Typical exam sets

Variant 1

Exercise 1. Consider the power series

$$
f(x):=\sum_{n \geq 1} \frac{(x-1)^{n}}{n} .
$$

(i). Find the convergence interval.
(ii). Show that $f^{\prime}(x)=1 /(2-x)$ at all points where f converges absolutely.
(iii). Prove that $f(x)=-\ln (2-x)$ on the convergence interval. (Hint: use the fundamental theorem of calculus.)

Exercise 2. Consider the sequence $\left\{f_{n}\right\}_{n \geq 1}$ where

$$
f_{n}(x):= \begin{cases}0 & \text { if } x=0 \\ \frac{\sin (x n)}{x n} & \text { if } 0<x \leq 1\end{cases}
$$

(i). Prove that each f_{n} is discontinuous at $x=0$ but the sequence has a continuous pointwise limit.
(iii). Does the sequence have a uniform limit?

Exercise 3. Consider the equation

$$
y^{\prime}(t)=y(t)^{2}+1, \quad y(0)=1
$$

(i). Define $g: \mathbb{R} \mapsto \mathbb{R}, g(x)=1+x^{2}$. Let $f: \mathbb{R} \times \mathbb{R} \mapsto \mathbb{R}, f(t, x):=g(x)$. Show that $y^{\prime}(t)=f(t, y(t))$.
(ii). Show that $f \in C^{1}(\mathbb{R} \times \mathbb{R})$ and it obeys a local Lipschitz condition.
(iii). Show that for t near 0 we can rewrite the equation as:

$$
[\arctan (y(t))-t]^{\prime}=0
$$

(iv). Find $y(t)$ and indicate the maximal time interval containing $t_{0}=0$ where the solution exists.

Exercise 4. Let $\mathbf{h}: \mathbb{R}^{2} \mapsto \mathbb{R}$ given by $\mathbf{h}(u, v)=u^{2}+(v-1)^{2}-5+e^{u-2}$.
(i). Show that $\mathbf{h}(2,1)=0$, and $\mathbf{h} \in C^{1}\left(\mathbb{R}^{2}\right)$.
(ii). Show that one can apply the implicit function theorem in order to obtain some small enough $\epsilon>0$ and a C^{1} function $f:(1-\epsilon, 1+\epsilon) \mapsto \mathbb{R}$ such that

$$
\mathbf{h}(f(v), v)=0, \quad \forall v \in(1-\epsilon, 1+\epsilon) .
$$

(iii). Find $f^{\prime}(1)$.

Variant 2

Exercise 1. Consider the power series

$$
f(x):=\sum_{n \geq 2} \frac{(x+1)^{n}}{n(n-1)}
$$

(i). Find the convergence interval. Compute $f(0)$.
(ii). Show that $f^{\prime}(x)=\sum_{n \geq 1} \frac{(x+1)^{n}}{n}$ and $f^{\prime \prime}(x)=-1 / x$ at all points where f converges absolutely.
(iii). Compute $f(-1)$ and $f^{\prime}(-1)$. Prove that $f(x)=1+x-x \ln (-x)$ on the convergence interval. (Hint: use the fundamental theorem of calculus.)

Exercise 2. Consider the sequence $\left\{f_{n}\right\}_{n \geq 1}$ where

$$
f_{n}(x):= \begin{cases}1 & \text { if } x=0 \\ n \sin (x / n) & \text { if } 0<x \leq 1\end{cases}
$$

(i). Prove that each f_{n} is discontinuous at $x=0$.
(ii). Prove that the sequence has a pointwise limit.
(iii). Does the sequence have a uniform limit? (Hint: use the fact the $0 \leq x-n \sin (x / n) \leq$ $1-n \sin (1 / n)$ if $x \in[0,1])$.

Exercise 3. Consider the equation

$$
y^{\prime}(t)=(t+1)(y(t)+1), \quad y(0)=0
$$

(i). Let $f: \mathbb{R} \times \mathbb{R} \mapsto \mathbb{R}, f(t, x):=(t+1)(x+1)$. Show that $y^{\prime}(t)=f(t, y(t))$.
(ii). Show that $f \in C^{1}(\mathbb{R} \times \mathbb{R})$ and it obeys a local Lipschitz condition.
(iii). Show that for t near 0 we can rewrite the equation as:

$$
\left[\ln (y(t)+1)-(t+1)^{2} / 2\right]^{\prime}=0
$$

(iv). Find $y(t)$ and indicate the maximal time interval containing $t_{0}=0$ where the solution exists.

Exercise 4. Let $\mathbf{h}: \mathbb{R}^{3} \mapsto \mathbb{R}^{2}$ given by $\mathbf{h}\left(u_{1}, u_{2}, v_{1}\right)=\left[u_{1}^{2}+\left(v_{1}-1\right)^{2}-5+e^{u_{2}-2}, \ln \left(v_{1} u_{1} / 2\right)\right]$.
(i). Show that $\mathbf{h}(2,2,1)=[0,0]$, and $\mathbf{h} \in C^{1}\left(\mathbb{R}^{3}\right)$.
(ii). Show that one can apply the implicit function theorem in order to obtain some small enough $\epsilon>0$ and a C^{1} function $\mathbf{f}:(1-\epsilon, 1+\epsilon) \mapsto \mathbb{R}^{2}$ such that

$$
\mathbf{h}\left(\mathbf{f}\left(v_{1}\right), v_{1}\right)=[0,0], \quad \forall v_{1} \in(1-\epsilon, 1+\epsilon) .
$$

(iii). Find the Jacobi matrix $[D \mathbf{f}](1)$.

