}.
Let T be a structured countable family of invertible affine transformations

with associated admissible covering Q. Given β ∈ R and a Q-moderate func-

tion w, define vw,β := {(w(bT))β}AT ·+bT∈T . We let S
β
p,q(T , w) denote the decom-

position space D(Q, Lp, (ℓq)vw,β
) for β ∈ R, 0 < p ≤ ∞, and 0 < q < ∞.

To simplify further, let us suppose that there exits a constant δ > 0 such that

w(bT) ≍ wδ(bT) := |T|
1
δ for T ∈ T . Notice that,

|〈 f , ητ
n,T〉| = |T|1/p−1/τ |〈 f , η

p
n,T〉|, for 0 < τ, p ≤ ∞.
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Then, according to Theorem 13, we have the characterization

‖ f‖
S

β
p,q

≍
(

∑
T

|T|βq/δ
(

∑
n∈Zd

|〈 f , η
p
n,T〉|p

)q/p
)1/q

.

=

(

∑
T∈T

(

∑
n∈Zd

|〈 f , ηr
n,T〉|p

)q/p
)1/q

, when
β

δ
=

1

p
− 1

r
.(5.6)

We can use this simple characterization to obtain Jackson estimates for func-
tions in Sγ

τ,τ(T , wδ). For f ∈ Sγ
τ,τ(T , wδ), let {θm}m∈N be a decreasing re-

arrangement of the frame coefficients

(5.7) {|〈 f , ηr
n,T〉|}n,T,

where r is given by γ/δ = 1/τ − 1/r. We let f F
m be the m-term approximation

of f obtained by extracting from the canonical frame expansion of f the terms
corresponding to the m largest coefficients from (5.7). Assume β ∈ R, and p > 0
satisfy (γ − β)/δ = 1/τ − 1/p > 0. Then using the techniques of Chapter 3,

and the fact that β/δ = 1/p − 1/r, the approximation error in S
β
p,p obeys

‖ f − f F
m‖S

β
p,p

≤ C′‖ f‖Sγ
τ,τ

· m−(γ−β)/δ,(5.8)

see [D] for details.
The estimate (5.8) immediately leads to a Jackson inequality for nonlinear

m-term approximation with D = {ηn,T} since f F
m ∈ Σm(D). We have

σm( f ,F (T ))
S

β
p,p

≤ C‖ f‖Sγ
τ,τ

· m−(γ−β)/δ, m ≥ 1,

for 1/τ − 1/p = (γ − β)/δ.

5.2. Case study: α-modulation spaces

In this section we study an interesting special case of the general construc-

tion of the smoothness spaces S
β
p,q. The family of α-modulation spaces M

β,α
p,q (Rd)

was introduced by Gröbner [63]. They form a family of “intermediate” spaces
between the classical modulation spaces and the Besov spaces.

For 0 < α < 1, define bk = k|k|α/(1−α) , k ∈ Z
d \ {0}, and let T = {Tk}k∈Zd\{0}

be given by

Tkξ = |k|α/(1−α)ξ + bk,

with | · | the Euclidean norm on Rd. An associated structured covering is given
by the Euclidean balls

{
B
(
bk, ρ|k|α/(1−α)

)}

k∈Zd ,
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with ρ a suitable positive constant. We have the geometric property that for
Q ∈ Q,

|Q| ≍ (1 + |x|)αd, x ∈ Q.

A dyadic covering corresponds to the limit case α = 1, while a uniform cov-
ering corresponds to α = 0. For 0 < α < 1 we obtain an intermediate type
“polynomial” covering. This type of covering was first considered by Päivärinta
and Somersalo in [86] to study pseudodifferential operators, and it was proven
in [10] that (5.6) with a suitable weight w gives a characterization of the α-

modulation space M
β,α
p,q (Rd). In fact, for w = 1 + | · |, we have

S
β
p,q(T , 1 + | · |) = M

β,α
p,q (R

d), 0 ≤ α ≤ 1, β ∈ R, 0 < p, q < ∞.

It is proved in [D] that the system {ηn,T} forms a Banach frame for M
β,α
p,q (Rd) for

1 ≤ p, q < ∞. Other constructions of Banach frames for α-modulation spaces
can be found in [10, 55].

For 0 < α < 1, (5.1) provides the Jackson estimate

σm( f , {ηn,T})M
β,α
p,p(Rd)

≤ C‖ f‖M
γ,α
τ,τ (Rd) · m−(γ−β)/(dα), m ≥ 1,

for 1/τ − 1/p = (γ − β)/(dα).
At present, no Bernstein estimate is known for the dictionary {ηn,T}. How-

ever, in the univariate case we can actually created a non-redundant basis for

M
β,α
p,q (R) based on so-called brushlets.

Brushlets and univariate α-modulation spaces. We now consider the uni-
variate α-modulation spaces. In the univariate case, we can construct so-called
brushlet bases adapted to the α-modulation spaces. The brushlet systems are
based on local Fourier bases as introduced by Coifman and Meyer in [23], and
by Malvar in [80] for applications in signal processing. These systems were
further developed by Wickerhauser in [103]. An atom from a local Fourier basis
has perfect localization in time and is well localized in frequency. Laeng noticed
in [79] that it is possible to map a local Fourier basis by the Fourier transform
to a new basis with compact support in the frequency domain. In [81], Coifman
and Meyer studied similar systems, called brushlets, using the bases introduced
by Wickerhauser.

Let us introduce the brushlet system. Let I be a disjoint covering R consist-
ing of pairwise disjoint half-open intervals I = [αI , α′

I), αI < α′
I . We suppose

that each interval in I has a unique adjacent interval in I to the left and to the
right, and that there exists a constant A > 1 such that

A−1 ≤ |I|
|I ′| ≤ A, for all adjacent I, I ′ ∈ I.
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We assign to each interval I ∈ I a cutoff radius ε I > 0 at the left endpoint and a
cutoff radius ε′I > 0 at the right endpoint, satisfying







(i) ε′I = ε I ′ whenever α′
I = αI ′

(ii) ε I + ε′I ≤ |I|
(iii) ε I ≥ c|I|,

with c > 0 independent of I.
For each I ∈ I, we construct a smooth bell function localized in a neighbor-

hood of this interval. Take a non-negative ramp function ρ ∈ Cr(R), for some
r ≥ 1, satisfying

ρ(ξ) =

{
0 for ξ ≤ −1,
1 for ξ ≥ 1,

with the property that

ρ(ξ)2 + ρ(−ξ)2 = 1 for all ξ ∈ R.

Define for each I = [αI , α′
I) ∈ I the bell function

bI(ξ) := ρ

(
ξ − αI

ε I

)

ρ

(
α′

I − ξ

ε′I

)

.

Notice that supp(bI) ⊂ [αI − ε I , α′
I + ε′I ] and bI(ξ) = 1 for ξ ∈ [αI + ε I , α′

I − ε′I ].
The set of local cosine functions

ŵn,I(ξ) =

√

2

|I|bI(ξ) cos

(

π
(
n + 1

2

)ξ − αI

|I|

)

, n ∈ N0, I ∈ I,

constitute an orthonormal basis for L2(R), see e.g. [1]. We call the collection
{wn,I : I ∈ I, n ∈ N0} a brushlet system. The brushlets also have an explicit
representation in the time domain. Define the set of central bell functions {gI}I∈I

by

ĝI(ξ) := ρ

( |I|
ε I

ξ

)

ρ

( |I|
ε′I

(1 − ξ)

)

,

such that bI(ξ) = ĝI

(
|I|−1(ξ − αI)

)
, and let

en,I :=
π

(
n + 1

2

)

|I| , I ∈ I, n ∈ N0.

Then,

wn,I(x) =

√

|I|
2

eiαI x
{

gI

(|I|(x + en,I)
)
+ gI

(|I|(x − en,I)
)}

.

By a straight forward calculation it can be verified that there exists a constant
C < ∞ independent of I ∈ I, such that

(5.9) |gI(x)| ≤ C(1 + |x|)−r,



5.2. CASE STUDY: α-MODULATION SPACES 38

with r ≥ 1 given by the smoothness of the ramp function. Thus a brushlet wn,I

essentially consists of two humps at ±en,I.
Brushlet bases are extremely flexible since we have a lot of freedom choosing

the covering I. Brushlet systems based on dyadic coverings are considered in
[9], where it is shown that such system form greedy bases for Lp, 1 < p < ∞.
Here we are interested in coverings compatible with α-modulation spaces. We
have the following definition.

DEFINITION 11. A family I of intervals I ∈ R is called an an α-covering of R if
there exists a constant 0 ≤ α ≤ 1, such that |I| ≍ (1 + |ξ|)α for all I ∈ I, and all
ξ ∈ I.

For brushlets based on α-coverings of R, we have the following complete
characterization of m-term brushlet approximation in α-modulation space. We
mention that it is possible to prove Bernstein estimates in this case due to the fact
that the brushlet system is non-redundant unlike the redundant frame defined
in Section 5.1. The proof of Theorem 14 is based on an application of Theorem
7, see [C] for details.

THEOREM 14 ( [C]). Let {wn,I}I∈I,n∈N0
be a brushlet system associated with a

disjoint α-covering I for some 0 < α ≤ 1, and let B =
{

wn,I/‖wn,I‖Ms,α
p (Lp)

}

I∈I,n∈N
.

Then B constitutes a greedy basis for the α-modulation spaces Ms,α
p,p(R), 1 < p < ∞,

s ∈ R, and

Aγ
q

(
Ms,α

p,p(R),B
)

= Kτ
q

(
Ms,α

p,p(R),B
)
, τ−1 = γ + p−1, γ > 0, 0 < q ≤ ∞,

with equivalent norms. Moreover, for τ > 0,

Kτ
τ

(
Ms,α

p,p(R),B)
= M

β,α
τ,τ(R), with β =

α

τ
− α

p
+ s.



CHAPTER 6

Sparse representations

In this final chapter we consider the computational problem of finding an
efficient representation of a signal w.r.t. a redundant dictionary in a finite di-
mensional space. Given a redundant signal (or image) dictionary in a finite
dimensional space and a signal, we would ideally like to find the best (or near)
approximation to the signal with a prescribed number of atoms. However, it
was proved by Davis et al. [28] that finding the best approximation of a signal
from an arbitrary dictionary with a prescribed number of atoms is an NP-hard
problem, so no efficient algorithm exists at present.

We therefore restrict our attention to the more tractable problem of finding
a sparse representation of the signal relative to a redundant dictionary. In the
early 1990’s, the so-called Matching Pursuit and Basis Pursuit strategies were in-
troduced with the purpose of getting good representations of signals relative to
redundant dictionaries. It was experimentally noticed that for a simple redun-
dant dictionary given by the union of a Dirac and Fourier orthonormal basis,
when the signal has a sufficiently sparse expansion (in the sense of counting
non-zero coefficients) in the dictionary, the Basis Pursuit algorithm can exactly
recover it. This observation lead to the seminal contribution [44] by Donoho and
Huo, where a mathematical explanation of the experimental facts was given.

Since then, mathematical problems related to sparse representations have
attracted a great deal of attention, and several authors have contributed to the
area, we mention here [15, 41, 42, 53, 58, 100–102]. See also the editorial [62].
Recovery of signals contaminated with noise is considered in [43, 61, 102].

Sparse representations are not only interesting from a theoretical point of
view. It is now well established in signal processing that sparse representations
are useful for applications as diverse as compression [32, 33], feature extraction
[54, 74], and blind source separation [60, 105].

6.1. Sparse representations through optimization

Let us introduce some notation. A dictionary in H = RN (resp. H = CN)
is a family of K ≥ N unit (column) vectors {gk} that spans H. We will use the
matrix notation D = [g1, . . . , gK] for a dictionary.

By a representation of s in D we mean a (column) vector α = (αk) ∈ RK (resp.
in CK) such that

s = Dα.

39
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We notice that when K > N, the vectors of D are no longer linearly independent
and the representation of s is not unique. The hope is that among all possible
representations of s there is a very sparse representation, i.e., a representation
with few non-zero coefficients. The trade-off is that we have to search all possi-
ble representations of s to find the sparse representations, and then determine
whether there is a unique sparsest representation.

The traditional approach (following [44, 45]) is to measure the sparsity of a
representation s = Dα by two quantities: the ℓ0 and the ℓ1 norm of α, resp. The
ℓ0-”norm” simply counts the number of non-zero entries of a vector. We also
notice that the optimal representation w.r.t. the ℓ1-norm is closely related to the
sparseness norm ‖ · ‖K1

1(D).

Our goal is to find the sparsest representation and this leads in a natural
way to the following two minimization problems to determine the sparsest rep-
resentation of s:

(6.1) minimize ‖α‖0 subject to s = Dα,

and

(6.2) minimize ‖α‖1 subject to s = Dα.

It turns out that the optimization problem (6.2) is much easier to handle than
the combinatorial optimization (6.1). In fact, a solution to (6.2) can be calculated
in polynomial time using the Basis Pursuit algorithm introduced by Donoho et
al. [16]. The Basis Pursuit algorithm is based on linear programming techniques.

It is thus important to know the relationship between the solution(s) of (6.1)
and (6.2), and to determine sufficient conditions for the two problems to have
the same unique solution. This problem has been studied in details in [44] and
later been refined in [45] in the special case where the dictionary D is the union
of two orthonormal bases.

Recall that M(D), defined by

M(D) := max
k 6=k′

|〈gk, gk′〉| ,

is the coherence of the dictionary. The following result gives a sufficient con-
dition for the optimization problems (6.2) and (6.1) to have the same unique
solution.

THEOREM 15 ( [F]). For any dictionary, if

(6.3) ‖α‖0 <
1

2
(1 + 1/M(D))

then α is the (unique) solution to both the ℓ0 and the ℓ1 minimization problems.

We can apply the result as follows. For a given signal, run the Basis Pursuit
algorithm, and obtain a minimizer of (6.2). If that minimizer has support that
satisfies the condition of Theorem 15, then we know that the minimizer is the
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unique solution to both (6.2) and (6.1). In the negative case, no conclusion about
the obtained representation can be made.

Next we consider the situation where the dictionary D is a union of L or-
thonormal bases. Taking unions of bases is an easy way to build dictionaries,
and with care it is possible to obtain highly redundant dictionaries with values

of M(D) equal to 1/
√

N, see [F]. The special case of a union of two orthonormal
bases is considered in [44,45]. We have the following more general result for the
union of L ≥ 2 orthonormal bases.

THEOREM 16 ( [F]). Let D = [B1, . . . ,BL] be a union of L ≥ 2 orthonormal

bases. Consider a representation α =





α1

. . .
αL



 with αl ∈ RN (resp. CN). Without loss

of generality, we can assume that the bases Bl have been numbered so that ‖α1‖0 ≤
. . . ≤ ‖αL‖0. If

(6.4) ∑
l≥2

M‖αl‖0

1 + M‖αl‖0
<

1

2(1 + M‖α1‖0)
.

then α is the (unique) solution to both the ℓ0 and the ℓ1 minimization problems.

The hypothesis of Theorem 16 is perhaps a bit cumbersome to check for a
given representation α, and the following non-trivial corollary proved in [F]
gives a more explicit condition that is very easy to check.

COROLLARY 1. For a dictionary that is the union of L orthonormal bases, if

(6.5) ‖α‖0 <

(√
2 − 1 +

1

2(L − 1)

) 1

M(D)

then α is the (unique) solution to both the ℓ0 and the ℓ1 minimization problems.

The following table gives numerical values of the constants

c(L) :=
√

2 − 1 +
1

2(L − 1)
.

L 2 3 4 5 6 7
c 0.914 0.664 0.580 0.539 0.514 0.497

TABLE 1. Numerical values of the constant
√

2 − 1 + 1
2(L−1)

in

Corollary 1 for small values of L.

By comparing c(L) to the values given by the general estimate (6.3), we see
that Corollary 1 is stronger only for L ≤ 6.
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Other sparseness measures. We are not restricted to using only ℓ0 and ℓ1

to measure sparseness of a representation α. For example, we can use the ℓτ-
”norms” given by

‖α‖τ := ∑
k

|αk|τ ,

for 0 < τ < 1. We can also consider a more general measure f ,

(6.6) ‖α‖ f := ∑
k

f (|αk|),

where f : [0, ∞) → [0, ∞) is a fixed function. Obviously, we need to impose
some restrictions on f to be able to claim that it measures sparseness. The fol-
lowing class of admissible sparseness measures is considered in [L].

DEFINITION 12. We let M the set of all non-decreasing functions f : [0, ∞) →
[0, ∞), not identically zero, with f (0) = 0 and such that t 7→ f (t)/t is non-increasing
on (0, ∞).

One can verify that M contains both the ℓ0 and ℓ1 norm, and the intermedi-
ate ℓτ , 0 < τ < 1, norms. For f ∈ M, it makes sense to study the relationship
between the solution(s) of the computationally tractable problem (6.2) and the
optimization problem

(6.7) minimize ‖α‖ f subject to s = Dα.

We have the following result that relates the solution(s) of (6.2) and (6.7).

THEOREM 17 ( [L]). Let D be an arbitrary dictionary in a finite dimensional space.
Assume m is an integer such that for any x and y with y = Dx and ‖x‖0 ≤ m, x is
the unique ℓ1-sparsest representation of y. Then, for any x and y such that y = Dx
and ‖x‖0 ≤ m, x is indeed the unique f -sparsest representation of y for any sparseness
measure f ∈ M. In particular, it is the ℓτ-sparsest representation for 0 ≤ τ ≤ 1.

Let us consider an example. For a general dictionary D, Theorem 15 shows
that any integer

m <
1

2
(1 + 1/M(D))

is admissible. Suppose a given signal s has a representation s = Dα with ‖α‖0 <
1
2(1 + 1/M(D)), then we deduce that α is the unique minimizer of (6.7) for any
sparseness measure f ∈ M.

For D the union of L orthonormal bases, Theorem 16 (or rather Corollary 1)
can be used to obtain suitable values of m.

6.2. Beyond sparsity: structured representations

In the previous section, and in several related recent papers [42, 44, 45, 100],
sufficient conditions have been identified where algorithms such as Basis Pur-
suit actually compute an optimal representation of a given signal, in the sense
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that they solve the best approximation problem under a constraint on the size
of the support of the signal. Typically, one calculates the coherence of D

M(D) = max
i 6=j

|〈g
i
, g

j
〉|.

Then for signals X with a representation X = D(S) satisfying | supp(S)| <

⌊1
2(1 + 1/M)⌋, Basis Pursuit will recover the representation S. One serious

problem with this type of results using the coherence is that they represent worst
case estimates. For example, the coherence is close to one as soon as we have one
pair of atoms that are approximately co-linear while the rest of the dictionary
may be much nicer. For such dictionaries, only extraordinary sparse signal rep-
resentations (perhaps with one or two non-zero coefficients) can be recovered
by Basis Pursuit.

A more refined type of result can be obtained by considering the cumulative
coherence introduced by Tropp [100]

µ1(D, m) := sup
|Λ|=m

sup
j 6∈Λ

∑
i∈Λ

|〈gi , gj〉|.

However, the cumulative coherence also gives a worst case estimate that does not
take into account the finer structure of the dictionary, and the derived estimates
are often too weak for many applications.

One way to overcome these shortcomings is by shifting to a probabilistic
viewpoint and consider random dictionaries. The probabilistic approach has been
considered in a number of recent papers, see e.g. [13,14,40]. Random dictionar-
ies are typically created by picking a number of unit vectors randomly from
some larger ensemble. The results on sparse representations using random dic-
tionaries are typically much better than the corresponding deterministic results.
One problem is that the results are difficult to interpret when we consider a spe-
cific dictionary.

Here we are interested in obtaining more optimistic results for structured
dictionaries. The idea is to use more of the structure of the dictionary. Since the
point of view has changed slightly, let us reintroduce the notion of a dictionary.
Let F and G be two finite index sets, and let H = CG be the signal space. A
dictionary for H is a linear map D : CF → CG from the coefficient space CF onto

the signal space (one can also replace C
F and C

G with R
F and R

G). The atoms
associated with D are the columns of the matrix representation of D wrt. the
canonical bases for CF and CG, i.e., D = [gi]i∈F. We assume that the dictionary
is normalized with respect to the ℓ2 norm, i.e, that ‖gi‖ = 1, for i ∈ F. The
support of a coefficient sequence S = (si)i∈F ∈ CF is defined as supp(S) = {i ∈
F : si 6= 0} ⊆ F.

With this notations the sparse approximation problem can be expressed as

(6.8) min
S

‖X −D(S)‖ subject to |supp(S)| ≤ m
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where X = (xi)i∈G ∈ CG and |I| denotes the cardinal of the set I.
We generalize this problem by considering, for any family S of subsets of F,

the following structured approximation problem, or approximation with structure
constraint S
(6.9) min

S
‖X −D(S)‖ subject to supp(S) ∈ S .

A particular instance of the structured approximation problem is the sparse
approximation problem (6.8), which corresponds to the family Sm = {I ⊆ F :
|I| ≤ m}. That is to say, we simply put as a constraint a bound on the allowed
number of nonzero coefficients in S. However, in many cases it also makes
sense to consider families S taking into account not only the sparsity of I but
also properties that may be related to the “geometry” of F and G. To study this
problem more closely, we introduce the concept of identifiable structures.

DEFINITION 13. A family S of subsets of F is called an identifiable structure if
D(S) = D(S ′) with supp(S), supp(S ′) ∈ S implies that S = S ′.

The significance of Definition 13 is the following:

(1) if a signal X satisfies the model X = D(S) with S supported on an identi-
fiable structure S , then the representation S is the unique representation
of X supported on S , and it can be recovered as the unique solution of
the optimization problem (6.9).

(2) if an algorithm (supposedly computationally efficient) provides some rep-
resentation X = D(Salg) where Salg is supported on an identifiable
structure S , then one can be sure that this representation is optimal
within the class of representations supported by S , thus bypassing the
(generally hard) combinatorial optimization in (6.9).

Examples of identifiable structure can be found in [K]. In the recent pa-
per [8], structured infinite representations in a wavelet/Gabor dictionary are
studied.

Let us consider one example of an identifiable structure. For I ⊂ F, we
define

P1(I) = sup
Z∈Ker(D),Z 6=0

∑i∈I |zi|
‖Z‖1

,

with ‖Z‖1 := ∑i∈F |zi| and Ker(D) the null space of D. The following is proved
in [L].

LEMMA 3. Let X = D(S). Let I be such that supp(S) ⊆ I, and suppose

(6.10) P1(I) := sup
Z∈Ker(D),Z 6=0

∑i∈I |zi|
‖Z‖1

<
1

2
.

Then S is the unique solution of min ∑i∈F |s ′
i| subject to X = D(S ′).
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This leads us to define the class SLP :=
{

I ⊆ F : P1(I) <
1
2

}
. We have the

following result which concludes this thesis.

THEOREM 18 ( [K]). The structure class SLP is identifiable: if a signal X has two
representations S and S ′ satisfying supp(S), supp(S ′) ∈ SLP, then S = S ′. Moreover,
the unique representation of X = D(S) with supp(S) ∈ SLP is the solution of the ℓ1

minimization problem

min ∑
i∈F

|s ′
i| subject to X = D(S ′),

and it can therefore be recovered by the Basis Pursuit algorithm.
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[6] M. Š. Birman and M. Z. Solomjak. Piecewise polynomial approximations
of functions of classes Wp

α. Mat. Sb. (N.S.), 73 (115):331–355, 1967.
[7] L. Borup, R. Gribonval, and M. Nielsen. Tight wavelet frames in Lebesgue

and Sobolev spaces. J. Funct. Spaces Appl., 2(3):227–252, 2004.
[8] L. Borup, R. Gribonval, and M. Nielsen. Beyound coherence: Recovering

structured time-frequency representations. Preprint, 2007.
[9] L. Borup and M. Nielsen. Approximation with brushlet systems. J. Approx.

Theory, 123(1):25–51, 2003.
[10] L. Borup and M. Nielsen. Banach frames for multivariate α-modulation

spaces. J. Math. Anal. Appl., 321(2):880–895, 2006.
[11] J. A. Brudnyı̆. Spline approximation, and functions of bounded variation.

Dokl. Akad. Nauk SSSR, 215:511–513, 1974.
[12] E. J. Candès and D. L. Donoho. New tight frames of curvelets and opti-

mal representations of objects with piecewise C2 singularities. Comm. Pure
Appl. Math., 57(2):219–266, 2004.

[13] E. J. Candès, J. Romberg, and T. Tao. Robust uncertainty principles: ex-
act signal reconstruction from highly incomplete frequency information.
IEEE Trans. Inform. Theory, 52(2):489–509, 2006.

[14] E. J. Candès, J. Romberg, and T. Tao. Stable signal recovery from incom-
plete and inaccurate measurements. Submitted, 2006.

46



REFERENCES 47

[15] E. J. Candes and T. Tao. Decoding by linear programming. IEEE Trans.
Inform. Theory, 51(12):4203–4215, 2005.

[16] S. S. Chen, D. L. Donoho, and M. A. Saunders. Atomic decomposition
by basis pursuit. SIAM Rev., 43(1):129–159 (electronic), 2001. Reprinted
from SIAM J. Sci. Comput. 20 (1998), no. 1, 33–61 (electronic) [ MR1639094
(99h:94013)].

[17] O. Christensen. An introduction to frames and Riesz bases. Applied and Nu-
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[86] L. Päivärinta and E. Somersalo. A generalization of the Calderón-
Vaillancourt theorem to Lp and hp. Math. Nachr., 138:145–156, 1988.

[87] A. A. Pekarskiı̆. Chebyshev rational approximation in a disk, on a circle
and on a segment. Mat. Sb. (N.S.), 133(175)(1):86–102, 144, 1987.

[88] P. Petrushev. Bases consisting of rational functions of uniformly bounded
degrees or more general functions. J. Funct. Anal., 174(1):18–75, 2000.

[89] P. Petrushev. Nonlinear n-term approximation from hierarchical spline
bases. In Constructive theory of functions, pages 33–85. DARBA, Sofia, 2003.

[90] P. P. Petrushev. Direct and converse theorems for spline and rational ap-
proximation and Besov spaces. In Function spaces and applications (Lund,
1986), volume 1302 of Lecture Notes in Math., pages 363–377. Springer,
Berlin, 1988.

[91] A. Ron and Z. Shen. Affine systems in L2(Rd). II. Dual systems. J. Fourier
Anal. Appl., 3(5):617–637, 1997. Dedicated to the memory of Richard J.
Duffin.

[92] A. Ron and Z. Shen. Affine systems in L2(Rd): the analysis of the analysis
operator. J. Funct. Anal., 148(2):408–447, 1997.

[93] E. Schmidt. Zur Theorie der linearen und nicht linearen Integralgleichun-
gen Zweite Abhandlung. Math. Ann., 64(2):161–174, 1907.

[94] S. B. Stechkin. On absolute convergence of orthogonal series. Dok. Akad.
Nauk SSSR, 102:37–40, 1955.

[95] V. N. Temlyakov. The best m-term approximation and greedy algorithms.
Adv. Comput. Math., 8(3):249–265, 1998.

[96] V. N. Temlyakov. Greedy algorithm and m-term trigonometric approxi-
mation. Constr. Approx., 14(4):569–587, 1998.

[97] V. N. Temlyakov. Non-linear m-term approximation with regard to the
multivariate Haar system. East J. Approx., 4(1):87–106, 1998.

[98] V. N. Temlyakov. Nonlinear methods of approximation. Found. Comput.
Math., 3(1):33–107, 2003.



REFERENCES 52

[99] H. Triebel. Theory of function spaces, volume 78 of Monographs in Mathemat-
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Dansk resumé

Denne afhandling giver bidrag til teorien om ikke-lineær approksimation
med overkomplette funktionsbiblioteker. Den grundlæggende idé er, at ap-
proksimere en funktion (et signal) med m-leds partialsummer dannet udfra et
funktionsbibliotek. Ved at gøre funktionsbiblioteket større end en basis kan
man opnå den fordel at klassen af funktioner, der kan approksimeres med en
given effektivitet, er større end en tilsvarende klasse opnået ved approksima-
tion med et lineært uafhængigt funktionsbibliotek.

Afhandlings resultater falder indenfor 4 hovedområder. I det første un-
dersøges approksimation med generelle funktionsbiblioteker i et Banachrum.
Med minimale antagelser om struktur af funktionsbiblioteket udledes en række
estimater for ikke-lineær approksimation. Der gives samtidig en række ek-
sempler på klassiske estimater for ikke-redundante funktionsbiblioteker, som
påvises ikke at være sande for tilsvarende overkomplette biblioteker.

I anden del er emnet approksimation med wavelet frames. Wavelet frames
er overkomplette systemer, der har samme basale struktur som orthonormale
wavelets. For sådanne frames gives en komplet karakterisation af approksima-
tionsegenskaberne i Lp. Ligeledes betragtes konstruktive algoritmer til at opnå
tyndt besatte wavelet frame representationer af signaler.

Tredie del omhandler approksimation med tids-frekvens biblioteker. For
en generel klasse af glathedsrum konstrueres tilhørende tids-frekvens frames,
der benyttes til at give en komplet karakterisation af glathedsrummene. Denne
karakterisation leder naturligt til Jackson estimater for ikke-linær approksima-
tion med tids-frekvens framen. Specielt behandles approksimation i såkaldte
α-modulationsrum.

I den sidste del behandles representation af signaler i et endeligdimension-
alt vektorrum relativt til et overkomplet funktionsbibliotek. Specielt studeres
spørgsmålet om at finde tyndt besatte representationer af signaler. Dette kan
anskues som et optimeringsproblem, og der opstilles tilstrækkelige betingelser
som sikrer at en tyndt besat representation af et givet signal kan beregnes effek-
tivt.
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