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Preface to part |

This material can be used as an introduction to the relgtivel branch of or-
der domains and their application in coding theory. Welhkn as well as new
results are presented.

Itis assumed that the reader is familiar with the most basib@er basis theory.
A review of the relevant Grobner basis theory can be fourappendix I.A. See
also [4] for a nice introduction to Grobner basis theory.

The theory of order domains is very much related to the thedrstigebraic
function fields and the theory of algebraic geometry. It ssdlathors policy that
this material should be readable also for readers withoyteaperience with
these two theories. However, as the connection betweehdoei¢s is interest-
ing in itself, a continuous discussion of the connectionréspnt throughout the
material. This discussion can be skipped.

The references made, refer to the bibliography on pp. 152-2so a list of
symbols as well as an index of terms can be found on pp. 158-162
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1.1
A historical survey

The concept of order domains and order functions is rather fide first ref-

erences on the subject are [20], [21] and [33]. Indepengaeaxitthis work by

van Lint, Hgholdt and Pellikaan a similar concept is defime[80] and [31] by
O’Sullivan. Although a new subject, the ideas behind themhean be found
in the theory of algebraic geometry and in the theory of algielfunction field

theory. To be more precise, the order function can be viewedgeneralization
of the discrete valuation on a function field of transcendesegred .

The introduction of this new theory was motivated by the psy@], [6] and [7]
where Feng, Wei, Rao and Tzeng showed, that a large clasgedfraic geome-
try codes can be described without the rather heavy thealgebraic geometry
/ algebraic function field theory (in particular without tRéemann-Roch theo-
rem). And that improved constructions of codes can be maata this new
descriptions. So the idea has been to build a new theory share simple
than the algebraic geometry / algebraic function field thebut still contains
enough information to describe a very large class of algelgeometry codes.

In [8], [6] and [7] Feng, Wei, Rao and Tzeng state lower bouokthe mini-

mum distance of codes defined from so-called well-behaviogisnces. How-
ever they do it on the level of the code words, instead of onldkel of the

elements in a related algebraic structure (the order dgm@ee also [23], [32]
and [39]). In the language of order domain theory this remalay is known as
the order bound.

The by far largest class of algebraic geometry codes comsidep to the birth

of the order domain theory, consists of the following twodgmf codes. The
codes defined from algebraic curves, that is codes defined finaction fields

of transcendence degrée And the Reed-Muller codes, that are codes defined
from polynomial ringsF, [X;. ..., X,,]. Note that the quotient field of a poly-
nomial ring inm variables constitutes the simplest example of a functidd fie
of transcendence degree Beside giving new and more simple descriptions of
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many of the algebraic geometry codes that have been coediderto the birth
of order domain theory, it has been the hope, that the newyttveauld make it
possible to describe codes defined from a much larger cldssaion fields of
transcendence degree > 1. In [31] O'Sullivan gives examples of nontrivial
order domains of transcendence degree greater thatowever he develops
his order domains using methods from algebraic geometryj13h Pellikaan
and the author of this thesis develop tools, and modify (arteralize slightly)
the notion of an order function, such that order domains bitrary transcen-
dence degree can easily be constructed. The codes relatedetodomains of
transcendence degree more thaare treated in the last chapters of the
present thesis.

Already in [8], [6] and [7] Feng, Wei, Rao and Tzeng describagecoding al-
gorithms for their codes. In [21] it is described how one canatle the dual
of an evaluation code coming from an arbitrary order domdihe decoding
algorithm uses majority voting and is based on Sakata'sneida of the clas-
sical Berlekamp-Massey algorithm. Hgholdt et. al.’s digsion is an adaption
of a decoding procedure described in [29] by O’Sullivan. Teeoding algo-
rithm decodes up to half of the Feng-Rao distance which isveddound on
the minimum distance given by the order bound.



1.2
Some important definitions

The definition, and in particular the actual constructioroafer domains, re-
quires some knowledge about certain orderings on diffesteattures. For later
reference we will in this chapter discuss different struetuand characterize
some interesting orderings on these.

[.2.1 Monoids and orderings
We have the following definitions.

Definition 1.2.1

Let A be a set, and let be a binary operation oA, and0 an element in\.
Then(A, +,0) is called a commutative monoid if the following conditiornsldh
foranya, 8,y € A

1) a+0=0+a=«a
(2) (a+pB)+y=a+(B+7)
(3) a+p=pF+c

Definition 1.2.2
A commutative monoidA, +,0) is called a semigroup if the following condi-
tion holds for any, 5,y € A

(1) a+~vy=p+yimpliesa =p.
A semigroup is called inverse free if

(2) a+pB=0, impliesa = =0.
And a semigroup is called torsion free if

n times
e e . .
(3) a+a+---+a=0forsomen € N impliesa = 0.
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Any commutative monoid defines a commutative group in thiefohg way.

Definition 1.2.3

Given a commutative monoitl\,+,0) then define the relatior- on A x A

by (a,8) ~ (v,0) if and only if there existg € A such thatu + 6 + ¢ =
v+ B +¢. Clearly~ is an equivalence relation. The equivalence clags.0f)

is denoted by«, 5] and the set of equivalence classes is denoted bY).
Define[a, B] + [7,0] = [a + 7, 8 + §]. Then this operatior- is well-defined
and givesD(A) the structure of a commutative group which is called the grou
of differences of\.

Next we will be concerned with classifying orderings.

Definition 1.2.4
Let < be an ordering on the sat (A, <) is called a well-order (ané a well-
ordering) if the following condition hold

(1) any non empty subset &f has a smallest element under .

In particular a well-ordering is a total ordering.

Definition 1.2.5

Let (A, <) be a well-order. If a surjective ma§ : A — N exists such that
N(a) < N(B) wheneverx < 3, a, 5 € A then we say thatA, <) is isomor-

phic with(N, <). Or we say a little less correct that the orderigs isomorphic

with the ordering omN.

Saying tha{ A, <) is isomorphic tqN, <) is of course equivalent to saying that
the elements ok can be ordered in a sequer(eg, Ao, . . .) such that\; < ;11
fori=1,....

Definition 1.2.6
Let (A,+,0) be a commutative monoid. A partial orderirgon A is called
admissible (with respect t¢ and0) if the following conditions hold for any
o, 8,7 € A.

(1) 0 < a whenever # 0

(2) a<pB impliesa+v < 8+ 7.

Remark 1.2.7

Let (A, +,0) be a commutative monoid that possesses a total admissitge- or
ing (with respect te+ and0). Part (2) of definition 1.2.6 ensures that, +, 0)

is a semigroup.
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Definition 1.2.8

Let < be an ordering on a semigroyp, +,0). We call(A,+,0, <) a well-
ordered semigroup & is admissible (with respect to and0) and< is a well-
ordering.

Remark 1.2.9
A well-ordered semigroup is inverse free and hence torsiea f

[.2.2 Monomial orderings

Of particular importans in the theory of order domains aee ftillowing two
well-known semigroupgNj, +,0 = (0,...,0)) and(M,, -, 1), where M, is
the set of monomials in the variablé§,, X, ..., X,, and wheret+ and- are
as usual. We will sometimes use different labels for thetiemainates, say- -
instead ofX1, ..., X,,. In this case we writeM (- - - ) for the set of monomials
in the indeterminates- - . For instance the set of monomialsih Y is denoted
M(X,Y). We will often use the multi index notationx = (ay,aq,..., o)
andX® = XM X2 ... X0,

Using the natural mapy, — M, given bya — X%, an ordering on\,
corresponds to a unique ordering @r,.. Now one gives a special name to
orderings< on (N, +, 0) (or equivalent or{M,, -, 1)), such tha(Nj, +, 0, <)
(or equivalenf{ M,., -, 1, <)) is a well-ordered semigroup.

Definition 1.2.10
An ordering=< on (Nj, +, 0) (or equivalent oM., -, 1)) that is an admissible
well-ordering is called a monomial ordering.

Remark 1.2.11

If < is a monomial ordering ofNj, +, 0) (or equivalent or{ M, -,1)) then0

Is the smallets element b, under=< (or equivalent is the smallest element of
M., ) (see [4, Ch. 34, Cor. 6]).

In the following we will whenever the binary operation and the neutral ele-
ment0 is given by the context, use abbreviated notation and Writethe place
of (A, +,0). In this thesis we will often consider sub semigroups. ;. And
we will adjoin an element-oo to A to give A_, := A U {—oc} . We will use
the convention

A+ (=00) = (=00) + (—00) = —00

forany A € A. To ease the notation we state the following definition.



10 Some important definitions Ch. 1.2

Definition 1.2.12

Let <, be a monomial ordering ory. And letA € Nj be a semigroup. The
restriction< x of <y to A is said to be a monomial ordering dn Extend- x
to an ordering o\ _ ., by the rule—oc < A for any\ € A. Also this extension
is called a monomial ordering.

In the following we describe some important monomial onagsi We mainly
describe them on the level d#1,,,.

Definition 1.2.13
Consider indices

{ilai27"'7ém} = {1’27"'am}'
The sequencéX;, . X,,,...,X;, ) defines a so-called lexicographic ordering
<1ez ON M, by the following rule

a; a; im Bi Bi
X'illX’i22“.X'm <lea X' X,

i 1 19

if and only if there exists a valug¢ € {1,...,m} such thaty;, = f;, for
s =1,...,5 —1andwa;; < B;;. We say that the lexicographic ordering is
defined by

Xim <lex Xim_l <lex " <lex Xil-

When the lexicographic ordering is not composed with othenemial order-
ings, then we will sometimes call it the pure lexicographidawing.

Note that definition 1.2.13 gives us! different lexicographic orderings oM,
corresponding to then! different choices of assignmentsa. .., jp,.

Definition 1.2.14

Consider so-called weights(X), w(Xs), ..., w(X,,) € Ry, whereR, is the
set of positive real numbers. If these are linearly depenolezrZ. then consider
also a lexicographic ordering;., on M,,,. The weightsw(X;) extends to a
monomial function onM,,,, that is

My — Ry
Xa — Zﬁlaiw(Xi).

In general we will calhu(X ) the weight of X%. Now the functionu to-
gether with the ordering ., defines a monomial ordering,, on M.,,, by the
following rule

My <, My
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if and only if one of the following two conditions holds
(1) w(M) < w(Ms)
2) w(My) = w(M) andX® <., XP.

We will call this particular ordering a one-dimensional gleied degree lexico-
graphic ordering as the weights belongs to the spaceWhenw(X,) = --- =
w(X,,) then we callk,, a graded lexicographic ordering. The particular graded
lexicographic ordering with lexpart given by

Xm <lex Xm—l <lex " Rlex Xl

will be called the standard weighted degree lexicographiering (or simply
the standard ordering) aM,,,. We will denote it by<;.

Note that the monomial orderings that we choose to call omealsional weighted
degree lexicographic orderings are the orderings thateritbrature are often
called weighted graded lexicographic orderings. The measlay we include
the words “one-dimensional” is, that we will define a mondnaiadering be-
low where the weights belongs ¥ \{0} for arbitrary fixed natural numbet.
These monomial orderings will contain the orderings frorirgkion 1.2.14 as a
special case (however not necessarily witk 1).

The following definition very much related to definition 2.is essential when
we later in this material construct examples of order domain

Definition 1.2.15

Consider weightsv(X1),...,w(X,) € Nj\{0}. OrderNj by a monomial
ordering<y; and orderM,, by a lexicographic orderinge,.. We will refer
to <n; as the inner ordering. The weights extends to a monomiatibtmon
M,,, that is

My = N
w :
Xa — Z;il Ozi’w(Xi).

We will call w(X®) the weight of X®. Now the weighted degree lexico-
graphic ordering<,, (on My,) induced byw, <n; and <, is the monomial
ordering defined as follows. GiveM,, My € M,, thenM; <,, M- if and
only if one of the following two conditions holds.

(1) w(Mr) <n; w(M2)
(2) w(Ml) = w(MQ) andMl <lex MQ-
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This definition surely is very general, as actually all mofedrarderings can be
viewed as weighted degree lexicographic orderings in thewWing way. Given

a monomial ordering< on M,,,, then simply choose the weights to be the unit
vectors inNj*, and the ordering ol to be < (note that in particulann = r

in this case). In this thesis we will often study cases where- . And we
will study families of orderings on\,,, consisting of weighted degree lexico-
graphic orderings that are defined from the same weighi§;inby the same
lexicographic ordering oM., but by different choices of monomial orderings
onNj.



1.3
Order domains

In this chapter we give the definition of an order function ahdome important
related concepts. We give some simple examples and disttesgt aspects
of the structures. In later chapters we will construct vasiexamples of order
domains.

[.3.1 Order functions, order domains and well-behaving bass

The definition of an order function uses the concept bfagebra.

Definition 1.3.1
Letk be a field. Ak-algebra is a commutative rirfg that satisfies the following
conditions

(1) kisasubring ol
(2) the unity off is also a unity inR.

In the remaining part of this thesis the smallest elementveéidrorder (A, <x)

will always be denoted bg. We will often adjoin an extra elemenrtoc to A

to get the sef\_, := A U {—oo}. We extend the ordering to an ordering
on A_ by the rule that-co < « for anya # —oo. This extended ordering
will also be denoted by ,. We are now ready to define an order function. The
following definition is from [13].

Definition 1.3.2
Let R be ak-algebra. An order function oR is a surjective map : R — A
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where(A, <) is a well-order, such that the following conditions hold

(0.1) p(f) =—cifandonlyiff =0
(0.2) p(Xf) = p(f) for all nonzero € k
(0.3) p(f+g) =< max{p( ), p(g)} and equality holds

whenevep(f) < p(g)

(0.4) if p(f) < p(g) andh # 0 thenp(fh) < p(gh)
(0.5) if p(f) = p(g), then there exists a nonzekce k

such thap(f — Ag) < p(g).

In [20], [21] and [33] Hegholdt, van Lint and Pellikaan recesrthatA is a subset

of Ny. So in their original set-up the well-ordering &fis always the restriction

of the usual (and unique) monomial orderiagon Ny to A. However whenever

an order functiorp with respect to definition 1.3.2 is given, whef&, <,) is
isomorphic with(Ny, <), then also this function can be understood as an order
function with respect to the definition given by Hgholdt dt. ®'Sullivan’s
definition of an order function is nearly similar to the oneegi by Hgholdt, van
Lint and Pellikaan. We will discuss this at the end of thistisec

From [21] we have the following result.

Proposition 1.3.3
Let R be ak-algebra with an order functiom ThenR is an integral domain.

Proof:

Assume thaff g = 0, where neithelf nor g equalsd. From part (O.1)

of definition 1.3.2 we havep(f) = —oc, which again by part (O.4) implies
p(fg) = —oo. Butp(0) = —oc, and we have reached a contradiction. [

This proposition suggests the following definition (fron3]1L

Definition 1.3.4
A k-algebraR on which there is defined an order function is called an order
domain ovel, or simply an order domain.

The fact that an order domaiR is an integral domain of course implies, that
one can define the quotient fiegliiot(R).

Definition 1.3.5
Let R be an order domain ovér. The transcendence degreelg(R) of R
is the maximal number of elementsf,, ..., f, € R that are algebraically



1.3.1. Order functions, order domains and well-behaving bases 15

independent ovek, meaning that there exists no nonzero polynontabf r
variables with coefficients ik, s.t. P(f1,..., f;) = 0in R. The transcendence
degree ofQuot(R) is defined similarly.

Remark 1.3.6
If R is an order domain then obviousiydg(R) < trdg(Quot(R)).
If trdg(Quot(R)) = 1 then alsardg(R) = 1.

We now give some simple examples of order domains.

Example 1.3.7
Thek-algebraR := k is an order domain with an order function given by=

{0} and
kE — Ao
p: 0 —» —o0
¢ — 0 foree k\{0}.

We will call this order domain the trivial order domain .

Example 1.3.8
Thek-algebraR := k[X] is an order domain with an order function given by
A =Ny and

EIX] — A
p: { 0 = -0 (1.3.2)

F(X) +— deg(F(X)), forF(X) #0.
Example 1.3.9
Thek-algebraR := k[ X4, ..., X»], m > 2, is an order domain that possesses a
whole range of basically different order functions. In thi@mple we describe
the simplest one. Denote f&y, i = 1,...,m the unit vector inNj* with al
in positioni. Consider weightsv(X;) = e;, i = 1,...,m. Extendw to a
monomial functionw : M, — Ny (recall, thatM,, is the set of monomials
in X1,...,Xy). Consider the standard ordering; on Nj*. DenoteX :=
(X1,...,X). The functionw : M,, — Ny’ is extended to an order function
onk[X] in the following way. Let\ := Nj', and define

E[X] — A_x
) 0 = —00
P F(X) — max<, {w(M)| M € Supp(F (X))},
for F(X)#0

(whereSupp(F' (X)) denotes the set of monomialsit{X)).
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The following results are mainly simple generalizationsesiults shown in [21].

Proposition 1.3.10
Let p be an order function oR. We have

(1) if p(f) = p(g), thenp(fh) = p(gh) forallh € R

(2) if f € Randf #0, thenp(1) 24 p(f)

3) k={feR[p(f) =ap(1)}

(4) if p(f) = p(g), then there exists a unique nonzeve k

such thap(f — Ag) <a p(9).

Proof:
See [21, Lem. 3.9]. O
Remark 1.3.11

Note that(1) in proposition 1.3.10 implies

(1) if p(f) = p(g) andp(h) = p(i) thenp(fh) = p(gi).

Note also that the only case whekes a finite set is the case = {0} corre-
sponding to thé-algebraR = k (the trivial order domain).

Proposition 1.3.12

Let R be ak-algebra that possesses an order fungtiorR — A_.,. Consider
any subk-algebraS C R. LetAg be the image of underp. The restriction of
ptoS, thatisp : S — Ag, is an order function.

Proof:
A simple proof can be found in [30] and [31]. O

Two concepts strongly related to order domains are the gdita well-behaving
basis, and when is ordered isomorphic with, the concept of a well-behaving
sequence. The first appearance of the word well-behavingeses is in the pa-
per [7] of Feng and Rao. In the previous papers [6] and [8] thieas introduce
a related concept of a well-behaving matrixIn this material we will use the
definition of a well-behaving sequence given by Hgholdt, Manand Pellikaan
in [20], [21] and [33]. Their definition is a strongly modifiegrsion of the one

'Feng and Rao’s definition of a well-behaving sequence iste@léao a quotient ring
F,[X1,...,Xn]/I. Denote

n:=#{a €F | P(a)=0VP eI}
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given by Feng et. &l In [13] the definition of Hgholdt et. al. of a well-behaving
sequence, is generalized to a definition of a well-behaviamgjsb We will in-
troduce this definition first, and then afterwards explairatvdn well-behaving
sequence is. We will need the following definitions.

Definition 1.3.13

Let R be ak-algebra and a basis forR as a vector space over Let (A, <y)

be a well-order and assume that a bijective map3 — A is given (note that

in this general set-up need not be related to an order function). We index
the elements oB by writing for everyA € A, f\ := f wheref is the unique
element inB with p(f) = X. We callp an index map. The indexed basis is
denoted by fx | A € A) or simply byB, . The index magp together with the
well-ordering<, on A induce a well-ordering<z on B, by the following rule:

Ix <8 fy ifandonly if x <, v. The in this way well-ordered indexed basis is
denoted by fx | A € A) ., orsimply byB,, -, .

Definition 1.3.14
LetB, <, = (fr | A € A), be awell-ordered indexed basis fok-algebraR.
For any\ € A let Ry C R be defined by

Ry :=span, {fx |\ <a A}
Thel-function corresponding tB, -, is the map

o L AXA = A
MU (@ B) = ming {N€A| fofs € Ry}

Definition 1.3.15

LetB, ., = (fr| A € A), be awell-ordered indexed basis according to defi-
nition 1.3.13. We will say thaB,, -, is well-behaving if and only ifx (o, ) <
In(y, B) for all a, B,y € A such thaty <, ~. A well-behaving basis is a well-
behaving well-ordered indexed basis.

In many of the applications that we will present in this thebie ordering<
on A will be isomorphic with the unique admissible ordering Mrby an iso-
morphism

N : (A, <) = (N, <).

Their definition involves an evaluation map

ev: F[X1,.. .. Xn]/I > F

(we will define this evaluation map properly in chapter 1.11)
2As we will see, nomag : R — Fy is involved in the definition given by Hgholdt et. al.'s
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Define in this special casg := f) if N(A\) =4,i=1,2,... giving

{AIxe A} ={gi|li e N}. (1.3.5)

Definition 1.3.16

If A is ordered isomorphic with the ordering bnand(fx| A € A)_  is a well-
behaving basis, then we will call, go, ...) a well-behaving sequence. We
define

Li = R/\ if N()\) =1
(that isL; = span{g1,...,g;}) and we define the map

l_{NxN - N
’ (i,5) +— minc{l € N|g;g; € L;}.

The mapd, andi are related by

I(N(a), N(B)) = N(ir(e, B))
fora, B € A.

Now it might at a first glance seem cumbersome to use spedatiom when an
isomorphismN : (A, <) — (N, <) exists. Beside the historical reason for do-
ing this (until recently only order functions with well-ba¥ing sequences were
considered) we will later learn, that it can actually be amaatage in many
situations, especially when we, in the last part of thisitesonstruct codes.
Whenever it does not cause any confusion, we will take thedfsen to write

(f1, f2,...) instead of(g1, go, .. .).

The connection between well-behaving bases and order derizailescribed by
the following two propositions.

Proposition 1.3.17

Let R be ak-algebra with an order function — A_.,, whereA is ordered
by <r. LetB C R\{0} be a set such that the restriction wfto B, that is
p: B — A, is a bijective map. TheB is a basis folR. If we index the elements
of B by fx := fifand only if p(f) = A, thenB, o, == (fx| X €A)_ Is
well-behaving. We will say thaB, -, is a well-behaving basis corresponding
to the order functiom.
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Proof:

This proof is from [21, Pro, 3.12]. The fact th&tis a basis forR is proved
by induction using part (4) of proposition 1.3.10. The wed#lhaving property
of the indexed and ordered basis follows immediately from (2.4) of defini-
tion 1.3.2. O

Proposition 1.3.18

Let (fx| X € A),, be a well-behaving basis oftaalgebralk. Definep(f) =
—oo if f = 0, andp(f) = X whereX := min_ , {\'|f € Ry} for f # 0.
Thenp : R — A_ is an order function. And it is the only order function with
p(fx) = X forall X € A. We will say thatp is the order function corresponding
to the well-behaving basigy| A € A)_ .

Proof:

This proof is a slightly modification of the proof from [21,d?13.14]. Property
(0.1), (0.2), (0.3) and (0.5) from definition 1.3.2 followagly. To see that
also (0.4) holds, note the following. L¢t g be nonzero elements iR. Write

f= Y ah

A=ap0(f)

g= Y. Bfr

A=<ap(g)
Note thato, sy, B,(4) # 0. We get

fg= Y mh

A=al(p(f):0(9))

wherew,(),0(q)) 7 0- S0p(fg) = l(p(f),p(g)) and property (O.4) in def-
inition 1.3.2 follows. The uniqueness follows from conditi (O.3) in defini-

tion 1.3.2. O

Definition 1.3.19

LetB, <, = (fx | A € A), be awell-behaving basis forkaalgebraRk. Then
B :={f\| XA € A} is said to be an order basis for the order funcfionR —
A described in proposition 1.3.18. Simil#, := (f\ | XA € A) is said to
be an indexed order basis for the order function R — A_., described in
proposition 1.3.18. In general a subgeC R\{0} is said to be an order basis
if there exists a well-behaving bads <, = (fx | A€ A)_ stB={fr[ A€
A}
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Remark 1.3.20
Let(fx| X € A), be awell-behaving basis corresponding to an order function
p. Replacing for evenx € A (in turn) fy by

> anfy

N <A

whereay: € k, only finitely manyay ’s are nonzero and), is nonzero, we get a
new well-behaving basis (with respectdp It is clear that every well-behaving
basis forR with respect tg can be found fronffy| X € A)_  in this way.

Remark 1.3.21

Let R be an order domain with an order function R — A_,.. ThenR) and
I are independent of the choice of order basis. In partictiléollows from
remark 1.3.11 thaty (., B) = p(fg) wheref,g € R are any elements such that

p(f) = a andp(g) = B.

We conclude this section with a discussion of O'Sullivargssion of an order
function. From [30] and [31] we have the following definition

Definition 1.3.22
Let R be a finitely generated domaioverk. An order function ork is a map
o: R — Ny U {—1} which satisfies the following conditions

(0'.1) thesetL, := {r € R such thab(r) < a}
is ana + 1 dimensional vector space over
(0'.2) if f,g9,2 € R andz is nonzero thea(f) > o(g) implies

o(zf) > o(z9).

If we replace—1 with —oc then it is clear (as also noted in [30] and [31]) that
this definition is more or less equivalent to the one from [22]] and [33]. The
only difference is that O’Sullivan requires surjectivity dly, requiresR to be
finitely generated and exclude the cdse- k. Now using the notation from this
thesis, and [13], any order functign: R — A_., where(A, <) is isomorphic

to (N, <), can be translated to an order function of O’Sullivan’s tye in the
case ofA being ordered isomorphic witN, the difference in definition is again
only a matter of point of view.

3That is, a finitely generated integral domain



1.3.2. Weight functions 21

1.3.2 Weight functions

Remark 1.3.21 ensures that we can define a binary operétion A_, in the
following way.

Definition 1.3.23
Letp : R — A_, be an order function. Defir@ by the following rule. For
anya, 8 € A_o, thena B 8 := « ifand only if there exislf, g, h € R such that

p(f) = a, p(g) = B, p(h) = v andp(fg) = p(h).

This was also observed in [30] and in [31]. Itis clear thatH, 0, <) is a well-
ordered semigroup. From [37] we have the following resultaesning torsion
free semigroupgA. B8, 0) (recall from definition 1.2.3 thatD(A) denotes the
corresponding group of differences).

Lemmal.3.24

If (A,B,0) is a torsion free semigroup generatednbglements, then for some
r < n the group(D(A),H, [0,0]) is isomorphic ta(Z", +,0), where+ is the
usual addition.

Remark 1.3.25

Letp : R — A_. be any order function. From lemma [.3.24 we conclude
that whenevel is finitely generated, thep\,H, 0) is isomorphic tq N, +, 0)
whereN is a subset o, for somer.

In [20], [21] and [33] a weight function is an order function
p:R—= A o CNyU{—oc}

such that
p(fg) = p(f) + p(g) (1.3.8)

wheneverf, g € R (here+ is the usual addition oh).

In our case\ does not possess a binary operation from the beginning. Howe
with the operatioriH on A induced by the order function all order functions will
satisfy requirement (1.3.8). The operatifihis not really practical in use, as it
requires knowledge about the order function to use it. Abtutis specified
by the infinite indexed order basis. This is the motivation tfte following
definition from [13].

Definition 1.3.26
Let R be ak-algebra. A weight function is a surjective map. R — A_
where(A, +,0, <, ) is a well-ordered semigroup, such that the conditi@ng ),
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..., (0.5) from definition 1.3.2 hold, and such that

(0.6) p(fg) = p(f) + p(g) wheneverf,g € R

holds. We callA, +,0, <) the value semigroup qf. And when+,0, <, is
clear from the context, then we take the freedom to talk abmivalue semi-
groupA.

Clearly condition(0O.4) is superfluous. Note that the definition in [20], [21] and
[33] covers a special case of definition 1.3.26. A thorougtatment of weight
functions with value semigroup containedNp can be found in [21].

In all of the examples of weight functions that are considerethis thesis, the
well-ordered semigroup will be

(A C N, 0,4+, <47) (1.3.9)

(for somer) where+ is the usual addition ofj, and <, is the restriction
of a monomial ordering<y; on Nj. Rather than specifying the well-ordered
semigroup (1.3.9) every time, we will simply speak about agiefunction

p:R— A_o(CNyU{—00}),
whereA is ordered by< 4.

Remark 1.3.27

One of the main advantages of using definition 1.3.2 of an rofalection, in-
stead of the definitions of an order function given by Heheltltal., and by
O’'Sullivan, is the following. By using definition 1.3.2 oneie understand any
order function as a weight function. And whenever an ordactionp : R —
A_ is given, where\ is finitely generated, then the isomorphism from lemma
1.3.24 describes a weight functigh: R — A", whereA' C Nj for somer.

The order funtiong andp’ are basically the same, but the later is much easier
to work with in practice.

Example 1.3.28

The order functions in example 1.3.7, 1.3.8 and 1.3.9 areaadight functions.
We will call the weight function from example 1.3.7 a triviadeight function.
According to proposition 1.3.10 the order domain from ex#mi8.7 is the only
order domain ovek that possesses a trivial weight function.

Consider a weight functiop : R — A_,, C Nj U {—o00} whereNj is ordered
by a monomial ordering<y; that is isomorphic with the admissible ordering
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onNy. Consider a (not necessarily surjective) mép: A, — Ny U {—o0}
whereNg(—oc) = —oo andNy(a) < No(B) whenevera <n; 8, a, 8 € A. It
is easily seen that the composite map

No(p) : R — No(A_o) C Ny U {—OO}

is an order function. However it will only in very special easbe possible to
choose the map, in a way s.t.NVy(p) becomes a weight function also. What is
required forNy(p) to be a weight function is thaY, is an isomorphism wrt-.

Example 1.3.29
Consider the order functigmnfrom example 1.3.9. There does not exist any map
No : N2 — Ny such that

No(p) : k[X,Y] = No(Nj U {~oc})

is a weight function.

[.3.3 Permutation equivalent well-behaving bases

In this section we will introduce the concepts of permutatimuivalent well-
behaving bases and equivalent order functions.

Definition 1.3.30
Let ak-algebraR be given. Two well-behaving bases fBr

(frx[AeA) .,

and o

(f1xed) .
are said to be permutation equivalent if there exists amap — k\{0} such
that

{frlxer} ={aNf; | X e A}

The most trivial example of permutation equivalent welkéaeing bases are ob-
viously the following.

Example 1.3.31

If two well-behaving bases foR defines the same order basis, then they are
permutation equivalent (the-map from definition 1.3.30 is simply identical

in this case).
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Remark 1.3.32

The permutation equivalence is an equivalence relatioh@sét of well-behaving
bases corresponding . Note that every single order function defines (in-
finitely) many of these equivalence classes.

Definition 1.3.33 o
Let(fx|X € A)_, and( filXe A) - be permutation equivalent well-behaving

bases (notation as in definition I.3.3AO). Assume that if
A, A2 € A andXq, \g € A
are any elements such that
fa = a(jq)f;\l, = a(j\g)fS\Q, andx; < Ao

then necessarily
A< A Ag.
Then we will say that the well-behaving bases are equivalent

Remark 1.3.34
The equivalence from definition 1.3.33 is an equivalencatieh on the set of
well-behaving bases correspondingRo

Proposition 1.3.35 o
Letp: R — A (A ordered by<,) andp : R — A (A ordered by< ;) be order
functions with corresponding well-behaving bases

Bp,<A:(f/\‘A€A)<A and Bﬁ’<[\:<f5\|5\6]\><~
A

respectively. IfB, -, is equivalent tdg’ﬁ,ﬂ, then for every order basis with
respect t there exists an equivalent order basis with respepgt to

Proof:
Using the notation from definition 1.3.30 we have by assuorpé mapy : A —
kE\{0} such that

{A X e A} ={aN)f5| X €A} (1.3.15)
By remark 1.3.20

(a(S\)f;\ Y ]\)<A (1.3.16)
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is again a well-behaving basis for Now also from remark 1.3.20 any well-
behaving basis related fosay, _, can be constructed frof, ., by replac-
ing for any\ € A, f, by afinite linear combination

> Bufv (wherepy € k)

N <AA

sucrj thatp(f) = /)(ijAA By fr). Now let 35, := By if and only if fy, =
ay f5,. Define
1 .
fj(\ ) = Z IB;\’a;\’fS\"
A <A

By definition 1.3.33 we have(f;) = p(f§1>). So

Bl =1{f{"|Aeh}

is a well-behaving basis fgr. Clearly ) _  is equivalent td?%,ﬂ. O

Definition 1.3.36

Letp: R — A_o andp : R — A_., be order functions. If there exists a
well-behaving basis fop that is equivalent to a well-behaving basis forthen
we will say thalp is equivalent tg.

Remark 1.3.37

Proposition 1.3.35 ensures that the equivalence from dieimi. 3.36 is an equiv-
alence relation on the set of order functionsikfh We will in general not dis-
tinguish two equivalent order functions from each other.

We illustrate the concepts introduced above with a disonssf the set of order
functions onk[X, Y] for which the set of monomials X', Y constitutes an
order basis. It may seem in the following, as if we use mucletivit machinery
to describe something, that is really not very complicafidte reason for doing
this is, that the chosen machinery will be very suitable, nwve are to consider
more complicate&-algebras later in this material.

A natural question is, if also the permutation equivalencehe set of well-behaving bases
of a given order domait®, imposes an equivalence relation on the set of order funstim R.
A strategy to construct such an equivalence relation, cbeltb choose for every order function
a unique related well-behaving basis. However it is notlatlehr how one should choose these
related well-behaving bases in a systematic way.
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Example 1.3.38
Define the ordering<; onNy & Ry, i = 1,2 to be the graded lexicographic
ordering with lexpart given by

(0,1) <jez (1,0)  for i=1,
1 1

( 70) <lex (0, ) for 1 =2. (|'3'17)

For anya € R, andi € {1,2} we define a weight function
pai KX, Y] > Ny @Ry XSU{—00}, i=1,2
as follows. Ordel?; by <, and define

pa,i(X) = (130)3
pai(Y) = (0,a).

It is clear that the set
B:={X°Y" | a,BeNy}

in each of the above cases constitutes an order basis. Tiesgonding well-
behaving bases are obviously pairwise permutation egntal And p,,; is
equivalent tq, ; only if a = a andi = 1.

In the following we will, for each positive numberandi € {1,2}, construct a
new order function equivalent i, ;. We fix one of the above order functions,
sayp := p1,1. Thatisp is induced by(X) = (1,0) andp(Y') = (0,1), andN3

is ordered by<. Next we change the ordering . For each,i we order
N2 by the weighted degree lexicographic ordering; with weights

w((1,0)) =1, w((0,1)) =a

and with lexpart as in (1.3.17). Now using this orderingNgnwe get a weight
function

(1.3.20)

,JEX Y] = NjU{—oo}
Pai F —  p(F) wheneverF is in B

that is equivalent t@,, ;.
Next we introduce two order functions that are not capturgdhe above de-
scriptions but can be described very similar to (1.3.20)panticular these two
order functions will possess order bases consisting of threamials inX,Y .
First ordeN2 by the (pure) lexicographic ordering whéfe1) <., (1,0) and
define

pho(F) := p(F) wheneverF € B.
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Next ordeiN2 by the (pure) lexicographic ordering whéie0) <., (0,1) and
define
po(F) := p(F) whenevelf’ € B.

Note thatpl,, andp;, do not possess well-behaving sequences.

Altogether we can consid%,i, a € Ry,i=1,2,pl, andp| as being defined
from p by changing the ordering d¥2. Geometrically the process of ordering
N; can be understood as follows. We first describe the pgseLetl, be the
line through(0,0) with slopea = a. Given two different pointgc,, d;) and
ca,dy) in N; then we can decide which is the smallest (wat.;) by projecting
the points ontd?, andP, onl,. If they are not projected to the same point then

(c1,d1) <a,i (c2.d2)

if and only if
dist((0,0), P1) < dist((0,0), )

and vice versa. If on the other hail = P, (this can only happen if € Q)
then we use the lexpart ef, ; on(ci,di) and(cz, d2).
Turning our attention to the order functiopls, andp{, then we can give a simi-

(c,d)

(c.d)

. . . 1
Figure 1.3.1: The situation far = 3

lar description wherk,, is the vertical line through origo ariglis the horizontal
line through origo. We will take the freedom to say thgthas slopex = oc.

Inspired of example 1.3.38 we have the following definition.
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Definition 1.3.39

LetB, = (fx | A € A) be an indexed basis forkaalgebraR. We will say that
an ordering< onA is a legal ordering wri3, if B, -, is a well-behaving basis
(in this case of course can be extended to an order functipn R — A_ ).

Remark 1.3.40

In the special case of an indexed baBjs = (f» | A € A) whereA C N2,
we will some times say that a slopec R, is legal (using the notation from
example 1.3.38) if there exists d@nc {1,2} such that<,; is legal. We use
similar notation in the case of = oo ora = 0.

Example 1.3.41

In example 1.3.38 all the considered orderingsNjnwere legal wrt.B,. In
particular all positive slopes and also the slopgsand—oo were legal wrtB,,
(giving us the one half of the set of considered order fumstioamely the ones
corresponding to = 1).

In the case ofA C N there are only one possible ordering namelyThis fact
is strongly related to the following lemma from [21, Lem. &].1

Lemmal.3.42
Let f be a nonzero element of a non trivial order domiaverk with a weight-
functior?

p:R— A CNyU{—o0}.

Thendimg (R/(f)) = p(f) (wheredim, (W) denotes the dimension W as a
vector space ovek).

A natural question is the following. Given a well-behavingsis 5, -, can
every other well-behaving basis permutation equivaleti tq, be found from
B,,<, by considering all possible choices of legal orderirgson 3,? It turns
out that the answer to this question is in general negative.ilMétrate this by
an example.

Example 1.3.43
Consider the order domaiR := k[X, Y] with weight functionsp; andps de-
fined as follows

pl(X) = (373)7 Pl(Y) = (07 1)
andN? is ordered by any ordering sayt).
:02(X) = (3a3)a ,02(Y) = (172)

5That is, a (non trivial) weight function according to the défon in [21].
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andN; is ordered by any ordering say?.
Clearlyp, andp, possess permutation equivalent well-behaving bases but

pr(Y3) < py(X) and pa(X) <) py(V?)

no matter how we choose(!) and<(?.

Example 1.3.44
In example 1.3.38 and 1.3.43 we treated some order functionis{X,Y’] that
had

{XY? |, € Ny} (1.3.28)

as an order basis. Two very natural questions arise. Fiesthare other weight
functions than the ones captured by our description in exesn(8.38 and 1.3.43
that has (1.3.28) as an order basis? Second, what is thiorelegtween the order
functions from example 1.3.38 and example 1.3.43? In thiowghg we will see
that, up to equivalence, the set of weight functions deedrib example 1.3.38
is the full set of weight functions with order basis (1.3.28hat is, the answer
to the first question is negative. And the two disjoint setscdbed in exam-
ple 1.3.43 are contained (by equivalence) in the set fronmgta 1.3.38.

Letp : k[X,Y] — A be any order function with order basis (1.3.28). The or-
dering of the sefp(X*Y?) | o, B > 0} induces a unique monomial ordering
on M(X,Y). Conversely, up to equivalence a monomial orderiig x y
on M(X,Y) describes an order function completely. In [31, Ex. 1.3, EA]
O’Sullivan is concerned with detecting which monomial aidgs on
M(X1,...,Xn), there defines order functions (of his type)ldX+, ..., X,,].
He notes the following. Describing a monomial ordering/ot{ X, ..., X,,)
of course corresponds to describing a monomial orderingiipn We may ex-
tend this ordering to a total orderingr on7Z™. The reason for making this
extension is, that one has a very nice procedure, due to Rabhthat describes
all total orderings or?Z.™. Let <1 be any total ordering oL™. According
to [36, 52] there existry, ... ,r,, € R™ such thaty <r w if and only if there
exists a € [1,...,m] such that

VP =W Ty for 1 < k
vorp < Ww-rg.

Obviously,ry, ..., r, must be linearly independent ovér In the particular
case, where the restriction efr to N is a monomial ordering, further all
the coordinates of;, i = 1,...,m must be non negative. We conclude, that
the following choices ofr; andry covers all possible choices of monomial
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orderings onM(X,Y'). Eitherr, = (1,a) andry = (1,0) (with a > 0), or
r1 = (1,a) andry = (0,1) (witha > 0), orry = (0,1) andrs = (1,0). The
connection to our example 1.3.38 is as follows. The uniqu@enaal ordering
on (1.3.28) corresponding ta, ; (or p'aﬂ) is the ordering given by

1,0) if i=1
le(laa)? TQZ{ EO 1; lf i=9.

Finally the unique monomial ordering on(1.3.28) corresgiog to pl,, andpj,
are given by

phot T1=(10) rp=(0,1), (1.3.29)
pg H rT = (0, 1) o = (1,0)

We conclude, that up to equivalence, there are no other @wdetions than the
ones from example 1.3.38 that has order basis equal to §).3.2



1.4
Sub domains of polynomial rings

In this section we will be concerned with subalgebras of poiyial rings. We
start with an example.

Example 1.4.1
Let Ny be ordered by any monomial orderingyy. Consider the weighted
degree lexicographic ordering,, on M (X1, ..., X,,) (see definition 1.2.15)
given by weights

w(X1), ..., w(X,,) € Ny
that are linearly independent ovér and by<y;. We will not need a lexico-
graphic part of<,, in this case. Extend the weights to a monomial function on
M(Xy,...,Xm). Now no two different elements in

(M| MeM(Xi,...,Xpm)} (1.4.1)

are of the same weight. Implying that we can index (1.4.1) by weights.
The nice thing now is that the indexed basis is obviously \beliaving. From
proposition 1.3.18 we conclude that the function

w: M(X1, ..o, X)) = (w(Xy),. .., w(Xn))
can be extended to a weight function

{ EX] — (w(X1),...,w(Xn))U{—occ}
o F ~ max<N6n{w(M) |M € Supp(F)} for F #0

0 = —00.
and that (1.4.1) is a corresponding order basis.
We have the following simple but also very general result.

Proposition 1.4.2
Let A C Nj be any semigroup, and lety be any monomial ordering oA.
Then there exists an order domdirwith a weight functiorp : R — A_ .
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Proof:
Let A be generated b = (A| A € S). By the very definition of a monomial
ordering on a sub semigroup Bf, <, is the restriction ta\ _, of a monomial
ordering<n; on Ny U {—oc}. Consider the order domak{T1, ..., T;] with
weight function

p: k[T, ....T,] = Ny U{—o00}

induced by
IO(TI) = (1a070a'-'a0)
IO(T2) = (0,1,0,...,0)
p(T,) = (0,0,...,0,1)

and by the ordering<y; of Nj. To see thap is a weight function, just consult
example 1.4.1 above. By proposition 1.3.12 the restrictidrp to the subring
k[T)‘ | A € S]is aweight function with value semigroup equalXo. O

In chapter 1.6 we will see how to describe the order domaiomfthe above
proof as quotient rings whenevdr is finitely generated. The next example
demonstrates that infinitely generated order domains. exist

Example 1.4.3
OrderN? by some monomial orderingtNg, and consider the weight function
p: k[T, Ty] — N2 U {—oc} induced byp(T;) = (1,0) andp(Ty) = (0,1).
Now

R:= k[\'Ty, T\Ty, T\ T3,...] C k[T, Tb]

is a sub order domain with a weight function with value seouigr
A={((1l,a)]a € N) U{-o0}.

R is not finitely generated and neitherAs
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Figure 1.4.1: The value semigroupfrom example 1.4.3



1.5
Quotient rings

Almost all the examples of order domains in this thesis arigot rings. That
is, they are of the fornk = k[ X1, ..., X,,|/I wherel C k[X,...,X,,]isan
ideal. Up to nowl has always been the zero ideal, but we will in the following
chapters see several examples wheisenot the zero ideal. Before giving these
examples, we will in this chapter consider some generalgtigs of quotient
rings that are order domains.

Proposition 1.5.1

LetT C k[Xy,...,X,,] be an ideal such tha&k := k[Xi,...,Xn]/I is an
order domain. Thei is a prime ideal. Lep : R — A_., be an order func-
tion on R, whereA is ordered by<,, and letF be any element id. Say
F=Y9% a,X% q ek\{0}, anda® # o, fork + . There are two
possibilities

1) xV . x2er

(2) if an enumeration of the")s is chosen such that
p(X2 4 1) =5 p(XO” 4 1) g omp p(XO 4 D),
thenp(X2" + 1) = p(X*” +1) =, 0.

Proof:

That I is a prime ideal follows immediately from the fact that an erdio-
main is an integral domain (see proposition 1.3.3). Pobisik{il) corresponds
to the casey(X®"” + 1) = —o00, i = 1,...,s. Assume that we are not in
this case, and let an enumeration as described in (2) berthBgeassumption,
p((XY £ 1) =5 0. Now if p(X2™ + 1) =5 p((X®™ + I) then nec-
essarilyp(F + I) = p(Xa(l) + I) =5 0. This is a contradiction, ag' € I
implies p(F+1) = —oco. We concludey(X " +1) = p(X2” 1) =, 0. O

Proposition 1.5.4, at the end of this chapter, states thatveg. may assume
that only possibility (2) from the above proposition occufsrther it states that
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we may assume that the inequality in
p(XY 1 1) = p(X2” 1 1) =4 0

is strict. To derive this proposition we will need a few lensna

Lemmal.5.2
LetR = k[X1,...,X.]|/I be an order domain with an order functipnCon-
sider a vectorx = (ay,...,ap) S.tp(X® + 1) = 0.1 For any index, s.t.

a; # 0, we haveX; — ¢; € I for somec; € k\{0}.

Proof:
We first show thap(X; + I) = 0, whenevei is an index s.to; # 0. Consider
a decomposition

X% 47 =(XP +1) (X7 +1).

On the one hand neith@t(XB + I) nor p(X7 + I) can be equal te-oc, as
this would imply X% + I = I. On the other hand neithex(XB + I) nor

p(X7 + I) can exceed. Assume namely that(XB + I) >4 0. Butthen
from part (O.4) of definition 1.3.2 and from part (3) of projam 1.3.10 we
would havep(X® + I) =5 p(X7 +I) =, 0, a contradiction.

To complete the proof we observe from part (3) of propositi@il0 and part
(0.1) from definition 1.3.2 thap(X; + I) = 0 implies X; + I = ¢; + I for some
c; € k\{O} ThatisX; —¢; € I. O

Lemmal.5.3

Consider indeterminatée$, , ..., X,,Y1,...,Ys; and constants,, . .., ¢, € k\{0}.
DenoteX = (Xi,...,X,),Y = (Y1,...,Ys) ande = (c1,...,¢ ). The quo-
tient ring

EX,Y]/( X1 —c1y..., Xy — ¢, 1(X,Y),...,F;(X,Y))
is isomorphic with the quotient ring
kY]/(Fi(e,Y),..., Fi(c,Y)).

Proof:
Denotel := (Fi(e,Y),..., Fi(e,Y)) C k[Y]. Consider the homomorphism

{ KX, Y] —  K[Y)I
"\ GX,Y) = GeY)+1.

The equality for instance holds fer = 0
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We want to show that

ker(p) =(X1—c1,..., Xy — ¢, Fi(X,Y),...,F;(X,Y) (1.5.2)
=:J.

The rhs. of (1.5.2) is obviously contained in the Ihs. We needhow that also
the Ihs. is contained in the rhs. From the following caldolzd

X:P(X,Y) + (Q(X,Y) + J)
= (X —e)(X,Y) + X;P(X,Y) + (QX,Y) + J
= P(X,Y)+(Q(X,Y)+J)

we conclude, that{ (X ,Y) € Jifand only if H(¢,Y) € J. In particular
ICJ. LetG(X,Y) € ker(p). We have

Ge,Y)el=Ge,Y)eJ=G(X,Y)¢eJ

And (1.5.2) is shown to hold. The lemma now follows from ThenBamental
Homomorphism Theorem (see [9, Th. 5.7]). O

Proposition 1.5.4
Consider an order domain that can be described as a quatignt r
R =k[X1,...,X,,]/1. Then one may wlog. assume that the following holds. If
P(X) € I then there are two monomiak*1, X *2 ¢ Supp(P) (a1 # az)
S.t.
P(XO £ 1) =p(X¥2 +1) =, 0,

and s.tp(X7Y + 1) <5 p(X*1 4 1) for all X7 € Supp(P).

Proof:
The proposition follows by combining proposition 1.5.1ma 1.5.2 and
lemma 1.5.3. O



1.6
Toric rings

Consider any semigroup C Nj ordered by a monomial ordering,. In the
proof of proposition 1.4.2 we showed how one can find a subroddenain R

of a polynomial ringk[X1,..., X,], such thatR possesses a weight function
with value semigroup equal th_ .. In this section we will be concerned with
the special case wherkeis finitely generated. Say = (A1,..., A). We will
describe a method to detect a quotient ringy, . .., X,,]/I which is an order
domain with a weight function with value semigroup equahto

[.6.1 Toric order domains

The ideals we will consider are examples of what is known @literature as
toric ideals. An introduction to toric ideals can be found4@]. In general a
toric ideal is defined from a sed = {ai,...,a,,} C Z". However we will
only be concerned with the toric ideals generated by g&ts..., A} C Nj.
These can be defined as follows.

Definition 1.6.1
Consider a sef\y,. .., A\, } C Nj. Define a monomial functiow : M, —
Ny byw(X1) = Ay, ..., w(Xp) = Ap,. The ideal

I=(X"-X"|w(X") =w(X")) Ck[X1,...,X]
is called the toric ideal related to:= (A1,..., Ap).

A result similar to the last part of the following propositican be found in [40].
However our proof differs from the one given there.

Proposition 1.6.2

Leta semigrouph = (A1, ..., An) C N be given. Letiy; be any monomoial
ordering onNj, and let<, be the restriction ORNS toA. LetI be the toric
ideal related ta\. We have
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(1) k[Xy,...,X,]/I is an order domain with a weight function with value
semigroup equal th _ ..

(2) The following procedure finds generatorslof
Procedure: WriteT' := (Ty,...,T,) and X = (Xq,...,X,,). Consider
the lexicographic ordering<;., on k[T, X | given byX,, <jez =+ <ex
Xl <lex Tr <lez " <lex Tl- Expand

(TM - X, T — Xy, ..., T — X}
to a Grobner basisG wrt. <;.,. LetGx := G N k[X], we havel =
(Gx) C K[X].
Proof:
(2): Following the lines of the proof of proposition |.4.2ewonsider the order
domaink[T'] with weight functionp : k[T — Nj U {—oco} induced by
IO(TI) = (1a070a s ,0)
IO(T2) = (Oa L0,... ,0)

o(T}) : (0,0,...,0,1)

and by the ordering<y; onNj. As noted in the proof of proposition 1.4.2 the

restriction ofp to k[T)‘l, ce T)‘m] is a weight function with value semigroup
equal toA _ .

Consider the map

| oRXy Xm] o KT TAM]
| F(Xy.....Xm) = F(TM,... T

Clearly ¢ is a homomorphism. So according to the Fundamental Homomor-
phism Theorenker(y) is an ideal and

5. ] FXL X ker(p) - KT, ... TAm]
| F(Xi....,Xm) +ker(p) = F(TM,... ,TAm).

is an isomorphism. Note that(a) = a for anya € k. We conclude that
R :=Ek[X1,..., X]/ ker(p) is an order domain with a weight function

R = A, Am)

P { = F(X1,. Xo) +ker(g) = p(@(f)
= p(F(TM,...,TAm)).
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In the following we will determinéer(y). Consider the toric ideal
I = (X" -X"Y|w(X") =w(X"))
= (XU - XY [ p(XY) = p(XY)) CRX1,..., Xni].

We claim thatker(¢) = I. It is obvious thatl C ker(y). It remains to prove
ker(yp) C I. To this end, consider a polynomial

F =Y kX% ¢ker(p) (1.6.4)
i=1
wherek; # 0fori =1,...,s. Now
e(F) =0
4

D kip(X %) = 0.
=1

Note that in general, monomials iX,..., X,, iS mapped to monomials in
Ti,...,T, underp. And recall that the monomials k[T'] are linearly indepen-
dent. From these facts we conclude that there exist indéegd, < j1 < -+ <
Ju < s such that

P(XH) = = p(XYu) = p(XYs)

and such thak, + (k;, + --- + k;,) = 0. Now replacek, with

(=kjy =+ = kj,)
in (1.6.4) to get
u
F = > KXYk, (X Qv — X @),
i€ {i,...,s—1} v=1
P F 1y s Ju

The last sum clearly is contained Inand the first sum is mapped to zero under
. Observe that the first sum contains fewer monomials faoes. We now
repeat the above procedure on the first sum. Continuing s we will finaly
end up with a left sum equal @@ So F' is a sum of elements ih. We have
shownker(y) C I. All togetherl = ker(yp).



40 Toric rings Ch. 1.6

(2): Consider
[:=(X; —TM ... X, - T?m) C k[T, X].

We claim thatl = T N k[X], that isT is an elimination ideal. To prove this
consider the map

w'{ KTy, ...Tr, X1, ... Xm] — k[Ty,..,T;]
F(Tl,..,Tr,Xl,..,Xm) >—)F(Tl,..,Tr,(p(Xl),..,(p(Xm)).

Now clearly I = ker(¢)) N k[X], so to prove our claim it suffices to show that
ker(1) = I. The inclusion/ C ker(%)) is obvious. To see th&er(+) C I, note
that any polynomiaF' (T, X) € k[T, X] can be written

F(T,X) = G(T) + i(xi — TN)H(T, X). (1.6.8)
i=1

Now if F(T, X) € ker(¢) then by usingy on the rhs. of (1.6.8) we see that
P(G(T)) =0. Buty)(G(T')) = G(T), that is

F(T,X) = f:(xi — TN H(T, X) € 1. (1.6.9)

i=1

Finally, the procedure described in (2) is just a well-kngwocedure from elim-
ination theory to find a Grobner basis for an eliminatioraidsee [4, Ch. 33
Th. 2)). O

Proposition 1.6.2 suggests the following definition.

Definition 1.6.3

LetI C k[Xy,...,X,,] be a toric ideal according to definition 1.6.1. We say
thatk[ X1, ..., X,,]/1 is a toric order domain.

Example 1.6.4

Consider the semigroup
A= <(0a 2)a (Oa 3)a (1a 1)7 (2a 0)> C Ng

and consider any monomial orderirg, onNj. If we expand(T3 — X1, T; —
Xo, W1y — X3, Tl2 — X4} to a Grébner basis as described in proposition 1.6.2
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we get
G = {T5 - X1, T3 — Xo, ' T» — X3, T} — X4, TH X1 — Xo,
Ti X1 — To X3, ToXo — X{,T1 X — X1 X3, X} — X3,
T1 X3 —ToXy, X1 X4 — X2, To X3 — XoX4, XP X3 — X2 Xy,
X1 X5 - X2X7, X3X3 — X1,
Now

I = (X} X3, XXy — X3, X7X3 — X3 X4,
X X3 - X7X37, X3 X3 — X§)

andk[X]/I is an order domain with a weight functign: k[ X]/I — A_
induced byp(X; + I) = (0,2), p(X2 +1I) = (0,3), p(X3 +I) = (1,1) and
p(X4 + I) = (2,0) and by the restriction Oz tOA.

The next example shows the necessity of the procedure fropopition 1.6.2.

Example 1.6.5

Consider the semigroup = (7,9,13). Using the procedure from proposi-
tion 1.6.2 one can construct an order domé&in= k[X,, Xo, X3]/I with a
weight functionp : R — A_. induced byp(X1 + 1) =7, p(Xo +1) =9,
p(Xs + I) = 13. In this example we will see what happens if one tries to con-
struct the toric ideal without using the procedure from proposition 1.6.2. The
polynomials

Fi:=X]-X] Fp:=X]-XP’ F:=Xj]-X)?

are obviously contained in the toric idelal So we could hope that they actu-
ally generated. To investigate if this is the case we expdd , F», F3} to a
Grébner basis. We do this with respect to the weighted @elgracographic
ordering given by weights)(X,) = 7, w(X2) = 9, w(X3) = 13 and with
lexicographic part given bX1 <., Xo <. X3. After a following reduction
we get a Grobner bas{d, F;, F3, F;, F.} where

Fl:=F Fy:=F Fj:=X3X)-X/

F| = X3X? - X3 Fl:= X$Xx3 - X/°.

The corresponding footprint is

(X0XP 1B < TYU{XOXPX]|0<y <6, a<2 B <4}
U{X{XPxS$a <2 B<3).
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Noww (X$X3) = w (X3) = 39 and bothX} X3 and X3 are elements in the
footprint, that is
Xg - X%X22£<F1aF2aF3>

To construct the desired ideal we will have at least to Bficd= X3 — X3 X3
as a generator. Expanding néXt|, ..., F.} to a Grobner basis we get after
reduction a Grébner bas{¢’', Fy/, ..., F!'} where

F:=X] - X}, FY:= XX - X[, FY:=X;X} - X}
Fl' = X3 - X2X3}, F!':= X2X, — X3.

The footprint of Fy', ..., FY') is given by
(XeXP 1B <TVU{XMXPX3|a <2, B <4} U{XPXT | a <2},

Now, no two different monomials in this footprint has the saweight. From
this fact it is an easy task to show that actuglhf , ..., FY) = I. That is we
have found the desired toric ideal.

Example 1.6.6

Forn > 2 consider th& x n matrix [X];; of variablesX;;. As usual we write
X = (X1, X12,...,Xo,). Denote byF the set of alk x 2 minors in(X);;,
and letI be the ideal ink[X] generated byF. We will show thatl is a toric
ideal, and it will follow from proposition 1.6.2 thadt|X]/I is an order domain.
Let weight vectorsu(X;;) € Not'\{0}, be given as in figure 1.6.1 and let
Ny *! be ordered by any monomial ordering.

Inyo Iayo Ioxo -+ Ioxo
J1x2
Jix2

Jix2

Figure 1.6.1:15.- denotes th& times?2 identity matix, wheread; > denotes
the 1 times2 matrix with al in both entries. The first two columns
correspond tav(X;), w(X2;1). The next two columns te(X2),
w(Xs9) and so on.

Every2 x 2 minor, of course contains, precisely two terms, and it is1\$eam
figure 1.6.1 that these two terms are of the same weight. lisi seen, that if
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two monomials are of the same weight, then either they aralequhere exists
a minorM, — M,, such thatM; divides the one of them antll, divides the
other. We have shown thétis a toric ideal.

1.6.2 The variety of a toric ideal

We adopt the definition of a variety from [4].

Definition 1.6.7
Given a fieldk and an ideal C k[X4,..., X,] then the variety of is

Vi(I):={a € k™| P(a) =0V P € I}.

We note that some authors refer to the set in definition |.6.&mealgebraic set,
and use the word variety in another meaning than the one fnenalbove defi-
nition.

In the following we will be concerned with the size of the yiVr, (1) of a
toric ideal. The reason for this interest will become cleachapter .11, where
we describe how one, from an order domaijiX'|/ 1, can easily construct codes
overF, of length up to#Vr, (1).

We first investigate the special caseC Ny, that is the case whefB = T;. In
this special case it turns out that

#Vr, (I) = ¢ (1.6.11)

for any toric ideal. This result can be derived using arguséom algebraic
function field theory. However we will prefer to show the riésusing simpler
machinery. Our proof only relies on simple combinatoricd some results from
elimination theory, that we are going to introduce anywdye Tollowing result
known as The Extension Theorem, will be essential for theudisions below.
For a proof see [4].

Theorem 1.6.8
Consider an ideal = (Fy,...,Fs) C k[Z1,...,Zy] wherek is algebraically
closed. Denote the first elimination ideal By:= I N k[Zs, ..., Zy,]. For each

1,1 <1 < s, write F; on the form

Fy=Gi(Zy, ..., Z) 2N + R(Z1,. .., Zom), (1.6.12)
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wheredeg; (R) < N;, N; > 0 andG; € k[Z,, ..., Zy] is nonzero. Suppose
that a solutior{as, . . ., an,) € Vi(Iy) is given. If(as, ... ,am) & Ve(Gy,...,Gy)
then there exists; € k such thatay,as, ..., am) € Vi(I).

We will also need the following obvious lemma.

Lemma l.6.9
With the notation from proposition 1.6.8 define the map
_ Vi(I) - Vi(Ih)
T { (a1,...,am) +— (ag,...,ap). (16.13)

Themr(Vk(I)) C Vk(Il).
We now have the machinery to prove (1.6.11).

Proposition 1.6.10
Letay,...,a, € N be given withged(ay,...,a,) = 1. Letl; be the corre-
sponding toric ideal, that is define

= (X; —T", Xy —T%,..., Xy, — T%) CF, [T, X1,.... Xy,

and
I = IﬂFq[Xl,... ,Xm]
We have#Vr, (I1) = q.

Proof:
The proof consists of three parts. In the first part we show tha

m(Vg, (I)) = Vg, (I1). (1.6.15)
In the second part we show that(if ¢, ¢2, ..., ") € Vg (I) with
te, ¢ ... 1% € F, then alsa € F,. Part one and two together establish
n(Vr, (1)) = Vg, (I1). (1.6.16)

Finally in the third part we show that there does not ekigtt’ such that
(0,02, 0m) = (¢ T,

Comparing with (1.6.16) we ge#Vr, (I) = #Vr, (I1). The proposition now
follows from the fact, thattn (Vr, (1)) = q.
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Part 1:

Using the notation from theorem 1.6.8 we hatle = Gy = ... = G, = 1.
SoVg, ((Gi,...,Gm)) = 0. From theorem 1.6.8 we conclude that (1.6.15) is
satisfied.

Part 2:

Assume(t, ... t%m) € Vg (I) and thatt®, ... ¢ € F,. From the as-
sumption thaiged(aq,...,a,) = 1 we have that there exigt,... Lk, € Z
such that

arky + asks + -+ - apmkm = 1.
So we can write
t = tukitaskettamkm
k k m\km
()™ (#%2)72 - (t%m)"" € Fy.
Part 3:

Assume
(4, 8%, 0y = ()

From the proof of part 2 we have
t = (tal)kl (taz)/@ . (tam)km
and
¢ = (tlal)kl (t/az)l@ L (tlam)km .
It follows thatt = t'. O

The following examples show that a result equivalent to psitjpon 1.6.10 does
not hold whemA C Nj, A ¢ N; ! with » > 1.

Example 1.6.11

Consider the ideal C TF,[X;;, Xo1, X12, X22, X13. X93] generated by the
2 x 2 minors of the2 x 3 matrix [X;;] of indeterminates. Ordex} by any
monomial ordering. In example 1.6.6 we saw thais a toric ideal, and that
F,[X11,..., X93]/1 is an order domain with a weight function

p:Fq[Xll,...,ng]/I% A—oo

induced by
IO(XH) = (1,0,0,0), P(X21) = (07 1,0,0)
p(Xi2) = (1,0,1,0), p(X2)=(0,1,1,0) (1.6.17)
p(X13) = (1,0,0,1), p(Xe3) =(0,1,0,1)
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One might, from proposition 1.6.10, and from the fact that N} butA ¢ N3,
get the idea, that the varie¥y, (I) contains precisely* points. This is however
not the case. Assume for instance that 2, by inspection we fingtVry, (1) =
22 > 2% = 16.

The following example explains why a result equivalent topasition 1.6.10
does not hold when C Ny, A ¢ Ny~" with r > 1.

Example 1.6.12
Let A C N} be generated as a semigroup by

A:=((1,0,0),(1,0,1),(0,1,0),(0,1,1)).

Now the corresponding toric ideaIC F,[X,, ..., X4] is found in the following
way. Expand

H={X1 —T1,Xo —ThT3, X3 — To, X4 — ToT3}

to a minimal Grobner basig with respect to the lexicographic ordering given
by

Xy <lex X3 <iex X2 <iex X1 <iex T3 <16z T2 <iex Th.
We get
G={T1 — X1,Tr — X3, T5X3 — X4, T3X1 — X9, X1 X4 — X2 X3}.

Consider the elimination ideals

Iy .= (H)

I = (H)NF, (T2, Ts, X1, . .., X4]
I := (M) NF,[T5, X1, ..., X4]

Iy = (H) NF,[X1, ..., X4]

We know from proposition 1.6.2 that := F,[X,,...,X4]/1I5 is an order do-
main with a weight functiop : R — A _,. Actually this is again a special case
of example 1.6.6.
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Letm, my w3 andn* be the projections given by

. { Vi, (Io) - F
(t1,t2.t3,21,...,24) — (f2,t3,21,...,24)
U { VF‘J(II) - Fg
(to,t, z1,...,x4) +— (t3,21,...,24)
T3t { VF‘?(IQ) - Fg
(t37$17"'7$4) = ($1a '7334)

% {VFQ(IO) - Fg
' (t,z) — (o).

In the following we will investigate the connection betweer(Vy, (Io)) and
Vr, (I3).
From lemma 1.6.9 we know that

7 (Vs, (o)) C Vi, (T3). (1.6.20)

Our first concern will be to investigate if two different ptsrinVy, (I,) can be
projected to the same point under. That this actually can be the case is seen
by the following example. Let namely= 2. Now both(t,z) = (0,...,0) and
(t',x") = (0,0,1,0,0,0,0) are contained iWr, (Io) butt*(t, ) = 7*(t', =').

In this particular example it is further easily shown thétVs, (Iy)) NF3 =

™ (Vr, (ly)). We note that we can not expect that a similar result hold®ir g
eral. By inspection we find that

#1* (Vg, (I0)) NFy = #n*(VE, (Io)) = 7.

Next we will show that the inclusion in (1.6.20) can be propErom proposi-
tion 1.6.8 we know thatr (Vy, (Io)) = Vg, (11), because the coefficient to the
highest power of; in the polynomially — X, € Iy, viewed as a polynomial
in Ty, is equal tol, a constant. In the same way we see thddy (I1)) =
Vi, (Is). But under the final mappings completely different things happen.
Now

I = (T3X3 — X4, T3X) — X9, X1 X4 — X2 X3).

We investigate the coefficients to the highest powefl'plamely X5, X; ,
(X1X4 — X2X3). Let us again consider the situation whéle = F,. We
have the following four elements M, ((Xs3, X1, X1 X4 — X2 X3)), namely
(0,0,0,0), (0,1,0,0), (0,1,0,1) and(0,0,0,1). The extension theorem tells
us that these four points are candidates for points lyingrif{Is) but not in
7*(Vp, (I2)). Inspection shows that the last three points are not caedain
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™ (Vg, (12)).
All together we have located thé points that constitut®y, (I3).



1.7
Pellikaan’s factor ring theorem

In this chapter we will introduce a very important theoremRwgllikaan. Using
this theorem one can recognize a very large class of quatiegs as order
domains.

[.7.1 The theorem

In example 1.4.1 we considered the weighted degree lexaqge ordering on
M (Xy,...,X;), given by weights

w(X1),...,w(Xy) € NJ

that are linearly independent ovér and by a monomial orderingy» on Ni".
We extended the weights to a monomial functioon M (X1, ..., X,,). And

as a first step in constructing a weight functiondiX, ..., X,,], we consid-
ered the basis of[ X}, ..., X,,] consisting of the monomials. We noted, that
one can index the elemen%¥® ¢ M (Xy,...,X,,) by their corresponding
valuesw (X%).

Consider next the following more complicated situationt e m, and assume
thatlNj is ordered by the monomial orderingyy;. Consider a weighted degree
lexicographic ordering oM (X1, ..., X,,) given by weights

w(X1),. .., w(Xy,) €N

by <n; and by some lexicographic orderinge, of M(Xy, ..., X;,). Now we
can not, as before, index the monomialshii( X, ..., X,,) by their weights,
as there will be pairs of monomiald; # M, with w(M;) = w(Msz). The idea
in this chapter is to find an idedl C k[X1,..., X,,] such that no two different
elements in the footprinA(7) corresponding to<,, are of the same weight.
This will enable us to index the basis

{M+1|MeA(I)} (1.7.2)
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for k[ X]/I in an obvious way. As we will soon see, Pellikaan’s factog rine-

orem (recall that another word for quotient ring is factog)i gives a condition
under which the ordered basis (1.7.1) is well-behaving.lilgeln’s factor ring
theorem was originally stated in [33jh the special case of = 1. In [13] the

theorem is generalized to anyc N.

Theorem 1.7.1

Let I be an ideal ink[Xq,...,X,,] with Grobner basis; with respect to a
weighted degree lexicographic orderirg,. Suppose that the elements of the
corresponding footprinA(I) have mutually distinct weights and that every el-
ement ofG has exactly two monomials of highest weight in its suppognéte

A= (w(M) | M € A(I) € N,

And denote byF' the remainder of a polynomial ifi after division withG?.
ThenR = k[X4,...,X]/I is an order domain with a weight functignde-
fined by

R — A_,
p:{ [ = max<N6{w(M) | M € Supp(F)} forf #0 (1.7.2)
0 — —o0.

Proof:

ClearlyB := {M + 1 | M € A(I)} is a basis forR as a vector space over
k. And by assumption we can index the element&ihy the weights of their
representatives it (7). That is we can write

By=(fa=F\+1I|F\,€A()andw(F\)=X€A).

Denote by< the restriction of<N5 to A. It remains to be shown that the in-
dexed and ordered badh, -, is well-behaving. Consider two elementsBn
say fy = F\ + I andf, = F, + 1. Now F\F, is a monomial but it need
not be an element il\(I). However to writefyf, = F\F, + I as a linear
combination of the elements in the bagisone need only find the residue of
F\F, modulo the Grobner basi. SayF F,, is reduced modulg to ) k. F,,
(recall that the reduction is unique). We gitf, = > ko fo. Asthe elements

in the footprint have mutually distinct weights there isgisely one monomial

in Supp(>_ ko F,) of highest weight. From the assumption that every element

!Note added the second edition: “[33]" should be replaced[®y]‘and [33].
2Given a residue clasg, recall from appendix I.A that the remainder of any two paolgrials
Py, P, € f after division withg is the same.
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in B has two monomials of highest weight in its support, and frberiature of
the division algorithm producing the residie &, F,, it follows that the mono-
mial of highest weight irSupp(}_ k. Fy,) is of weight equal tas(F F,). The
well-behaving property of the indexed and ordered b&sis., is ensured by
the fact thatw(F\F,) = w(F\) + w(F,), and by the assumption that, is a
monomial ordering. S@& is an order basis, and the corresponding order func-
tion is a weight function. O

Remark 1.7.2

In the proof of theorem 1.7.1 we did not use the structure efléxicographic
part<,., of <,,. Let<,, on M, be an ordering definded as in definition 1.2.15
but with <., replaced by any monomial orderingn, on M,,. One easily
verifies that<,, is a monomial ordering, and that theorem 1.7.1 holds in this
more general set-up as well.

Remark 1.7.3

Assume that an order domalt = k[ X, ..., X,,]/I is constructed using the-
orem |.7.1. The requirement, that every polynomial in thébBer basis fol
has precisely two monomials of highest weight in its supparsures that every
polynomial inI has precisely an even number of monomials of highest weight
in its support. Further any polynomial kiX1, ..., X,,] can be written as the
sum of two polynomials, the first being a linear combinatidnmmnomials in
A(I) (in particular a linear combination of monomials of diffeteveights), and
the second being a polynomial in So we have an easy way to check if a poly-
nomial F' is a residue modulg. That is namely precisely the case, whén
contains no two monomials in its support of the same weight.

Remark 1.7.4
In the case of a toric idedl = (Gx) (the notation as in proposition 1.6.2) the
conditions in proposition 1.7.1 are satisfied if we choBse= G x .

Proposition 1.7.5
Letk D k be a field extension. K[X /I, where

I=(F(X),...,F,(X)) C k[X],

can be understood as an order domain by using Pellikaart&r faeg theorem,
then can als&[X /1, where

I=(F(X),...,Fy(X)) C k[X].
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Proof:
A Grobner basis fof wrt. <,, is also a Grobner basis férwrt.
<w- O

Remark 1.7.6

Of particular interest is the special case whiere proposition 1.7.5 is the al-
gebraic closure of. We then writek = k andI = I. Now the fact thaf is
prime (proposition 1.5.1) together withbeing algebraically closed implies that
I = Z(V) for some irreducible variety (see [4, Ch. 45, Cor. 4]). If in par-
ticular I has only one generatdf; (X ) thenF, must be absolutely irreducible
overk. Nowk[X]/Z(V') is isomorphic to the coordinate riigV'] (the collec-
tion of polynomial functionsp : V- — k) (the isomorphism is described in [4,
Ch. 582]).

I.7.2 Some examples

The following examples illustrate how easily one can cartgtweight functions
using Pellikaan’s factor ring theorem.

Example 1.7.7

ConsiderR := k[X,Y, Z]/I wherel := Y? — X?Z + Y Z? 4+ Z3%. Define
weightsw(X) = (1,0),w(Y) = (1,1),w(Z) = (0,2). Order the elements
of N2 by <., where(0,1) <. (1,0). Noww(Y?) = w(X?Z) = (2,2),
w(Y Z?%) = (1,5) andw(Z*) = (0, 35). With respect to the chosen ordering on
N2, (2,2) is the largest among these three values. The conditionsllikae’s
factor ring theorem are satisfied. So we have a weight fumctio

p: R — <(1a0)a (1a 1)a (Oa 2)> U {—OO}

induced byp(X +1) = (1,0), p(Y+1I) = (1,1) andp(Z+ 1) = (0,2). Beside

the ordering<,., onN2 (corresponding to slope = 0) the legal orderings on
N2 are the ones with slope €0, %[ and the one with slope = 2 and with
lexpart given by(0,1) <;.. (1,0).

Using Pellikaans factor ring theorem, we can often desarioee families of
order functions corresponding to a given order domain.

Example 1.7.8
In this example any ordering; onN3 is assumed to be monomial. Consider

the order domaiff,[X,Y, Z]/(X?® + Y* + Z). We list a few classes of weight
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functions.
(1) p(X +1)=(4,0), p(Y +1) =(3,0), p(Z +1)=(0,1)
(2) p(X+1)=(4,4), p(Y +1)=(3,3), p(Z+1)=(1,2)
() p(X+1I)=(4,4), p(Y +1)=(3,3), p(Z+1)=(0,1)
(4) p(X +1)=(2,0), p(Y +1) =(0,1), p(Z +1) = (6,0)
(5) p(X+1)=(0,1), p(Y +1) =(1,0), p(Z +1) = (4,0)

For class (1), (2) and(3) the legal choicesqgg are the ones that satisfies
p(X3 + 1) >Nz p(Z + I). For class (4) the legal choices @iy are the ones
that satisfiep(X> +1I) =y p(Y*+1) and finally for class (5) the legal choices

are the ones that satisfip§Y* + I) N2 p(X3 + I). We have the following
characteristicas.

(1) =) p(X°+1)=p(Y*+1), p(X° +1) # p(Z +1),
p(Y*+1)# p(Z +1)

(1) whetherp(Z® + 1) =y p(Y +1)
orp(Z® +1I) <z p(Y + I) depends on
the choice of<N3 (both things can happen)

(2) p(ZP+1) >p p(Y +1)
(3) p(ZP+1) < p(Y +1)

4) p(XP+1) #p(Y*+ 1), p(X? +1) = p(Z +1),
p(Y'+1)# p(Z +1)

(5) p(X>+1)#p(Y* +1), p(X> +1) # p(Z +1),
p(YA+1)=p(Z +1).
It is clear that for instance the classes (1), (4) and (5) mjeidt and so are the
classes (2),(3),(4) and (5). Itis also clear that no twosglasare the same.

The order functions corresponding to the same class arenargkevery different
from each other. We illustrate this with a few examples inadase of class (1).
In the following we use the notatioh = F + I. The legal choices ORN%
correspond to the slopes € [0,12]. If o = 12 then we must havé), 1) <y
(1,0). The well behaving sequence corresponding to the footprint

A ={XY?Z7 |a < 3}
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starts with

4
(Ly,z, 9% vy, 22, 9%, 2%y, 2, 9" 2y®, 2%y 0, ).

Ifinsteada. = /2 then the well behaving sequence correspondiny(t starts
with

2 3 4 2 2 2 5
(].,Z,Z s Y, Ly 2 Yz, T2, 2, Yz Y 12, 1Y, 2 ’)

If « = 1 then there are two possible choices. Eitk@r) <Nz (1,0) or
(0,1) >Nz (1,0). In both cases the well behaving sequence corresponding to
A(I) starts with

2 .3 4 5 2 6 3 2 2
(1,2,2 125 Y, 2 Y2 T, 2, Y2, 2,2, Yz T2, Y a) (|73)

Finally if o = 0 then we do not have a well-behaving sequence but only a well-
behaving basis. We list some of the elements in this bass iaftreasing order,
to get a picture of the structure of this well-behaving hasis

2 .3 2 3 2 3
1,2,2%,2°, ..., y,yz,yz°,yz°, ..., x,x2,x2°,2°, ...,

2 3
TY, TYZ, TYZ", TYZ" oot

As noted before, in this material we do not always descrith¢ha legal order-
ings on a given value semigroupn In this way we consider in the following
two examples only the standard orderingshNgn

Recall that in example 1.6.6 we considered a determinamtglaoming from a
2 x n matrix [X];; of variablesX;;. We showed that the quotient ring

E[X11, X19,...,X9,]/I, wherel is the ideal generated by tRex 2 minors, is
an order domain. With Pellikaan’s factor ring theorem we tawe the tool for
giving some more examples of determinantal rings that ateraiomains.

Example 1.7.9

Form > 2 consider an x m matrix[X]|;; of variablesX;;. As usual we use
the notationX := (Xi1,X19,..., Xmm) and we will write M for the set of

monomials inX11, ..., Xnmm. LetI be the ideal irk [ X] generated by the de-
terminantF” (X)) of [ X];,. We will show thatk [ X] /I is an order domain.

Let weight vectorsw(X;;) € Ngﬂ*l\{o} be given as in figure 1.7.1 and let
N6”2 ~! be ordered by the standard ordering. Let <., be the weighted degree

lexicographic ordering o induced by these weights, by,; on NB”Q‘l, and
by some lexicographic ordering;.,, on. M. One easily checks that;; Xos - - - Xinm
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andX 1, (X21 X3z Xp(m—1)) are the only terms aF of the highest weight.
Wilog. we may assume that the leading monomiaFoWwrt. <,, is lm(F) =
X11 - Xom- Now

Al)={M eM | X1+ Xpm t M}.

From figure 1.7.1 one easily concludes that no two differeahomials inA(T)
have the same weight. A4’} of course is a Grobner basis we conclude that all
the conditions in theorem 1.7.1 are satisfied.

m columns m columns m2—2m columns

Figure 1.7.1: The first m columns are the weights w(Xy,),
w(Xa2),...,w(Xmm). The nextm columns are the weigths
w(X1m), w(Xa1), w(Xz2),..., w(Xpm-1)). The remaining
last m? — 2m columns consist of the weights of the remaining
variables in some unspecified order.

Givenm < n consider the following determinantal ring comming fronvarx n
matrix of indeterminates. Namely the rikgX11,..., Xmn]/I wherel is the
ideal that is generated by all x m minors. In a class of experiments the author
tried to find weight functions on these structures, but witheny luck. In the
next example we leave out some of thex m minors definingl, and we are
then able to find weight functions on the corresponding tires.
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Example 1.7.10

Form > 3 consider an x (m + 2) matrix [X];, of variablesX;;. As usual
we use the notatioX := (X11, X12,. .., X;(m42)) and we will write M for
the set of monomials X1, ... s Xin(m42)- Letl be the ideal irk [ X gener-
ated byF, andF,, whereF, andF, are given in the following wayF is the
determinant of the matrix consisting of the firstcolumns in[X];; andF; is
the determinant of the matrix consisting of the lastolumns in X1;;. We will
show that in the case. = 3,4,5 the domairk [X'] /I is an order domain. The
result can be generalized to any vatue> 3.

Case Im = 3:

Let weight vectorsw(X;;) € Ni*\{0}, be given as in figure 1.7.2, and i&}?
be ordered by the standard ordering. Let<,, be the weighted degree lexico-
graphic ordering oM induced by these weights, by the orderingNgjf, and
by a lexicographic ordering,., on M such thatX 31 X190 X235 <jes X11X20X33
andXo3 X34 X15 <jer X13X24X35.

Figure 1.7.2: Case I: Each column corresponds to a weight\arable. The
weights are listed in the following way. The first 11 columitete
the value OﬁU(Xll), UJ(XQQ), UJ(X33), w(Xgl), w(Xlg), UJ(XQ;;),
w(X34), ’LU(X15), ’LU(X13), w(X24), w(X35). The last 4 columns
(unit vectors) give the weights of the remaining variablesome
order.

It is easily checked thaX3; X 12 X923 andXi1 X292 X33 are the only terms i
of the highest weight with respect to the ordering just merdd. In particular
lm(Fl) = X11X99X33. Also X93 X34 X 15 and X3 X924 X35 are the only terms
in F, of the highest weight. In particulém(Fy) = X3 X924 X35. As the leading
monomials are relatively prime we conclude that, F,} constitutes a Grébner
basis forl with respect to<,,. In particular this means that

A(I) = {M e M | X11X22X33)( M, X13X24X35)( M}
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Studying the nullspace of the matrix in figure 1.7.2 we seé¢tihere do not exist
two different elements in the footprint with the same wegghtlegree. All the
conditions in theorem 1.7.1 are satisfied.

Case ll, m=4:

Let weight vectorsw(X;;) € N22\{0} be given as in figure 1.7.3, and [&§*

be ordered by the standard orderirg,. Let <,, be the weighted degreee lex-
icographic ordering oM induced by these weights, by, onN2? and by a
lexicographic ordering,.,, on M such that

X1 X19X03 X34 <jer X11X22X33 X4

X3 X34 X5 X16 <iex X13X24X35X46.

Now X 41 X190 X923 X34 andX1 X292 X33X44 are the only terms i, of the high-
est weight and o3 X34 X 45 X16 and X3 X4 X35 X 46 are the only terms iy of
the highest weight. Just as in case 1 the conditions in thedrél are seen to
be satisfied.

—-
-
=

Figure 1.7.3: Case II: Each column corresponds to a weiglat wedriable. The
weights are listed in the following way. The first 14 columtets
the value Ofw(XH), ’w(XQQ), w(X33), w(X44), w(X41), ’w(X12),
w(X23), w(X34), w(Xas), w(Xie), w(Xi3), w(Xa), w(Xs5),
w(Xy46). The remaining last 10 columns (unit vectors) gives the
weights of the remaining variables in some order.

Case lllm = 5:

Let weight vectorsu(X;;) € N33\{0} be given as in figure 1.7.4, and I5§> be
ordered by the standard orderirg;. Let <., be the ordering oM induced by
these weights, by ,; onN3?, and by a lexicographic ordering;.,, on M such



58 Pellikaan’s factor ring theorem Ch. 1.7

that
X51 X129 X023 X34 X455 <jeg X11 X220 X33X44 X5

X3 X34 X45X56X17 <iex X13X24 X35 X46X57.
Now X517 X19X93 X34 X415 and X 11 X090 X33 X44X55 are the only terms i, of
the hlghest Welght And(23X34X45X56X17 andX13X24X35X46X57 are the

only terms inF; of the highest weight. Just as in case | and Il we find that the
conditions in theorem 1.7.1 are satisfied.

—
-
=

-
-
-

Figure 1.7.4: Case lll: Each column corresponds to the weddgha variable.
The weights are listed in the following way. The first 17 cohsn
state the value O’fU(XH), ’w(XQQ), w(X33), w(X44), ’LU(X55),
w(Xs51), w(Xi2), w(Xas), w(Xsa), w(Xus), w(Xs), w(Xi7),
w(X13), w(Xoq), w(Xss5), w(Xye), w(Xs7). The remaining last
18 columns (unit vectors) give the weights of the remainiag-v
ables in some order.

1.7.3 The effect of different choices of lex-part of<,,

LetI C k[X4,...,X,,] be an ideal with a Grobner bagiswith respect to a
weighted degree lexicographic orderirg,. Denote the lexicographic part of
<w by <jer. Assume now thaf, G, <,, satisfies the conditions in Pellikaan’s
theorem. A natural question then is what happens if we ihtarge the lex-
part of <,, with another lexicographic ordering;,. to give us=<.,. Will the
conditions in Pellikaan’s theorem still be satisfied? (¢wally with a new
Grobner basis). And if they are, will the corresponding gietifunction on
E[Xi,...,Xy]/I be the same? We will show that the answer to the last ques-
tion is positive. And we will give a condition under which taeswer to the first
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question is also positive.

To state the condition we will need some notation. Denote

G={FO =m" 1+ oMV 1 ¢, .
FO =M +a® M) + G0}

WhereMl(t>,M2(t), t = 1,...,s are the monomials itF"(!) of highest weight.
The condition is as follows.

Condition t
Given any two monomial¥; # N, such thatw(N;) = w(N>) then there exists
anindext € {1,..., s} such that

MO \Ny, M |\Ny or M |Ny, MY |N,.

We first show that under this conditiog, is also a Grobner basis with respect
to <!,. Assume by contrary that it is necessary to adjoin more motyals to

g to get a Grobner basig' wrt. <!,. Let H be any of these polynomials. By
proposition 1.5.4 we may wlog. assume, tlfatcan be written

H=N+aNs+1, a#0

where

w(Ny) = w(Ns) = wdeg(H),
and whereN; is the leading monomial off wrt. <! . Further wlog. we may
assume, that wrtz’,, we havelm(F®) = Ml(”, forl = 1,...,s. By condi-
tionl, at, 1 < ¢ < s, exists, such that eithevr”) | Ny and M{" | N, holds,
or M{" | Ny and M(? | N holds. In the first case, by the very definition of
a Grobner basis (see definition 1.A.2 in the appendix), &t&/5 {H} is also a
Grobner basis of wrt. <. SoML" | Ny andM? | N, must hold. Consider

No_ )

Hy:= H-a—=F
M

Aslm(H) = N;, we must haveV; € Supp(H;). And in particularlm(H;) =
N;. As H; € I, we can conclude that

Hi=N+BQ2+J, B#0
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where
w(Ny) = w(Q2) = wdeg(Hy).

That is, H; is of a form similar toH. Getting fromH to H, is the first step in
the division algorithm, that finds the residuefmodulo{F(1) ... F()}. So
wlog. we may assume thaf is its own residue modul¢F ("), ... F($)}. But
this is in contradiction with condition I. We have provedttfas also a Grobner
basis wrt</, .

Although A (I) will notequalA ., (I), condition | ensures that no two mono-
mials inA_. (I) will be of the same weight. We conclude tHatj, <;, satisfies
the conditions in Pellikaan’s factor ring theorem.

Finally to see thats!, and <,, gives the same weight function whenever both
I1,¢',<! andI, g, <, satisfies the conditions in Pellikaan’s theorem note the
following. Consider any residue clags= F + I whereF is the residue of
any polynomial inf moduloG (wrt. <,,). By assumption? has precisely one
monomial of highest weight in its support. Now redu¢enodulog’ (wrt. <))

to get the unique residue’ € F + I. As F has precisely one monomial in
its support of highest weight, so has alB§ andwdeg(F') = wdeg(F'). By
construction the weight functions are the same.

Note that all the weight functions considered in this matesatisfies condition
I. We leave it as an open problem to decide if it is at all pdesib construct a
weight function such that condition | is not satisfied.



1.8
Constructing new order domains from old ones

In this chapter we will study three different ways to constmew order domains
from old ones. First we discuss how to construct new orderaiiesnfrom toric

order domains. Next we study the tensor products of orderdtsnand finally

we will be concerned with constructing new order domains bgréain kind of

substitution.

[.8.1 New order domains from toric order domains

For coding theoretical purposes one of the interestingrperers of an order
domainF,[X]/I is the number of zeros = #Vr, (I). As we will see in
chapter 1.11 there exist simple methods to construct codes) of length
n = #Vr, from an order domair, [X]/I. A motivation for constructing a
new order domairf,[X]/I' by modifying the defining polynomials of a toric
order domainF, [X]/I could be to try to obtaif¢Vr, (I') > #Vr, (I). This
will allow us to construct longer codes. If we modify the defonpolynomials
of the toric order domain carefully, we may achieve that ai@aemigroup\
survives the modification in the sense, that there exist hotreight function
p: k[X]/I — A_ and a weight functiop’ : k[ X]/I' — A_,. That this can
actually be desirable relies on the fact that the structéitbeovalue semigroup
contains information about the minimum distances of theesazbrresponding
to the order domain. The implication of the structurefobn the minimum
distances of the corresponding codes is described in ahiapte

Example 1.8.1
Consider the toric idedl in Fo [ X, X2, X3] corresponding to the weights

w(X1) = (2,0) w(X2) =(0,2) w(X3)=(1,1). (1.8.1)

One easily verifies that = (X1, Xo + X §). Let<Ng be a monomial ordering
onNZ. An order function onR := Fy[X1, X5, X3]/I is induced as a weight



62 Constructing new order domains from old ones Ch. 1.8

function by

:O(Xl +I) = (270)7:0(X2 +I) = (0a2)a
p(Xs+1)=(1,1). (1.8.2)

Order nextM3 by the lexicographic ordering .., whereX, <jez Xo <jes
X3. And denote by, the weighted degree lexicographic ordering given by (},8.1
<z and=e,. Now clearlyp can be understood as a weight function from Pel-
likaan’s factor ring theorem by the use-f,. In particular{ X, X, + X3} is a
Grobner basis wrt,,.

We will now add terms to the defining polynomi&h X, + X2 in a way such
that X1 X,, X2 is still the unique pair of monomials of highest weight in our
defining polynomial. That is we will add terms of weight lekari(2,2) (with
respect to<N%). It is clear that the conditions in Pellikaan’s factor rithgorem
will still be satisfied if we replac&, X + X2 with the new defining polyno-
mial. And the weight function will still be induced by (1.8.% we interchange

I with the ideal generated by the new defining polynomial. Whigtht change,
when we in this way replacBwith a new ideal, is the size of the corresponding
variety. Working with this process in practice, one ofteperience that the size
of the variety is either unchanged or raised. However it Ggpkn that the size
of the variety is lowered. If we chooseNg to be<; then addingX; + X3 or

X1 + X9 + X3 will be legal. We get

VF2 (<X1X2 + X??>) = {(Ov Oa O)a (L Ov 0)? (Ov 1a O)a (17 17 1)}

Vi, ((X1X2 + X3+ X1+ X3)) = {(0,1,0),(0,1,1),(0,0,0),

Vi, (X1Xo + X3+ X1+ X2+ X3)) = {(0,0,0),(0,0,1)}.

Example 1.8.2
Consider the toric idedl in Fy [ X1, X, X3, X4] corresponding to the weights

w(Xl) = (230)3 w(X ) = (Oa
1

2 )
w(X3) = (1,1), w(X4)=(1,2). (1.8.3)

)

We havel = (X3 — X9 X1, X7 — X2X,). OrderN2 by some monomial or-
dering <Nz We will define two orderings oM 4. Let the weighted degree

2
2
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lexicographic ordering<,, be defined by the weights (1.8.3), by the ordering
<N and by the lexicographic ordering

Xl <lex X2 <lex X3 <lex X4-

Further let<!, be the similar ordering where,., is replaced with the lexico-
graphic ordering<;,.. defined by

X4 '<Eem X3 '<Eem Xo '<;ez X1.

Now
G5 = (X3 - Xo X1, X} — X3X1} (1.8.4)

is a Grobner basis with respect+g,. And
G = (X9 X2 — X3, X, X2 — X3, X, Xy — X2} (1.8.5)

is a Grobner basis with respect+9,.

The leading monomials of the polynomials Gi=v) areX? andX3. That is
the leading monomials are relatively prime. From Grobresi theory (see
lemma 1.A.16 in the appendix) we know that the S-polynomiaiwm polyno-
mials with relatively prime leading monomials will always bero. We conclude
that we can add any terms we like to the first polynomiagiri»), as long as
these are of lower weight than(X2) = (2,2), and add as well any terms we
like to the second polynomial i(=»), as long as these are of lower weight than
w(X?) = (2,4). The new basis generated in this way will again be a Grobner
basis. As the footprint is unaffected by the adding of terthe, conditions in
Pellikaan’s factor ring theorem will still be satisfied. ldahat different choices
of <Nz will give us different opportunities of adding terms.

However the situation is much more complicated in the cas€ ofWe can not
repeat the argument from above ¥sX? is not relatively prime taX; X, and
neither isX, X} to X, X. If we for instance try to modifg(=<w) by simply
adding the termX, to the first polynomial, then the following thing happen.
Applying Buchberger’s algorithm we get after reductiore tfrew Grobner basis

G=w) = (Xy X2 — X2 — X4, X1 Xy — X2, X Xy, X3, X2X4, X3 — X2}

and clearly this does not generate a prime ideal and therefeither an order
domain.
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1.8.2 The tensor product construction

In this section we introduce a particular simple method tastwct new order
domains from old ones. We start with two examples.

Example 1.8.3
Consider the order domaiiis, := k[X,] and Ry := k[X,] with weight func-
tions

0 = -0 i=1,2.

R; — Ny U {—OO}
Pi
F(X;) — degF, F#0

LetN? be ordered by ;. Now with respect to this orderinB := k[ X1, X»] is
an order domain with a weight function

R - N U{-o0}
' 0 = —00
P F(X1, X)) — max_,{(degy, M, degy, M)
M € Supp(F)}, F #0.

Example 1.8.4
Consider the order domaiR, := F,[X fl), XQ(”} /I, where

I= ((xf) + (x5)? + x5Y).
And similarRy := T, [XfQ), X2(2>}/Ig where
I = (X)) + (X)),

Now R, can be understood as an order domain from Pellikaan’s faitgr
theorem by using weights

wi(X1") = 2,0 (X5V) = 3
and by considering the footprint
A = {(x{")(x§")? 18 < 2.
The same story holds fdt,, by using weights

wo (X)) = 3w (X57) = 5
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and by considering the footprint

A(L) = (X (x)8 |8 < 3).

Consider now . ) , ,
R:=Fx", xV, x® xP)r

where ) ) . ) )
Ii= (X)) 4 (x5 + x5, (x5 (x$)%).

The crucial observation is that alsbcan be understood from Pellikaan’s factor
ring theorem to be an order domain. Just consider the weights

w(X{) = (wi(X{7).0) = (2,0) w(X) = (w(X5),0) = (3,0)
w(X{P) = (0,wa(X{P)) = (0,3) w(X) = (0,w(XV)) = (0,5)

and the footprint
A(I) = {Mi My | My € A(Ly), My € A(Iy)}- (1.8.8)

Using for instance the:s; ordering onN3 the theorem is satisfied. Note that
(1.8.8) follows from the fact that i€; is a Grébner basis fak;, i = 1,2 , then
G:={F|F € G, orF € Gy} is a Grobner basis far.

The construction in example 1.8.3 and example 1.8.4 is aiapease of the
so-called tensor product betwegralgebras. We refer to [22] and [46] for the
general definition of a tensor product. In [13] it is shownttthe tensor prod-
uct between any two order domains is again an order domaithidrmaterial
we consider only the case of a tensor product between quotigys. This re-
striction makes it possible to develop the theory we neeithgusnly already
introduced concepts.

Consider two quotient rings, say

R=k[X1,...,Xp]/I

where
I =(F(X),..., (X))
and
S =k[Y1,...,Y,]/J
where

J = (G1(Y),...,Gs(Y)).
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Let
{pr=P\(X)+T|)cA} (1.8.9)

be a basis foR as a vector space ovkrand
{¢, =Qy(Y)+J|yveT} (1.8.10)
be a basis fo5 as a vector space ovkr

Definition 1.8.5
The tensor product oveérbetweenR andS is the quotient ring

RerS = KX, Y|/(Fi(X),...,F(X),Gi1(Y),...,Gs(Y))
= kX, Y|/(I+J).
Note that this definition is independent of the choice of gatwesFy, ..., F.
for I andGy, ..., G, for J. We have the following (well-known) lemma.
Lemma 1.8.6
B:={P\Q,+(I+J)|xeA,yeTl} (1.8.11)

is a basis folR ®;. S.

Proof:
We may wlog. assume that

(F(X),...,F.(X)} (1.8.12)

is either equal td0} or is a Grobner basis say wrt. the pure lexicographic or-
dering < on M (X1,...,X,,) defined byX,, <* - - < X;. And we
assume that the representati#g of py, A € A is chosen as the residue mod-
ulo (1.8.12) of a(ny) polynomial in the residue class Similar we assume that

(G1(Y),...,Gs(Y)} (1.8.13)

is either equal td0} or is a Grobner basis say wrt. the pure lexicographic or-
dering<),. on M (Y1,...,Y,) defined byy,, <Y --- <Y ¥;. And thatQ,

is the unique residue of a(ny) polynomial4p. Note that the seB is defined
independent of these assumptions.

To show that is a basis folR ®, .S, we must show

(i) the elements of5 are linearly independent ovér
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(i) every residue class i ®; S can be written as a linear combination of
the elements iis.

As a preparation to show (i) and (ii) we exten@gx and <};x to the pure lexi-
cographic ordering<;e, on M (X1, ..., X, Y1,...,Y,) defined by

Yn <lez " <lex Yl <lex Xm <lex * " Rlex Xl-
Now
{FI(X),... Fo(X),G1(Y),...,Gy(Y)} (1.8.14)

is either equal td0} or is a Grobner basis wrk.,. To see this consult Buch-
berger’s algorithm and lemma |.A.16 in section I.A.4 of tigandix.

Proof of (i):
Assume that (i) does not hold. That is assume a linear coridmexists

Y an(PQy+(I+7) = (Z OéMPAQ7> + I+ J)
AEA
vyeTl

— (I+J) (1.8.15)

where not alloy, equals zero. As no term d?,Q, is divisible by any of the
leading terms in (1.8.14) whenever (1.8.14) does not eq0&| then neither is
any of the terms iry_ ay, PAQ,. So if > ay,P\Q is to be a polynomial in
I + J (assumption (1.8.15)), then we must have

> o PrQ, =0. (1.8.16)
A€eA
vyeT
It remains to show that (1.8.16) leads to a contradiction. Hake
> P, =0
A€eA
vyerT
Y
Z Z ax @y | PAx=0
AEA \yeTl
4

D RA(Y)Py(X) =0 (1.8.17)
AEA
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where
RA(Y) =Y a0 @, (Y) = Y ¢,5Y°.

Vel deNy
Continuing from (1.8.17) we get

3 ( 3 %Y‘5> P\(X) =0

AeA \deny
Y
3 <Z c/\(;P,\(X)> Y9 -0
deNg \ A
Y
Y e gPA(X) =0 forall§ e N
AEA
Y
c,5 =0 forallde A, d Ny
Y

axy =0 forallxe A,yeTl
and we have reached our contradiction.
Proof of (ii):
We have by assumption
span,{Py | A € A} = {P | P aresidue modul¢F;(X),...,F.(X)}}

span, {Q~ | v € I'} = {Q | Q aresidue modul¢G,(Y'),...,Gs(Y)}}.

We conclude that

span, {P\Q, | A € A,y € '} = {T | T aresidue modulo
{Fi(X),...,F.(X),G1(Y),...,Gs(Y)}}.

0

Now assume thaR and S are order domains with order functiopg : R —
A andpg : S — I'_, whereA is ordered by<, andT is ordered by<r.
We may assume that (1.8.9) and (1.8.10) are order bases. aive thatR ®, S

is an order domain. To show this define the map

{ B - AoT
PRES Y PQy+ (I+J) = (pr(Pr+1),p5(Qy+J)).

(1.8.18)
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Define an ordering<aqr on A @ I' by the rule, thatA1,v1) <aer (A2, ¥2) if
and only if one of the following two conditions holds

(1) Al <A )\2
(2) A1 =Xy andy; <r 72.

The functionprg, s gives an indexing oB3. If we can show that the indexed
and ordered basiB,; ,<.er IS Well-behaving, then it will follow by theo-
rem 1.3.18 thaprg, s can be extended to an order function®m;, S. Consider
thel-functionsi, andir corresponding tp, andpr respectively. We will show
that thel-function corresponding tprs, s iS

Lor :{ (AeT)x (AeT) — (A@l) (1.8.19)

(A7) A2y 72)) = (Ia(Aay A2)s I (1, 72))

and it will easily follow thaTBpR®ks,<A@r is well-behaving, implying thairs, s
can be extended to an order function B®;, S.

To show thatlyqr truly is the desired-function, consider the product of two
elements i3, say

(PvQy + I+ ) (PAQy+ (I +))
= (PvP\)(QyQy) + (I +J)

= (X aur) (X80 +T+)

where (3 a, P,) (> fuQy) is the unique residue Py Py)(Q.Q~) modulo

the Grobner basis (1.8.14) (orif-J = 0then(}_ -+ )(D_ -+ ) = (Pv P\)(Qy Q~)).
But>" «, P, is also the unique residue 8% P, modulo the Grdbner basis (1.8.12)
(orif I =0then) ... = PyPy). And similar)_ Sy Q, is the unique residue
of Q. Q, modulo the Grobner basis (1.8.13) (orif= 0then}_ --- = Q,Q,).

We conclude that (1.8.19) describes fhteinction corresponding tprg, 5.

We note that there are many other ways, beside the one ded¢rive, to extend
the set<,, <r to an ordering o\ & I, that would lead to order functions on
R®; S (see [13)]).

The above construction of a tensor product between two alolerains ovelk
is easily generalized to a tensor product between 1 order domains ovet.
Whenk is understood from the context we will denote such a product b

®ZT-L:1RZ':R1®R2®"'®R“.
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We note that in this way we have found an easy method to canisteguences
(D1 := Ry = F,[XW])/IV, Dy := R ® Ry =: F,[ XV, Xx@]/12),
D3:= Ry ® Ry ® Ry = F,[X1, X@ xO71/1®) )

of order domains, such thgtVs, (I(V) tends to infinity as tends to infinity.
These sequences are interesting as they give rise to irdimifgences of codes
of increasing length. We will return to this subject in cledt15.

1.8.3 Constructing new order domains by substitution

Given a non algebraically closed fieldand an irreducible polynomid?(7") of
degreen. Let «a be a root of P(T'), and consider the field extensidric)/k.
Let F'(X) be a polynomial irk(a)[X1,..., X,,], and consider elements =
(Z1,--,7m) € Vi ((F(X)). The nature of a field extensidr{a) /k ensures
that we can write

pi =y oy a+ o yian! (1.8.20)

uniquely. Expanding the equalif(z1, ..., z,) = 0 by use of the rhs. of (1.8.20),
we derive

Fi(y) + Fa(y)a+ -+ Fu(y)a" ' =0, (1.8.21)
where we have used the notation
Yy = (ygl),...,yg),...,ygm),...,ygm) )
The linearly independence of, ..., a" ! implies that
Fi(y)=F(y)=---=F,(y) = 0. (1.8.23)

Now the idea in this section is to take an order donfain)[X1, ..., X,,]|/1
where
T=(FO(Xy,....Xp), ..., FOXy, ..., X))

Then substitute every; with
ARINES (AL PMNESRNE ({OPM

in the defining polynomials to get a new set of polynomialading to (1.8.21)
and (1.8.23)

FOY), ..., FOY),..., FOY), ... FED(Y).

n n

Let I be the ideal ink[Y'] defined by these polynomials. Now the hope is that
alsok[Y']/I is an order domain. We give no arguments why this should kgtua
be the case in general; but only consider two examples.
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Example 1.8.7

Consider the Hermitian polynomi&l (X, X,) = X' - XX, overF,. In
the following we will transform the Hermitian order domadigp [ X1, X»]/(H)
to a new order domain, by introducing new variables relateith¢ field exten-
sionF. /T, .

Let P(T) € F,[T] be an irreducible polynomial of degr@e and leto: be a
root of P(T). We identify the elements df, with the polynomials irff,[T]
of degree at most evaluated ir. In the following we will need the fact that
ol ¢ Ty C Fy2, orin other words that! = a + ba wherea,b € F, andb is
nonzero. To see this assume by contrary tfla¢ I,. We have

(@) =1

Y

2_
a1 =1,

But at the same time we also havé ' = 1. We conclude that?’ ' = 1 =
a! = a. Buta ¢ F, and we have reached a contradiction. We will also need
the fact that := 97! € F,\{0}.

We now introduce new variables,Y, Z, W and substituteX,; with X + Y«
andXs with Z + W« in the defining polynomiaH . This gives us

X X — Xy = (X 4 aXYI 4 VI — 29— aW - 7)
+(bXY!+ XY — bW — W)«
= H(X,Y,Z,W)+ Hy(X,Y, Z,W)a.

From the discussion above we know that F, andb,c € F,\{0}. We will
show thatf,[X,Y, Z, W]/(H:, Hy) is an order domain. Let weight vectors be
given by

w(X) = (g,0), w(Z) = (¢ +1,0), w(Y) = (0,q), w(W) = (¢,1)

and lefN2 be ordered by the standard ordering. Now there are precisely two
terms inH, of highest weight, namely

w (XT) =w (27 = (¢ + ¢,0)
and there are also precisely two termdiig of the highest weight namely
w (XY) = w (W) = (¢%,q).

Note that it is crucial here that=+ 0. We now choose a lexicographic order-
ing <ie; ONM (XY, Z, W) with X <., Z andX,Y <., W. Combining
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this with the weights, we get a weighted degree lexicog@aphiering<,, on
M (X,Y,Z, W) for whichlm(H,) = Z9 andlm(Hy) = W?. As these two
leading monomials are relatively priméH,, Hy} constitute a Grobner basis
with respect to<,,. The footprint is given by

A(l)={M e M(X,Y,Z,W) | deg,(M),degy (M) < q}.

It is easy to see that there is no pair of monomials\ifi) with the same
weight. For the special case = 3 the value semigroup is illustrated in

figure 1.8.1. We have shown thg{[X,Y, Z, W|/(H:, H) is an order domain.
Butsois alsd([X,Y, Z, W|/(H,, Hy) wherek is an extension df, . In partic-

ular¥,. [X,Y, Z,W|/(Hy, Hy) is an order domain.

o O O O O O O O O

o o o o o o o o o o o o

12 . @ e 6 @ ° o O + o O o o o

o O O O O O O O O

o o o o o o o o o o o o

9 . o« o o« o o« o e o

o O O O O O O O O

o o o o o o o o o o o o

6 . o« o o« o o« o e o

o O O O O O O O O

o o o o o o o o o o o o

3 . o« o o« o o« o o« o

o O O O O O O O O

o o o o o o o o o o o o

0 . ~—e ~—e ~—e ~—e
0 3 6 9 12 15

Figure 1.8.1: The value semigroup C N2 in the case; = 3. Massive small
dots correspond to weights of monomials witlg , = degy, = 0,
massive medium dots teg, = 1, degy, = 0, massive large dots
to deg, = 2, degyy = 0, open medium dots tdegy;; = 1 and
finally open large dots tdegy,, = 2.

Example 1.8.8
Now assume that we considBI{ X, X,) = X; — X2 — X, as a polynomial
over the complex numbefS. As beforeC[X,, Xs]/(H) is an order domain.



1.8.3. Constructing new order domains by substitution 73

LetC/R define our substitution, that is substitdfe with X + Yi andX, with
7 + Wi, wherei = \/—1. By inserting we get

XP-X2-Xy = (XP-3XY?-Z2+W?-2)
+(3X?Y —Y? 4+ 2ZW — W)i
= H(X,Y,Z,W) + Hy(X,Y, Z,W)i.

We will show that the situation is more complicated than iaraple 1.8.7. That
is, we will show that there does not exist a weighted degrdedgraphic order-
ingonM (X,Y,Z, W), such thal H,, H,} is a Grobner basis that satisfies the
conditions in theorem 1.7.1.

Assume that such one did exist. Then the set of monomialsgtieli weight
in Hy could be eithef X3, 72}, { X3, W2}, {XY?% Z%} or {XY?2, W?}. And
the set of monomials of highest weight i, could be eithed XY, ZW'} or
{Y3, ZW'}. This gives us eight combinations to check.

Case I: Assume that the sets d4r&3, Z?} for Hy and{X?Y,ZW} for H,.
Thenw(XY?) = w(W?). But this by assumption does not hold as baith>
andW? are in the footprint no matter which lexicographic orderisghosen.
Case II: Assume that the sets &2€*, Z*} for H, and{Y?, ZW} for Hy. Now
from H, we getw(y) < w(x) and fromHy we getw(z) < w(y), a contradic-
tion.

Case Ill: Assume that the sets §i8Y?, Z?} for Hy and{Y?3, ZW} for Hs.
We must haven(W) < w(Z) and alsav(X) < w(Y). This gives usy(XY?) <
w(Y?) < w(Z?), a contradiction.

Going through the remaining five cases one finds contradgtike the ones
described above. We conclude that we must look for a weigletédographic
ordering for which{ H,, Hy} is not a Grobner basis. Especially we must look
for an ordering such thatn(H,) andlm(H,) are not relatively prime. Given
all the possible sets of such leading monomials one couldaah case try, to
add new polynomials to the basis using Buchberger’s alyaoritHowever the
complexity of such a search algorithm is relatively highit i€ to be done by
hand.
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The nature of the value semigroup of a weight
function

Consider a weight function
p:R— A CNyU{—o0}

(A ordered by some monomial ordering). We may assumeptisathosen from
the set of weight functions, in a given equivalence classrdéofunctions in

a way s.t.r is minimal. In all the examples of weight functions that wevédna
considered up to now we have hag- trdg(R). This result may very well hold

in general whenevek is finitely generated. However at this moment only the
following result is proved to hold. Namely that the value sgnoup of a weight
function can not be containedfy U{ — oo}, whenever the transcendence degree
of the related order domain exceelds

Theorem 1.9.1
Given an order domai® of transcendence degree at leastwith a weight
functionp : R — A _,. ThenA is not isomorphic to a subspaceNy.

Proof:

Letz,, 25 be two elements in a transcendence basigfowe havek|z, z5] C
R. Consider the restriction ¢f andA, that is considep’ : k[z1,z9] — A'. As-
sume in the rest of this proof that ¢ Ny. We will show that this assumption
leads to a contradiction, and the theorem will be proved. ddwdradiction is a
conseguence of the following fact (which we are going to pjov

Fact:

Consider the weighted degree functiedeg onk[z, x2] induced by the weights
w(z1) = p(z1) andw(ze) = p(z2). Under the assumptioh’ C N, there exists

an infinite sequencery, f1 := 2, fa, f3,...) of elements ik [z, z2] such that

p(fi) p(fit1) .
wdeg(7) > wdeg(firl)! i>1 (.9.1)

:O(fz) €(p(xl)ap(fl)ap(fQ)a"'ap(fifl»a P> 2. (|92)
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Before proving this fact, let us investigate the contraditt It goes as follows.
From (1.9.2) we conclude that’ can not be finitely generated, but on the other
hand every semigroup &f; is known to be finitely generated.

Now let us turn to the proof of the fact. We show by an inductiwaof, that
(1.9.1) and (1.9.2) are satisfied for every sub sequémeef; := 2, fo, f3, ..., fn),
n > 2.

Initial step (n=2):

Defineay := p(z1), a1 := p(z2). Now p(z{') = p(z5°), SO a>\§1> € k\{0}
exists, such thag!" := 29 + AV satisfies) < p(gl")) < p(z%*). Note
that wdeg(gél)) = wdeg(z]'). Now if p(gél)) ¢ A, := (ag,a;) then we
choosefy = gél). If on the other hand;(gén) is already contained i,

then it is because there ex'tsiz), a;2> > 0, not both zero, such th@t(gél)) =

@ @ 3 @
p(z]" x> ). But then for some\?) € k\{0}, g£2> = gén + /\§2)$?1 Ty’

satisfies) < p(géQ)) < p(gé”). Note that agairwdeg(gf)) = wdeg(z{"). If
p(géQ)) is not contained i\, we chosefy := g£2>. If this is however not the
case, we continue the process as above, by findinga{@v\ug) and Agi), and
define nemgé“ from the old ones, as long as possible. In every run the orfder o
the candidate foys (that is the order ogéi)) discrease strictly, but never attains
zero, as the weighted degree of every candidate will be equaleg(z{').
This means especially that the process will eventually.sipat is ans > 1
exists, such thafy := gés) satisfies (1.9.2). Combining(f2) < p(z5°) with
wdeg(f2) = wdeg(z3°) we see that (1.9.1) is satisfied as well.

Induction step:
Assume a subset

{z1, f1 =22, f2,..., fn} C klz1, 73] (1.9.3)

is given such that (1.9.1) and (1.9.2) holds. We will showttaa elemenff,, .1 €
k[x1,x9] exists, such that

p(fn+1) € A;z = <P(5171)7,0(332),P(f2), s ap(fn)> (|-9-4)

and such that

P(fn) P(fn+1)
wdeg(fu) ~ weg(fur1) (1:9:3)
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Denotea,, := p(fn). Now p(f2) = p(xi") and there exists) € E\{0}
such thatgn> = fi 4+ A%Ux‘l’" satisfies) < p(g,(l>) < p(fSr). Note that
Wdeg(g,(l >) = wdeg( 1), follows from the induction hypothesis that (1.9.1)
holds in (1.9.3). Ifo(gy”)) ¢ A, then we defing,,.1 := ¢4, and (1.9.4) is satis-
fied. Ifthis is not the case, then it is because there @ﬁémgw,ﬁ), e ,7,(12) >
0, not all zero, such that

p(z] 517 BQ f -fr?’(f))Zp(gé”)-

But then also a!?) ¢ E\{0} exists such that

2 532 _(2) (2)
= g + 22 ] A 52 AL

n

9(2)
satisfies) < p(g,@) < ,0(97(11)). Note again thatvdeg(g,(f)) = wdeg(f5). If
P(9§z2)) ¢ Al , then we chos¢,, | := g,(l”. If not we continue the process (just
as in the initial step), by finding ne)ﬁéi ,B; ,722'), e ,7,(1) and/\( ) and defin-
ing neWg,(l> from the old ones, as Iong as possible. In every run the orfdéeo
candidate forf,, 1 (that is the order of;n ) discrease strictly, but never attains
zero, as the weighted degree of every candidate will be equaleg(f2'). Just
as in the initial step there existssasuch thatf,, 1 := g,(f> satisfies (1.9.4) and
(1.9.5). This concludes the proof of the fact, and thereleyptoof of the theo-
rem. [l

In particular we have the following result.

Proposition 1.9.2

A nontrivial order domainR, that possesses a weight functiprwith value
semigroup contained iy U {—oc}, must be of transcendence degtedJp to
equivalenceR does not possess any other weight function with value seunygr
contained iy U {—oc}. If p' is a weight function not equivalent tg then the
value semigroup\’ of p' cannot be finitely generated.

Proof:

The first part is a consequence of theorem 1.9.1 and remafKil.3he second is
a consequence of lemma 1.3.42. To see the last part noteliwifay. Assume
thatp’ is a weight function that is not equivalent go Given any two elements
X,Y € R then a nonzero polynomidP € k[T},Ts] exists, s.tP(X,Y) =0
in R. Now P(X,Y’) viewed as a polynomial iX,Y must contain two dif-
ferent monomials, sajX*Y? and X°Y'¢, st. p/(X°Y?) = p/(X°Y9). If A/
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is finitely generated, then we havé C Ny U {—oc}, which is impossible by
part two of the proposition. We conclude thidtcannot be finitely generated]

The proof of theorem 1.9.1 was developed before (and theretapendently of)
the appearance of [31] and [26]. Theorem 1.9.1 correspamtieetresult in [31],
that a discrete valuation on a field/k of transcendence degreloes not cor-
respond to an order function (see section 1.10.1). And tesponds to the result
in [26] that if an order domaiR? possesses a weight functipn: R — A_,
with A C Ny, then the transcendence degre€aibt(R) is 1.

The following surprisingly example of a weight function kX, X»] is strongly
related to the proof of theorem 1.9.1. Actually it has beesduas inspiration to
develop the proof of theorem 1.9.1. It was first presenteti@wWinter School of
Coding Theory in Ebeltoft dec. 1998. In this material we iksent the weight
function using Pellikaan’s factor ring theorem, althougtvas not from that it
was developed in the first place.

Example 1.9.3

Consider the order domaif X, X]. The well-known weight function induced
by o' (X1) = (1,0), p'(X2) = (0, 1), and by some monomial orderingy: on
N2 has the property that no pair of different monomials has émeesorder. In
the following we wiill give examples of order functions &hX,, Xs|, with the
remarkable property that there exist pairs of different oroials that are of the
same order. To develop these order functions, we first cen#fi@ order domain
k[Y1,Y2,Y3]/I, wherel := (Y — Y3 — Y3). We will use the isomorphism

k[Yl,YQ,Yg]/IZk[Xl,XQ] (|98)

given by, +1 +— X1,Ys+ 1+ X, andYz + I — X? — X3. That s, we will
construct an order function diY,,Y>, Y3]/I, and then use the isomorphism to
translate it to an order function éfX;, Xs].

Let weights be given by (Y1) = (3,0), w(Y2) = (2,0), w(Y3) = (0,1) and let
N2 be ordered by s;. Choose lexicographic ordering ~<je; Yo <jex Y1. AS
usual we defin&,, to be the induced weighted degree lexicographic ordering on
k[Y1,Ys, Y3]. This gives udm(Y? — Y3 —Y3) = Y2 andA((Y2 - Y3 - Y3)) =
{Y® | a1 < 2}. We easily see that the conditions in theorem 1.7.1 areftgatis
Let p be the corresponding weight function, with order b43s* + 1 | a; <

2}. The isomorphism (1.9.8) now corresponds to the fact {fét' X5 (X? —
X3)2 |y < 2} is a basis fok[ X1, X5]. The isomorphism immediately gives
us an order functiop onk[ X1, Xs] that is induced by(X1) = (3,0), p(X2) =
(2,0) andp(X? — X3) = (0,1). This order function has the propepyX?) =
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p(X3).

In the above casp(X? — X3) <s p(X1),p(X2). But if we instead from
the beginning choose (Y5 + I) = (0,6), we will get an order functiom on
k[X1, Xo] with p(X1) <5t p(X2) =<5t p(XT) <s p(X1X2) <s p(X7 +
X3) =g p(X3),p(X3) <4 .... By choosing in turnw(Ys + I) = (0,1),
(0,2), (0,3), (0,4), (0,5), (0,6) we get basically different order functions.
Now let us restricp to the subrings[Z; := X1, Zy := X? — X3] C k[X1, X3).

Of course no pair of monomials ity andZ, has the same order. $0X;, Xs]
contains two € trdg(k[X1, X3])) relatively transcendental elements with the
considered property, but it is nat, , X,.

Example 1.9.4
This is a continuation of example 1.9.3. Ord&r by <, and consider the weight
function induced by

IO(X) = (2a0)a IO(Y) = (370)7 IO(X3 +Y2) = (076)

The first three elements of any well-behaving sequenceé|forY] wrt. p is of
the form

fl =ay,
fo=b2X + by,
fs=c3Y + X + ¢y,

wherea;, b;, c; € k anday, by, c3 are all nonzero. Now(f3) = p(f3) indepen-
dently of the actual values of the coefficientsb;, c;. Assume there exists an
order basid3 with respect tq that is closed under multiplication. But then we
must have

f3=1f2¢cB. (1.9.9)

Howeverf2 contains the nonzero tere@§Y? whereasf; contains no term with
with Y2. Thereforek| X, Y] does not possess any order basis with respegt to
that is closed under multiplication. Or in other worgsjoes not possess any
order basif3 such that s, -, 1) is a semigroup. This example fills in a gap, we
had in section 1.3.3.

From [31] we have the following definition.

Definition 1.9.5

AssumeR is an order domain of transcendence degraweith an order func-

tion p. Thenp is said to be monomial if there exists a transcendence basis
{z1,...,2.} for R such that any two different monomials i, . . ., z, are of
different orders.
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Example 1.9.6
The weight functions from example 1.9.3 are monomial.

The following conjecture is due to Ruud Pellikaan.

Conjecture 1.9.7

Let R be an order domain of transcendence degretf p : R — A_ is a
weight function and\ is finitely generated, theA is isomorphic to a subspace
of Ny, but not to a subspace b~ .

If conjecture 1.9.7 holds, then an immediate consequentidgithe following
proposition.

Proposition 1.9.8
If p: R — A_ is an order function and is finitely generated thep is
monomial.

In [31, Ex. 5.2] O’Sullivan uses algebraic geometry techegjto give an exam-
ple of a non monomial order function corresponding to a \t@na

v:k(X,Y)\{0} =T CQ

In the structure this example resembles example 1.9.3 veighmHowever the
proof needed to show [31, Ex. 5.2] is very different from thiegd in exam-
ple 1.9.3. From the appearance of O’Sullivan’s example wechale that the
condition in conjecture 1.9.7, that is finitely generated, is crucial. However
example 1.4.3 shows that it is not in general a necessaryitommd
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Every weight function is a valuation

In this chapter we first treat the general concept of valaatand corresponding
valuation rings. It will become clear that there is a strongrection between
order domain theory and valuation theory. Actually all weifunctions are
valuations. However not all valuations are weight functiom the second part
of this chapter we concentrate on the valuations correspgnd order domains
of transcendence degree 1.

[.L10.1 Valuations in general

The definitions in this section are from [46]. In the followik and & will
always be fields and b¥'/k we will as usual denote a field that containg:
as a subfield. We have the following definition of a valuation/gy k.

Definition 1.10.1
Letv be a map fronk'\{0} to an additive abelian grodpthat is ordered totally
by <. If k C K and if for everyf,g € K\{0} and every: € k\{0} one has

v(fg) = o(f)+o(g) (1.10.1)
o(f+g) = min{v(f),v(g)} (1.10.2)
vic) = 0 (1.10.3)

thenv is called a valuation oK /k.

We will say that two valuations : K\{0} — I andv’ : K\{0} — I are
equivalent if an order preserving isomorphigm: T' — T exists, such that
v'(f) = ¢ (v(f)). The set of valuations o' /k is nonempty as it will always
contain the trivial valuation corresponding fo= {0}. Condition (1.10.1) en-
sures thab(1) = 0, and it follows that condition (1.10.3) can be skipped when
k is a finite field. We can wlog. assume that the nap surjective.
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We next list some important consequences of (1.10.1)-@)10Given f,g €
K\{0} andc € k\{0} then

o(f) = wlef) (1.10.4)
o(f) = —o(f ) (1.10.5)
o(f+g) = o(f) ifo(f) <v(g). (1.10.6)

A valuation defines a so-called valuation ring.

Definition 1.10.2
Letv be a valuation orK / k. The substructure d& /k given by

Oy :={f € K\{0} | v(f) = 0} U {0} (1.10.7)
is called a valuation ring.

Note that surel, is a ring, and that iff € K\O, then necessarily ! € O,.
O, has a unique maximal ideal, namely the set

P, = {f € K\{0} | v(f) = 0} U {0} (.10.8)

of all non units inO,.. As P, is a maximal ideal®, /P, is a field. It is clear
from (1.10.6) thatO, / P, containsk as a subfield.

As mentioned abové€, has the property that if ¢ K\O, thenf~! € 0O,.
The next theorem states that this property actually is acgesffi condition for a
subringR, k C R C K, to be a valuation ring.

Theorem 1.10.3
LetR be aringk C R C K, such thatf € K\R impliesf~' € R. Then there
exists a valuatiom on K /k such thatR = O,.

Proof;
See [46]. O

Recall that O’Sullivan only considers order functions wharC Ny. In [30]
O’Sullivan shows the following very important theorem.

Theorem 1.10.4

Let R be a finitely generated domain ovewith order functioro (of O’Sullivan’s
type), and lets be the quotient field aR. Then there exists a valuation &y k
such that iff,g € R\{0} are any elements sd(f) < o(g) then necessarily

v(f) > v(g).
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The fact that the value sed, of o, is ordered isomorphic tdf, is not used in
O’Sullivan’s proof, so his result generalizes to the monesgel set-up from [13].
In the language of [13] and of this thesis, theorem 1.10.blrexs.

Theorem 1.10.5

Let R be a finitely generated order domain ovewith a weight functionp :

R — A_. LetT' := D(A) be the group of differences according to defi-
nition 1.2.3. And denotél := Quot(R). There exists an, up to equivalence
unique, valuation : K\{0} — D(A) such that iff € R C K is non zero then

p(f) = —v(f).

So an order function defines a valuation. However the oppdsitot true in
general. In [31] O’Sullivan notes that there exist valuasionk(X,Y") with

I' C Zy. And he shows that such a valuation does not define any order fu
tion (alternatively consult theorem 1.9.1 for this fact)le@rly the equivalence
relation from this section on the set of valuations corresisao the equivalence
relation from section 1.3.3 on the set of order functions.

As already noted in section 1.3.3, O’Sullivan in his papé&esats the order func-
tions on the polynomial ring[ X, ..., X,,], that has the set of monomials in
X1,...,X,, as an order basis. Beside these order functions, he alsdkassc
several other order functions d@ralgebras of transcendence degree more than
1. All of these descriptions involves more or less complidatesthods from the
theory of algebraic geometry.

1.10.2 Algebraic function fields of one variable

In this section we will see that certain well-studied stoues related to algebraic
function fields of one variable are order domains. To be moeeipe we will
see, that the union of the so-call€dspaces, corresponding to a single rational
place, is an order domain. The treatment of these struchagbeen postponed
to this relatively late point of the thesis, as it is the aushpolicy, that order
domain theory should be understandable also for readensutiknowledge of
algebraic geometry and algebraic function field theory. tdfisally however,
these structures play a significant role as one of the majdivation to intro-
duce the concept of order functions (see [6], [20], [21] aB@]). It is beyond
the scope of this thesis to give an introduction to the thebafgebraic function
fields of one variable. So the purpose of this section is, e gh overview of
the connection between order domain theory and the theoajgebraic func-
tion fields of one variable, for the reader that has some @&pe with the later.
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We refer to [38] for a nice and general description of the theaaf algebraic
function fields of one variable. In the following we state soof the, for our
purpose, most important results from [38].

Definition 1.10.6

An algebraic function fieldF of one variable over the fielld is an extension
field F 2 k, such thatF is a finite algebraic extension bfxz) for some element
x € F which is transcendental ovir

We will sometimes refer to an algebraic function field simadya function field.
The reader familiar with [4] should be careful, as the ddbinitof a function

field given there, does not match the above definition. In ¢émeaining part of
this section all considered algebraic function fields asuaed to be of one
variable.

The valuations on the function fields of the above type areadled discrete
valuations. That s, the abelian gro(p, +) from definition 1.10.1 is a subgroup
of (Z, +) (here+ is the usual plus). We extend the valuatiarte all of K by the
assignment(0) = oo. A valuation is uniquely specified by its valuation ring
or equivalent by the maximal ideal of the valuation ring, ths&t being called
a place. This justifies why we speak about the valuatiprcorresponding to
the placeP, and why we use the following notation for a valuation ringl éis
maximal ideal

Op = {feF|lvp>0}
P = {feF|vp>0}

Now Op/P is a finite dimensional vector space oveand the degree of the
placeP is defined to be

deg(P) = dlmk(Op/P)

If deg(P) = 1 then we callP a rational place. We denote Wy~ the set of
places in the function field. A divisor is by definition a linear combination

A= Y npP (1.10.9)
np € 7
PePgr

where only finitely many of thevp’s are nonzero. The degree of a divisor is
defined bydeg(A) := > npdeg(P). To every divisor corresponds a so-called
L-space defined by

L(A) = {ze€F|vp(xr)>—np, foral P € Pr}.
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The namecL-space is motivated by the fact thd{A) is a finite dimensional
vector space ovet. We denote bylim(A) the dimension of this vector space.
As for any placeP, vp(z) = 0 wheneverr € k£\{0}, we see that is contained
in L(A), precisely when all the p’s in the linear combination (1.10.9) are non-
negative. One of the most important parameters of an alpetnaction field is
the genug). The genus is a non negative integer, that is equal to zermlibaly

if F is isomorphic to the quotient fielel(x).

A celebrated result is the so-called Riemann-Roch theohanrelates the de-
gree ofA with the dimension ofZ(A). It uses the notion of a canonical divisor
W. We will not explain what a canonical divisé¥ is, but only mention the
important result thatlim(W — A) = 0 wheneverdeg(A4) > 2g — 1. We now
state the Riemann-Roch theorem.

Theorem 1.10.7
LetW be a canonical divisor, then for any divisérwe have

dim(A) = deg(4) +1 — g + dim(W — A).

Combining the Riemann-Roch theorem with the following lemome gets the
important Weierstrass Gap theorem.

Lemmal.10.8
LetA =% npP andB = ) n',P be divisors ofF withnp < n', for all P.
Then

dim(B) — dim(A) < deg(B) — deg(A).

Before stating Weierstrass Gap theorem, we must introcheesd-called pole
numbers related to a place. LBtbe a place. An integet > 0 is called a pole
number ofP if and only if there exists an elemente F with vp(2z) = n and
vg(z) > 0forall @ € P£\{P}. The numbers ilNy, that are not pole numbers,
are called gaps. The set of gaps defines a semigroup, thigresmiis called
the Weierstrass semigroup correspondindg’toWe now state Weierstrass Gap
theorem.

Theorem 1.10.9

Let F be a function field with genug > 0, and letP be a rational place il r.
Then there are exactlygap numbers; < --- < i, of P. We havei; = 1 and
ig < 29 — 1.

So if P is a rational place with gap numbefs, ... ,i4} then

dim(mP) = dim((m — 1)P)
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whenevem is a gap number. And
dim(mP) = dim((m — 1)P) + 1

whenevemn > 0 is not a gap number. So the first part of the following proposi-
tion is obvious.

Proposition 1.10.10
Let P be a rational place in a function fiefdl. ThenR := UY_,L(mP) is an
order domain with a weight function

[ R = No\{ir,...,ig} U{—00}
p.{ P _(;)P(;)' 9 (1.10.11)

Conversely leR/k be any order domain with a weight function
p:R— A o CNyU{—oc}

then there exists a descriptidh = k[X1,...,Xy,]/I, such that the quotient
field F := Quot(R) is an algebraic function field (of one variable), with a
unique placeP at infinity, and this place satisfies (1.10.11).

Proof:
For a proof of the last part see [26, Th. 1]. O

Consider an algebraic function field
Quot (k[X1,...,Xn]/I). (1.10.12)

Denotez; = X; + I,1 =1,...,m. Of particular interest is the situation where
a placeP satisfiesvp(z;) < 0,7 = 1,...,m, andvg(z;) > 0 forall Q # P
and: = 1,...,m. We say thatP is the only place at infinity, and denote it by
P = P,,. Now any polynomialf (z1, ..., z,,) satisfiesp_ (f(z1,...,2m)) <

0 andvg(f(z1,...,2m) > 0for Q # Ps. SO

K[X1,...,Xn]/T C D L(mPy). (1.10.13)

m=0

Although we often have equality in (1.10.13) in our examplealso sometimes
happens that (1.10.13) is satisfied with a strict inclusion.
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Example 1.10.11

Consider the algebraic function fiel@uot (k[X,Y]/(X? —Y?)). There is
only one place at infinity, it is rational antb, (x) = -2, vp,_(y) = —3.
Nowwvp_(y/x) > 0 for all Q # Px. SO

oo
KX, YI/(XP - Y?) ¢ | LimPx)
m=0
that is the quotient ring is a strict sub order domain of thiemof theL-spaces.
Note that the considered algebraic function field is isorh@rpo the rational
function field. A similar situation, as the one describedwhoccurs whenever
Quot (k[X1,..., X]/I) is of transcendence degreeandl is a toric ideal.

So far we have taken the algebraic point of view on algebraictfon fields. We
now discuss some more geometric features that will be irmpgrivhen we are
to construct codes. In the followingy” denotes then-dimensional affine space
overk, andP;" them-dimensional projective space over As usualk denotes
the algebraic closure @f. If I = (Fy(X),..., Fs(X)) C k[X]isanideal, then
we denotel := (Fy(X),...,Fy(X)) C k[X]. The irreducible affine variety
Vi=Vi(I) C A" corresponding to a function field of one variable is called an
affine curve (or simply a curve). Now homogenizing the defindolynomials
Fy,...,F, we geta projective variety ™ C P, that contains (the image) of.
We call V" a projective curve (or the projective curve correspondmy’}. In
the following we will, when we a little incorrectly talk abbe curveF(X,Y),
mean the corresponding projective variety. A pgink V (p € VF) is called
nonsingular, if the slope df (or equivalent of’") atp is well-defined. If not,
then it is called singular. Consider the following threeesas

Case |
p € V. =VFnA™ is nonsingular. Now

Op={feF|f=g/hwithg, h € k[X]/I andh(p) # 0} (1.10.15)
is a valuation ring with maximal ideal (place)

P={feF|f=g/hwithg,h e k[X]/I
andh(p) # 0 andg(p) = 0}. (1.10.16)

Important facts are tha? is rational and that[ X ]/I C Op.
Case Il

p € VE N (P™\A7) is nonsingular. We cap a point at infinity. A generaliza-
tion of (1.10.15) and (1.10.16) defines a unique valuatiowg kvith corresponding
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place. But in this case there exist elemefits £[X]/I such thawp(f) < 0.

Case lll

p € VFis singular. The blow-up algorithm (see [24]) gives us thacpk that
corresponds tp. We can not say in advance, how many and of which degrees
these places will be.

The very important fact is, that the cases I,1l and Il togettgives us all the
rational places ofP , and that a rational place corresponds to exactly one (not
more) point. The situation is particular simple for curveattcontains no singu-

lar points. These curves are called smooth curves.

Now let P be any rational place. That is
Op/P ={c+ P |cek}.

Forxz € Op we definex(P) € k to be the residue af modulo P. The function
defined in this way is called the residue map corresponding.tiNow let P

be any place from case | (in particulét is rational). A very nice thing now
happens, namely that we for afy= F + T € Op can find f(P) simply
asf(P) = F(p). This result is of great importance when one constructs the
so-called geometric Goppa codes. We will discuss thesesdadghapter 1.11.

Remark 1.10.12

Let P be any rational place of a given algebraic function fi&ld According
to [26] and [31] there exists a description like (1.10.12)%f such thatP in
this description becomes a unique placéddt infinity. However this particular
description is in general not easy to find.

We have the following example.

Example 1.10.13

Let k be any field. The polynomial® + Y3T + Y is absolutely irreducible
overk(Y)[T], soQuot (k[X,Y]/(X? +Y3X 4+ Y)) is a function field. This
function field is known as the function field of the Klein QuartHomogenizing
X3+ Y3X +Y, wegetX®Z + Y3X + Y Z3, that has the zerd® : 1 : 0)
and(1 : 0 : 0) atinfinity. As there are more than one zero at infinity, we have
more than oné), for which at least one of the valueg(x), vg(y) is negative.

So the coordinate ringk = k[X,Y]/(X3 + Y3X +Y) is not contained in
uUX_,L(mQ) for any place) of the function field.

The following proposition is in [21§3.2] proved on the level of order functions
only. It contains the result from example 1.10.13 as a speeise.



88 Every weight function is a valuation Ch. 1.10

Proposition 1.10.14

LetF(X,Y) € k[X,Y] be of the formF (X,Y) = XY +uY' ¢+ G(X,Y)
withu € k\{0}, degx (G) = d < a, deg(G) < b+ c andged(a, b) = 1. Define
I:=(F(X,Y)) and consider

B:= {XQY5+I\a,BeNg,a<a,ca§ (a—d)ﬁ}.

A weight function can be developed frafby definingp(X®Y? +1) := aa +
Bb (clearly this make# into an order basis). if > 0 thenk[X,Y'|/I possesses
no weight function.

Note thatB generates all ok[X,Y]/I whenc = 0. Thatisk[X,Y]/I is an
order domain in this case. In [2] Beelen extends

spany, {X“Yﬁ +1a,f €Ny, <a,ca< (a—d)ﬁ}

to various rings that possess weight functions with valag§)i. He does this
using algebraic geometry techniques.

Example 1.10.15

In this example we use ramification theory. For an introdurctio this the-
ory see [38, Ch. lll]. Define a weighted degree functiotieg on k[ X,Y| by
w(X) = bandw(Y) = a. We consider curves of the form

F(X,Y)=X"+uY’+ G(X,Y) € F,[X,Y] (.10.17)

whereu € F,\{0}, gcd(a,b) = 1 andwdeg(G) < ab. In particular (1.10.17)
includes the curves Feng and Rao calls type-I curves (sgdifi@he remaining
part of this thesis, a type-I curve is a curve of the form (I17). Now

R :=T,[X,Y]/(F(X,Y))

is an order domain with an order functigninduced as a weight function by
plr =X+1T)=bandp(y =Y +I) = a. To see this simply apply Pellikaan’s
factor ring theorem. Alternatively, a direct proof thatatisfies the conditions
for being a weight function, can be found in [21]. Let us see @ can under-
stand the structur® in an algebraic function field theoretical set-up. Consider
the function field

F = Quot(F,[X,Y]/(F(X,Y))).

We first show that there is only one placel- that is a pole for:, and that
this place is at the same time the only place that is a polg {arpole forf is a
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place such thatp(f) < 0).

By assumption we havged(a, b) = 1 so the place at infinity itPy, (x) is fully
ramified in the extensioff /F, (X). This shows the uniqueness of a polecof
Now denote this pole by... It is easily seen thaP.. is also a pole foy. We
havevp, (r) = —bandvp,, (y) = —a. Finally the place at infinity itPy, vy is
fully ramified in the extensiotF /IF,(Y') and we are through. Actually we have
also shown thaP,, is a rational place. We now investigate the vector space
UX_sL(mPy). From the above discussion, we know thatdof > 0 one has
vp, (299Y%) = —(ba + af) anduvg(z®y®) > 0 for all Q # Pw. In particular

R C UX_,L(mP). And we have the following connection between the order
functionp and the valuatiowp, , namely

p(f) = —vp, (f) for f € D.

If the monomials in: andy are the only elements iR with pole divisor of the
formm Py, for somem, thenR = U°_,L(mPx,). If however there are rational
expressions such that

vp, (r) =—m and vg(r) >0 forall Q # Px
thenR C UX_,L(mPy). If F(X,Y) from (1.10.17) is equal to
F(X,Y)=H(X)-Y"—uY, ucF,\{0}

whereb is equal to some power of the characteristidfpf and where all the
solutions to il + uT = 0 are inF,, then according to [38, Prop. VI.4.1], the
first condition is satisfied. In particular it is satisfied the Hermitian curve

F(X,Y)=X""-Y?-Y €Fp[X,Y]
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The codes related to order domains

As noted in the very beginning of this material, the wholepmse of introduc-
ing order domains and order functions is to construct cotitmre specific the
concept of order domains and order functions can be seenaseaaijzation of
the algebraic structures, that gives us Reed-Muller codédl.goint geometric
Goppa codes. To understand the construction of geometpp&ocodes, some
knowledge about algebraic function field theory or algebggometry is re-
quired. However it is the authors policy, that the main pathis thesis should
be readable, also for readers that do not have experienbealgébraic func-
tion field theory or algebraic geometry. Therefore the catioa to the 1-point
geometric Goppa codes will not be treated before chapt@r although they
constitute a very important subclass of the codes that wgaing to construct.

The code constructions;, ¢y, C(d) andC,(d) that we describe in the following
have their origins in the papers [8], [6] and [7] by Feng etHdwever with the
invention of the concept of order functions by Hgholdt etiml[20], [21] and
[33] the codes were described in a more un-complicated wag.follbw the
tradition for the description of the codes initiated by Hislet. al.

1.11.1 The evaluation code and its dual

In this section the so-called evaluation codes and theisdua introduced. The
very important order bound that is a bound on the minimunadist of the dual
codes is treated. Instead of introducing the evaluatiores@ohd their duals in
general from the beginning, we will do it in two steps. In sedion 1.11.1.1 we
will consider the evaluation codes and their duals, in aigpease where the
notation becomes rather simple. In subsection 1.11.1.2 iN¢r@at the codes in
general.

Recall that the order functions fall into two classes. The bring the order
functions where the value satis ordered isomorphic ttf, and the other being
the order functions such thatis not ordered isomorphic ®. Up til recently
only order-domains/order-functions of the first kind wereated. Especially
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only the codes coming from the order functions of the firstdkare treated
in [21]. However the order bound not only holds for the dualie® coming
from order functions wherd is ordered isomorphic tdl. It holds for any order
function. As the notation of the codes is much simpler, whevel behaving
sequence exists, we start by considering order functioresevhis ordered iso-
morphic withN. We follow the lines of [21]. In the following we use extensly

the definitions from section 1.3.1. The reader might wantaosuilt this section
before proceeding.

[.L11.1.1 The codes; and C

In this subsection we will always assume, that an order dorRaivith a well-
behaving sequenddi, fo, . ..) is given. We start with a definition of a multipli-
cation between the elementsif.

Definition 1.11.1
Define the coordinate wise multiplicatienony by

(ala"'aan) * (bla"'abn) = (albla-"aanbn)'

Note that the vector spad® with the multiplication+ becomes a commutative
ring with (1,...,1) as the unity. Identifying(a,...,a)|a € F,} with F, we
see that is anlF, -algebra.

Definition 1.11.2
Let R be ankF, -algebra. A mayp : R — Ty that isF,-linear and satisfies

o(fg) = o(f) * ¢(g)

foranyf,g € R is called a morphism of th&, -algebras.

We are now in the position to give a first definition of the codeecall that we at
this stage assume, that the order donfaipossesses a well-behaving sequence
(f1, f2,-..). We define the evaluation codg in the following way.

Definition 1.11.3
Let ¢ be a morphism ok and denoteh; := o(f;). For a givenl > 1 the
evaluation code (corresponding@d is given by

Ep = @(Ll) = Span]Fq{hla SRR hl}

The dual code is denoted lay;, that is.
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Definition 1.11.4
Cr:={ceF;|c-h;=0foralli <l}.

Remark 1.11.5
Given an order function, then it is from remark 1.3.20 cldghgt the codegy,
andC; do not depend on the choice of order basis.

In all of the examples that are given in this material (andliexeamples that are
given in [21] as well), the morphism is a so-called evaluation map.

Definition 1.11.6
Given a quotient ringR := Fy[Xy,..., Xp]/I. LetVy (I) = {Pi,...,P,}.
The evaluation map is given by.

AR
ev : F+1 — (F(P),...,F(P)).

Remark 1.11.7
It is well known thatev is surjective (see [19)]). It is easily verified that satis-
fies the conditions in definition 1.11.2, thates is a morphism oF, -algebras.

Example 1.11.8

Consider the order domaif, [ X, Y| with weight functionp : Fo[X,Y] —
N2 U {—o0} induced byp(X) = (1,0), p(Y) = (0,1) and where\? is ordered
by <. A well-behaving sequence is given by

(fl = ]-7f2 = Y7f3 :X7f4 = Y2af5 :XY7f6 :X27f7 = Y37"')'
Consider the evaluation map

ev.{Fz[XaY] - I
' F = (F(0,0),F(0,1),F(1,0),F(1,1)) .

The evaluation codes are

E; = spang, {(1,1,1,1)}

Ey = spang,{(1,1,1,1),(0,1,0,1)}

E3 = span]FQ{(l,l,l,l),(0,1,0,1),(0,0,1,1)}
E,

E5 = Span]FQ{(l’]‘7]"]‘)’(0’]‘7071)’(0707171)’(0707171)}
= F%:E6:E7:
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And the dual codes are

Ci = {ceF|c-(1,1,1,1) =0}
Cy; = {ceFy|e-(1,1,1,1) =c-(0,1,0,1) = 0}
C; = {ceFy|e-(1,1,1,1) =¢c-(0,1,0,1) = ¢-(0,0,1,1) = 0}

Cy
Cs = {ceF|ec-(1,1,1,1) =¢-(0,1,0,1) = ¢-(0,0,1,1)
=¢-(0,0,0,1) =0}
= {(0,0,0,0)} = 06 = 07 =
Example 1.11.9
Denotel := (X® —Y? —Y) C Fy[X,Y]. Consider the order domaiR :=

F4[X,Y]/I with weight functionp : R — A_ := (2,3) U {—o0o} induced by
p(X +1)=2,p(Y +I) =3. Awell-behaving sequence is given by

(i=1+Lfo=X+1fs=Y+ILfi=X>+1f;=XY +1,
foe=X3+1f1=X2Y +1,fs=X"+1 fo=XY +1,
flo=X"+I1fu=XY+1,...).

Let the elements df, be{0,1, a,a*} wherea? + o+ 1 = 0. Now
Vi, (I) = {(0,0), (0, 1), (1, @), (1,0%), (@, @), (@, 0?), (%, ), (o?, @) }.
So our evaluation map is
R - F
ev:{ F+1 — (F(0,0),F(0,1),F(1,a),F(1,a?),
(
For instance

Es = SpanF4{(1a 1,1,1,1,1,1, 1)a (0507 L1, a,a, 042,012),
(Oa 1,0[,0[2,05, 052,0[,0[2), (ana L, 1,0[2,0[2,0[,0[),
(anaaa 052,0[2, L, 1,0[)}

and we have

E\CEy,CE3CE,CFEsC Es CE;=Fg
CEy=F =Eg=FE;="-. (1.11.9)
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The order bound

One of the nice things about the present description of caxld®e so-called
order bound on the minimum distance @f. It holds in any case, wherg is

surjective. Note that according to remark 1.11.7, the bohalils especially,
wheny is of the typeev. In the following we will always assume thatis sur-

jective.

Still following the lines of [21] we introduce the order baliby first studying
the so-called matrix of syndromes. Our assumption ¢hat? — Ty is surjec-
tive corresponds to the assumption thatMre N exists such tha€; = 0 for
[ > N. Consider théV x n matrix

h,

H = :
hy
(hereh; is a row vector).

Definition 1.11.10
Giveny € T, . Define the so-called syndromes by

sij(y) =y (hi* hy).
We call
S(y) == (sij(y) |1 <45 < N)
the matrix of syndromes af.

We have the following lemmas (all from [21]).

Lemmal.11.11
Given a nonzerg = (y1,...,yn) € F} let D(y) be the diagonak x n matrix
(D(y));; ==vi,i=1,...,n. Then

S(y)=HD(y)H" and rank(S(y)) = wt(y).

Proof:
We have

sij(y) = y-(hi*hy)

n

= Z ys(hi)s(hj)s

s=1
hi-yxh,
= (HD(y)H");;.
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Now rank(D(y)) = wt(y). As H (andH") by assumption have full rank equal
ton, we get that

rank(S(y)) = rank(D(y)) = wt(y).

Lemmal.11.12

(1) Ify e Cyandl(i,j) <Ithens;(y) =0
(2) ify e C—1\Cyandl(i,j) =l thens;;(y) # 0.

Proof:
(1): Lety € C;—; andi(i,7) < I. Now the last assumption means tifaf; €
L; 1. By the definition of a morphism we have

hixh; = o(fif;) € p(Li—1) = B = ClJ;1

that is

sij(y) = y-hi*hj = 0.
(2): Lety € C)1\C; and assumé(i,j) = [. The last assumption implies
fif; € Li\Lj—1, or in other wordsf; f; = St asf,, wherea, € F, and
oy # 0. It follows that

sii(y) =y - o(fifj) =y - aup(fi) # 0.

To state the next lemma we will need some notation.

Definition 1.11.13
Forl € N define

Ny = {(i,§) € N° (3, §) = 1}
Let i, be the number of elements b

Remark 1.11.14

We differ in notation from [21]. OulN, corresponds to thel¥;, | and ouru; to
theirv,_y. Itis the authors opinion, that the above introduced noas easier
to work with in practice. Especially when one works with theproved codes
C(d) and@p(d) (not introduced yet). More importantly, thenotation becomes
indispensable, when we in the next subsection extend’theonstruction to
general order-domains/order-functions.
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To ease the notation we sometimes considas a function or? in the following
way.

Definition 1.11.15
Let

_{R - N
PENF = i if f e L\,

We have the following lemma.

Lemmal.11.16

If t = u; then the elements d¥;, can be enumerated,, ji). ..., (i, j;) such
thati; < --- <id;andj; > -+ > j;.

Proof:

We can enumerate the elements such thak --- < 4y andj, < jyy1 if

iy = iy+1. Butthen

I = Z(ZUa]u) < l(iuaju-i—l) = l(iu—l—laju—i—l) =1

a contradiction (note that the first inequality follows frahe assumption, that
(f1, f2,...) iswell-behaving). The equality, = i,,+1 must be false. That is we
havei, < --- < i;. A similar argument shows that > --- > j;. O

The last lemma is.

Lemmal.11.17
Let Ny = {(i1,41),---, (i, J1)} be enumerated as in lemma 1.11.16.ylfe
lel\ol then

0 ifu<w

Siuju(Y) = { ot 7616 ifu — o, (.11.19)

Proof:
The assumptioy € C;_1\C) implies that

Qo(fh)a . '7¢(fit)’(p(fj1)? s ?()O(fjt)

are contained as row vectors Hi. If v < v then by lemma 1.11.16 we have
Wiu,jv) < l(iy,J») = 1. Lemmal.11.12 part (1) then implies thay;, (y) = 0.
If u = vthenlemmal.11.12 part (2) states that;, (y) # 0. O

We are now almost in the position to state the important opdend. We will
just need the following definition.
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Definition 1.11.18
Denote

d(l) := min{us|s > 1}
do(l) = min{us|s>1,Cs_1 # Cs}.

The order bound can now be formulated as follows.

Theorem 1.11.19
Let C; be defined from a surjective morphism The minimum distance df,
is bounded by

d(C) > dy (1) > d(i).

Proof:

Consider any € C;\{0}. There exists an index> [ such thaty € C;_;\Cs.
By lemma 1.11.17 the syndrome matri(y) contains a submatrix of rank at
leastus and by lemma1.11.11 this means thaty) > us. We have proved the
first inequality. The last inequality is obvious. O

In [6] a result similar to theorem 1.11.19 was presented etitithe notion of an
order function. One therefore refersdg(/) as the Feng-Rao distance.

Remark 1.11.20

The parameted(l) depends only on the order function. Especially in the case
of a weight function only on the value sat The Feng-Rao distanag,(l)
however, also depends on the nature of the isomorphisnNeitherd(l) nor

d, (1) depends on the choice of the order basis.

Example 1.11.21
This is a continuation of example 1.11.8. N6w # Cy, Cy # C3 andCy # Cs.
So to determine the Feng-Rao distances we need only consider

po = 2 do(1) = 2
s = 2 giving dy(2) = 2
ps = 4 dy(3) = 4.

We conclude that’, is ajn = 4,k = 3,d > 2] code,Cy isa[n = 4,k = 2,d >
2] code, and’; is ajn = 4,k = 1,d > 4] code. Inspection shows that the order
bound is tight for all three codes.
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Example 1.11.22
This is a continuation of example 1.11.9. From (1.11.9) weéha

Ci 20203201205 20Cs
207208909=0102011="'-

So to determine the Feng-Rao distances we need only consider

(2 = 2 (d(1) = 2
py = 2 dy(2) = 2
ps = 3 d,(3) = 3
us = 4 giving d,(4) = 4
e = b dy(5) = 5
pr = 6 dy,(6) = 6

L ug = 8 \ dnp(7) = 8

The parameters of £

As described above, the order bound holds for @pgode. A counterpart that
states a lower bound on the minimum distance offheode is however known
only in the case of an order domain of transcendence ddgree

Theorem 1.11.23

LetR =F,[X;,..., X]/I be an order domain ové}, with a weight function
p:R— A CNyU{~0c0}. And letev : R — Ty be an evaluation map. The
minimum distance of the related co#lg is at leasih — p;, wherep, is the order
of thel.th element in an order sequence Rirlf p; < n thendim(E;) = 1.

Proof:
The proof uses the order bound. It relies heavily on the apiamA C Nj.
See [21, Sec. 5]. O

Decoding of theC, codes

One of the main arguments for the importance of the theoryrdérodomains
and related codes, is the very nice fact, that an efficienbdiag algorithm
for the C; codes is known. We will not describe this decoding algorithnut
just repeat the following facts already mentioned in chiapfe Namely that a
decoding algorithm, that detects up [tei({) — 1)/2] errors, has been known
more or less as long as the codes has been known. In [21] is¢sided how to
decode the”; codes using majority voting. The algorithm is based on Zekat
extension of the classical Berlekamp-Massey algorithm.
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[.L11.1.2 Thecodes, andCy, A € A

We now generalize th&; andC; construction to the general case, where a well-
behaving basis exists, but where a well-behaving sequere ribt necessarily
exist. That is to the general case whdres not necessarily ordered isomorphic
with N. Let

(Ixlp(f) =Are ),

be a well-behaving basis for an order dom&in The codes are defined as fol-
lows.

Definition 1.11.24
Let ¢ be a morphism orR and denotéh := (fy). For a given\ € A the
evaluation code (corresponding@® is given by

Ey = p(Ly) = spang, {hy | X' <A A},
The dual code is denoted I8y, that is.
Definition 1.11.25
Cr:={ceF,|c-hy=0forall X <5 \}.

Remark 1.11.26

We note that our notation is not consistent in the speciad tag Ny. We get
around this problem by the following convention.Nfis ordered isomorphic to
N then we will use the notation from the previous subsectionly@henA is
not ordered isomorphic @ (in this case\ can not be contained I, ), we will
use the notation from the present subsection.

Example 1.11.27

Consider the order domaiis [ X, Y] with weight functionp : Fo[X,Y] — N2 U
{—o0} induced byp(X) = (1,0), p(Y) = (0,1) and whereN? is ordered by
the pure lexicograhpic ordering:=~., where(0,1) <., (1,0). Consider
the evaluation map (as in example 1.11.8)

ev.{FQ[XvY} - FQ1
UF e (F(0,0)), F((0,1)), F((1,0)), F((1,1))).
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Now
Coo = {c€F|e-(1,1,1,1) =0)}
Coy = {ceFle-(1,1,1,1) =c-(0,1,0,1) = 0}
= Cl2 =Clz ="
Cho = {ce€F|e-(1,1,1,1)=c-(0,1,0,1) =¢-(0,0,1,1) =0}
Cuy = {ece€F|e-(1,1,1,1)=¢c-(0,1,0,1) =¢-(0,0,1,1) =
=¢-(0,0,0,1) =0}
= {(0,0,0,0)}

= Clayp) forany(a,b) =x (1,1).

Example 1.11.28
In this example we compare the codes from the above exam{iethé codes
from example 1.11.8. We immediately see that

Cl = C(O,O)a CQ = C(O:1>’ 03 = 0(1:()) andC5 = C(LU' (|1128)

Now letp : F,[X, Y] — N2 be any weight function induced by X) = (1,0),
p(Y) = (0,1) and withN? ordered by<xz. Regardless of the actual definition
of <z we will have

. ev(Y) # ev(F(X,Y)) foranyF(X,Y) such that
P(F(X,Y)) < p(Y)

. ev(X) # ev(F(X,Y)) foranyF(X,Y) such that
Pp(F(X,Y)) < p(X)

. ev(XY) # ev(F(X,Y)) forany F(X,Y') such that
P(F(X,Y)) <y p(XY).

So the reason for the equalities in (1.11.28) is that Both,, Y < X <4 XY
andl <. Y <jex X <o XY . We may think of<; from example 1.11.8, as
an approximation oK., from example 1.11.27.

Remark 1.11.29

Consider the codes defined from a well-behaving basis totwthiere does not
correspond a well-behaving sequence. A natural questitimeitight of exam-
ple 1.11.28 is, if one can always find a well-behaving seqagftitat approxi-
mates the well-behaving basis in the sense, that it defigesaime set of codes
by the same set of basis elements. We will not try to answerghéstion, but
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only note, that the description of an approximating weltddéng sequence, in
some cases may be more complicated, than the descriptibe afdll-behaving
basis it approximates.

The order bound

We next show how to generalize the proof of the order boundrgin subsec-
tion 1.11.1.1, to the general case considered in this stibsedn the remaining
part of this subsection is always assumed to be surjective. This corresponds
to assuming that a € A exists such that’; = 0 for all A=A A. It might not,

as in the previous subsection, be possible to choosech that bothCy, = 0,

and such that there are finitely many indicés<, A. So we do not have an

N x n matrix H as in the previous subsection. To prove the order bound we
will, instead of considering a fixed matri{, considem different matrices. One

for each\ € A such thatC'y # Cy forany\ <, .

To describe these matrices we must first introduce someiomtahd state a
lemma.

Definition 1.11.30
Given\ € A then

Ny = {(a, 8) € A? | I (e, B) = A}
Defineuy := # N, if N, is a finite set, ang, := oc if not.
In consistency with definition 1.11.15 we have.

Definition 1.11.31
Let
N
75 if f € Ly but
f &Ly forany\ <, A

R —
f =

Lemmal.11.32
Letr < uy be finite. Givenr elementsay,31),...,(ar,Br) € N, then the
enumeration can be chosen such thati --- <A a, andB; = -+ = Br.

Proof:
As the proof of lemma 1.11.16. O

Now let A € A be an element such théat, # C) for any\' <, \. Define
for this A,  := min{uy, n}, wheren is the length of the codes. The matdiX
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corresponding ta (or equivalent the matri¢/ corresponding tg € [y, where
yZC)y buty € Cy forany\' <, )) is defined as follows. Let,...,a, €
A be chosen such thdtv, «,), (@2, ap1),..., (ap,a1) € Ny andag <y
-++ <A a,. Thisis possible by lemma 1.11.32. The first rowsMdfarem; :=
o(faq)s---smy = @(fa,). Now fill in with extra rows of the formp(fy)
where the\’s are some elements ihto get a, sayV x n matrix

mi
M =

my
of full rank equal ton.

Definition 1.11.33
Giveny € [ let M be the corresponding matrix. Define

tij(y) =y - (mix m;)
and
T(y) := (tij(y) |1 <i,j < N).
We have the following lemmas.

Lemmal.11.34
Lety = (y1,...,yn) € F7\{0} and letM be the corresponding matrix. Let
D(y) be then x n diagonal matrix with D(y));, = vi,% = 1,...,n. Then

T(y) = MD(y)M"  and rank(T(y)) = wt(y).

Proof:
As the proof of lemma 1.11.11. O
Lemmal.11.35
(1) Ify e Cyforall X' <x X andix(yi,v;) <a A
thentij(y) =y - (fy,) * ¢(fy,;) = 0.
(2) ify e CyforallX <y Xbuty & Cy andiy(vi,v;) = A
thentij(y) =y - o(fy,) * ¢(fy,;) # 0.
Proof:

As the proof of lemma 1.11.12. O
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Lemmal.11.36
Fory € [ let M be the corresponding matrix. We get

0 fut+tv<r+1

notzero ifu+wv=r+1. (1.11.33)

tun(y) = {
Proof:
Note thatu,v < r for all the entries considered in (1.11.33), that is we only

work with the firstr vectors of M. The proof follows the lines of the proof of
lemmal.11.17. O

The natural generalization of definition 1.11.18 is:

Definition 1.11.37
Denote

d()) = min{py|n -a A}
dy(N) = min{uy [n =1 A Cy # Cy foranyn’ <a n}.

We will refer tod,,()\) as the Feng-Rao distance.

The general version of the order bound is.

Theorem 1.11.38
LetC'y be defined from a surjective morphigm The minimum distance df'y
is bounded by

d(Cy) > dy(N) > d().

Proof:
The proof follows the lines of the proof of 1.11.19. O

Remark 1.11.39
The contents of remark 1.11.5 and remark 1.11.20 is of cogtiflevalid in this
more general setting.

Remark 1.11.40

If we label then matricesM by M, . .., M,, and the correspondingvalues by
r1,--+ ,Tn. Then we can construct a matix that contains, as the only rows,
the firstr; rows of My, the firstro rows of Mo, ..., the firstr,, rows of M,,.
This matrix will be of rank equal ta. That is, we could rewrite the above proof
for the order bound using only one matrix.
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Example 1.11.41
This is a continuation of example 1.11.27. By example |.8&8d example 1.11.21
the parameters of th€, codes are of course already known. However if we
want to determine the Feng-Rao distances in the languageaofe 1.11.27,
then the derivation looks as follows
HK(o,1) 2 d@((oao)) =2
K0 =2  giving dy((0,1)) =2
B =4 dy((1,0)) = 4.

[.11.2 Improved dual codes

In this section we shall see how to improve the constructioth® dual codes
of the evaluation codes. Again the first reference on theestili$ [6]. This
improvement is described in [21] in the case(§fcodes. The definitions of the
improved codes and the bounds on their minimum distancesidded there, is
immediately generalized to the general cése A € A (whereA is not neces-
sarily ordered isomorphic ). We have the following general definition.

Definition 1.11.42
Let(fx | X € A)_, be awell-behaving basis. For any positive integelefine
C(d) = {c€TF|c-hy=0forallx e A suchthap < d}
Cy(d) = {c€F|c-hy=0forallX e A suchthat, <d
and such that'y # C, for any\' < A\}.

Of course the definitions simplify to

C(d) = {c€F,|c-h =0foralll € Nsuchthay, < d}
Cy(d) = {c€F, |c-h =0foralll € Nsuchthap, <d
and such that;_; # C;}

in the case of\ being ordered isomorphic fs.

Remark 1.11.43
Again we get around the inconsistency in notation by the eotion that we use
the later notation whenever a well-behaving sequencesexist

From [21] we have the following counterpart to the order lmhun
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Theorem 1.11.44
LetC(d) andC,(d) be constructed from a surjective morphism. The minimum
distances is bounded by

d (é(d)) > d (ap(d)) > d
(here we use the conventidf{0}) = cc).
Proof: . )
The codeC(d) is contained irC,,(d). So it is enough to prové (C@d)) > d.

The above convention ensures that the theorem holds in teeCcdd) = {0}.
Assume a nonzerg € C,(d) is given. Leth € A be the value such thgte C
buty ¢ Cy forany\ <, \. Especially

y - hy #0. (1.11.36)

From the proof of theorem 1.11.38 we hawve(y) > p). Assume that theo-
rem 1.11.44 does not hold, implying that, < d. But then by definition of
C,(d) we must havgy - hy = 0 contradicting (1.11.36). O

We will sometimes refer to theorem 1.11.44 as the order bdanthe C(d) and
the C,,(d) codes.

Remark 1.11.45
To construct th€', (d) code we need to know the set

Sq:={NE A |\ <d,Cy #C, foranyX <, A}
The dimension o€, (d) is easily found ag = n — #5S,.

Example 1.11.46
Consider the order domaif; [X,Y] with weight functionp : F3[X,Y] —
N2 U {—o0} induced byp(X) = (1,0), p(Y) = (0,1) and wheré\? is ordered
by <. A well-behaving sequence is given by
(fl = ]-an = Yaf3 = X7f4 = Y27f5 = XY7f6 = XQa
f1=Y3 fs=XY? fo = XY, f1o = X3, fi1 = Y4, (1.11.37)
fio = XY3, fi3 = X2Y2, fi, = X3Y,...).

The9 points inF2 defines an evaluation map : F3[X,Y] — F2. The indices
for whichC) # C;_, arel, 2,3,4,5,6,8,9,13. And the corresponding-values
are

pr =12 =2,pu3 =2, u4 =3, 15 = 4,
pe = 3,7 =4, ug = 6,09 = 6, 413 = 9.
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So

Cpo(4) = {c€F|c-hi=c-ha=c hs
=c-h4=c-h6=0}

has minimum distance at leasand dimensiok = 9 — 5 = 4. Whereas

has also minimum distance at ledsbut only dimensiork = 9 — 6 = 3. Note
thatC(4) = C,(4).

Example 1.11.47

This is a continuation of example 1.11.8 and example I.119.both exam-
ples the sequende, | C; # C,_1) is non discreasing. We conclude that every
C‘@(d) code, constructed from the order sequences in example8 aibdi 1.11.9,

is also &’ code.

Example 1.11.48

This is a continuation of example 1.11.46. If we replatkein the order se-
quence (1.11.37) by} = fo + f5 = X? + XY, then we get a new order
sequence for the same order function. Thg4) andC (4) codes with respect
to this order sequence are again equal. But they are diffénan the code from
example 1.11.46.

Remark 1.11.49
The C(d) andC(d) constructions rely on the choice of order basis. The di-

mension of thef’w(d) code is unaffected by the choice of order basis.

1.11.3 Generalized Hamming weights

In the previous sections we saw how to estimate the minimwstanices of a
large class of the codes coming from order domains. In thii@gewe men-
tion how theorem 1.11.38 can be generalized to work, not dotyminimum
distances, but for the so-called generalized Hamming weigrhe generalized
Hamming weights are parameters related to linear codes.awethe following
definitions. Consider a sé? C Iy and define

Supp(D) := {i| v = (v1,...,v,) € D such thaw; # 0}.

Given a linear code of dimensidgnthenk parameters are defined as follows.
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Definition 1.11.50
Let C be a linear code of dimensidn Ther.th generalized Hamming weight,
r € {1,...,k}, is defined by

d'(C) := min{#Supp(D)|D is a linear
subspace of’ of dimensionr}.

It is clear thatd' (C) is the minimum distance of’. That is, the generalized
Hamming weights can be understood as a generalization ahthienum dis-
tance of linear codes. The concept of generalized Hamminghtgeewas orig-
inally studied in [18] and was later used for cryptographjparposes by Wei
in [45] in 1991. Since 1991 a lot of research have been dondisratea and
many results have been achieved, although the area isigtdl gpen. What is
interesting to us here is, that some of the important achiewgs have been done
using order domain theory. In [17] Heijnen and Pellikaarcdes the following
generalization of theorem 1.11.19. First we need to extesfohiion 1.11.13.

Definition 1.11.51
Let R be an order domain that possesses a well-behaving sequgnée, . . .).
Given number$, < --- < I, then

upo =4 {(,5) eN[Ise{l,... L}
such that(i, j) = s}.

Clearly;, = pu, (definition 1.11.13).

Definition 1.11.52
Let(Cy,Cs,...) be defined from a surjective morphism Let N be a number
such thaCy = {0}. Denote

dp(l) == min{p; , [I<h<--<N
andCli_l #* Cli, Vi=1,... ,7’}.

Clearly d}o(l) = d,(l) (definition 1.11.18). The order bound for generalized
Hamming weights can now be formulated as follows.

Theorem 1.11.53
LetC; be defined from a surjective morphism Ther.th generalized Hamming
weight is bounded by

d&'(Cy) > diy(1).
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It is shown in [17] that this bound is tight in the importanseaof Reed-Muller
codes. Theorem 1.11.53 is also used in [1] to find the gerze@dlHamming
weights of the Hermitian codes.

Turning to the codeg’y, coming from order bases that can not necessarily be
ordered to become order sequences, we have the followingfinaditn of the
above definitions and theorem 1.11.53.

Definition 1.11.54
Let{F\|X € A} be an order basis for an order domain(with respect to the
ordering< onA). Given elementd, <j --- <a A, then

“7;\1,---,& = # {(a,,@) e A? |30 € {\,.... v}
such thaty (o, 8) = o}.

Definition 1.11.55
Let Xy, ..., \, be the unique elements lnsuch thatCC'y, # Cy for any\' <x
Ai, it =1,...,n. Denote

&(\) = min {Mih,...,m A=A A, < <A A
)\jie{)\l,...,)\n},’i=1,...,’1"}.

Theorem 1.11.56
LetC'y be defined from a surjective morphiggm Ther.th generalized Hamming
weight is bounded by

@ (Cy) > di ().

A rough outline of a proof:

In exactly the same way as we maodified the proof of theorem191io give a
proof of theorem 1.11.38, we can modify the proof of theorebi I53 from [17],
to give a proof of theorem 1.11.56. Especially we keep thenitadhs of M and
T(y). We notice that the choice @ff is even more natural in the later casgl
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New codes and new descriptions of old codes

In this chapter we will compare the constructions of codemforder domains,
with previous known constructions of codes. In this conioectve will con-
sider Feng and Rao’s codes from [7] as codes constructeddrder domains,
although the concept of an order domain was not invented tiénwill illus-
trate how the codes from order domains can be seen as a gesiaval of the
Reed-Muller codes and the 1-point geometric Goppa codesesaribtion of
this can also be found in [7] and [21]. We are in this chaptdy oconcerned
with codes defined from order sequences, as we have not deatedshat the
generalization from section 1.11.1.2 actually gives mardes than can already
be constructed using the techniques from section .11.1.1.

[.12.1 Reed-Muller codes

In this section we will, from an order domain theoreticalmgaif view, discuss
the well-known Reed-Muller codes and an important gereatitin of these.
We will only be concerned with the affine ones, that is, we doconsider pro-
jective Reed-Muller codes.

Consider the affine spaaﬁ}; = IF;". Denoten := ¢ and let{ P, ..., P, } be
the points inF". By ¢ we denote the surjective evaluation map

L F[Xq,. o Xy] = F
. F = (F(P),...,F(Py)).
Define
A, = {M|M amonomial,
anddegy, (M) <gq,i=1,...,m} (1.12.2)

and note that
P(Ag) ={p(M) | M € Ay}
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is a basis for". We have the following definition of a Reed-Muller code
RM,(r,m).

Definition 1.12.1

Letr be a nonnegative integer, a positive integer ang a prime power. The
r.th orderq-ary Reed-Muller code (abbreviatdth -code) of lengtth = ¢™ is
the vector space

RM(r,m) := spang, {¢(M) | M a monomial inX,..., Xn
anddeg(M) <r}.
Itis a well-known fact thaR M, (r,m)* = RM,(m(qg—1)—r—1,m). If we de-
fine an appropriate weight functigron R := F, [ X1, ..., X;,] thenRM,(r, m)

becomes a code of tygg,. One such choice is the weight functipn R — Ny
induced by the weights

IO(Xl) = (1a070a'-'a0)
X 0,1,0,....0
p(Xz) ( ) (1.12.4)
p(Xm) = (0,0,...,0,1)
and where] is ordered by<,;. We get a well-behaving sequence
(1, Xy Xonet1ye s X1, X2, 000, Xo X, X2, X300, (1.12.5)

And RM,(r,m) = E; wherel is the index such thaf; = X{. In [21, Sec.

4] it was first shown that the order bound gives the right vaitilhe minimum

distance of an)RMqi(r, m) code (and thereby of anyM,(r, m) code). In[17]

it is (as noted in the previous chapter) shown, that even¢hemlization of the
order bound to case of generalized Hamming weights, is tigtiie case of a
RM-code.

Example 1.12.2
This is a continuation of example 1.11.8. We have

E; = RM>(0,2) = Cs
B3 = RM(1,2) = C.

Example 1.12.3

This is a continuation of example 1.11.46. We have
E1 = RM3(0,2) = Cy3
E3 = RM3(1,2) = Cs
Eg = RM3(2,2) = Cs
Ey5 = RM;5(3,2) = C.
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From [41] we have the following definition of what we will cal weighted

Reed-Muller code, or abbreviatedVH RM-code. The definition calls for a
set of weightsW = {w(X;), ..., w(X,,) € N}. By wdeg we denote the
corresponding weighted degree functionlQnXs, ..., X,,].

Definition 1.12.4

Letr be a nonnegative integen, a positive integer ang a prime power. The
r.th orderg-ary Reed-Muller code of length = ¢™ defined from the sé/ of
weights is the vector space

WRMqy(r,m, W) := spang_{p(M) | M a monomial inX1, ..., Xy,
andwdeg(M) < r}.

According to [41] the dual of a weighted Reed-Muller codegaia a weighted

Reed-Muller code. By [41, Rem. 1] the parameters of &M codes are

worse or equal to the parameters of tR@/ codes. Again it is obvious that
a weight function onR can be defined such th#t RM,(r, m, W) becomes a
code of typeE;. Simply define a weight function by

,O(Xl) = (w(Xl),0,0,...,O)
p(X5) = (0,w(X3),0,...,0) (112.6)
p(Xm) = (0,0, ;0,w(Xpm))

and ordelN]" by <.

Recall that only for certain choices &6fthe codeF;, corresponding to the or-
der sequence (1.12.5), isRM code. However it is & RM code. This is
seen as follows. We first note that M ¢A, then there exists &' € A,
such thatp(M) = ¢(M') and such thaf/’ | M. We now choose weights
w(Xy),...,w(Xy) such thatwdeg(M;) < wdeg(Ms) for My, My € A, if
and only if M, comes beford/; in the order sequence (1.12.5). The result fol-
lows. A similar result clearly holds for the; codes related to the order function
defined by (1.12.6).

Consider now any order functiop on F,[X1,..., X,,] for which the set of
monomials constitutes an order ba#is If m = 2 then we have, from sec-
tion 1.3.3, a complete picture of the monomial orderingg thiees order func-
tions. It is clear that whem = 2, then for any of these monomial orderings
<n; one can find a weighted degree lexicographic orderngwith weights
w(Xy),...,w(Xy) € Ny, that approximate the monomial ordering in the sense,
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that if My, My € A, satisfiesM; <y, Ms thenw(M;) < w(Mz). It follows
that form = 2 any F; code corresponding to the order baSisan be described
as aW RM code. However whem > 2 then the situation is not so clear. We
leave it as an open problem to decide whether the result fimidsbitrarym.

Recall that, in example 1.9.3 and example 1.9.4, we showatl tthere are or-
der functions ork[X, X»| that does not correspond to monomial orderings on
k[ X1, X2]. We can conclude that the setBf codes defined from a polynomial
ring F,[X1,..., Xp] (m > 2) is larger that the set o RM codes defined
fromF,[X,..., Xpn].

Finally we discuss the codes of tyﬁ@(d). We claim that ifp andp’ are two
order functions or¥, [ X7, ..., X,,], such that both have the set of monomials
as an order basis, then the codgg(d) are the same. To see this [&f be a
monomial inF,[X1, ..., X,,], sayM = f; with respect tgp andM = f; with
respect top’. We must convince our selves th@t # C;_; (with respect to
p) if and only if C;; # Cy_y (with respect tq’). The result follows from the
following already mentioned facts. Firg(A,) is a basis foif". And second,

if a monomial M ¢A, is considered, then there exists &1 € A,, such that
o(M) = ¢(M'), and such thad/’ | M.

Finally adp(d) code of the above type can not in general be described &% an
code coming from a monomial ordering @vl,,,. Simply note that the:-value
corresponding toX? and X2 is 3, and that the:-value corresponding t&; X,

is 4. If a monomial ordering< on ¥, [ X, X5] was to respecK?, X2 < X; X
then we would haveX; < X; < Xj, a contradiction. We have once again
demonstrated that the order domain methods give new clasesles coming
from polynomial rings.

1.12.2 Geometric Goppa codes

An important motivation for introducing the concept of ardemains in the first
place was, that one wanted to simplify the description ofdvealled 1-point
geometric Goppa codes. We have the following general diefind@f geometric
Goppa codes.

Definition 1.12.5

Consider an algebraic function fiefd overF, of one variable. LeP;, ..., P,
be rational places and dendte= P,,...,P,. LetG = > npP be a divisor
such thatp, = 0 fori = 1,...,n. The geometric Goppa cod&: (D, G) is the
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code
Ce(D,G) = {(f(P1),.... f(P)) | f € L(G)}.

If G = m@ andQ is rational, therC (D, G) is said to be a 1-point geometric
Goppa code.

ClearlyC. (D, G) isF, linear, and if{ f1, ..., f,} is a basis foil(G), then

{0 fu(Ba))s s (Fs(P1), o fs(Pa) )

is a basis foiC: (D, G). The following well-known theorem describes the pa-
rameters of the code.

Theorem 1.12.6
LetCr(D,G) be a geometric Goppa code withg(G) < n. The parameters
of Cr(D, Q) are described by

d > n —deg(Q) (1.12.8)
k =dim(G) > deg(G) +1—¢ (1.12.9)

whereg is the genus of-. If in particular2g — 2 < deg(G) < n then equality
holds in (1.12.9).

Proof:
The proof relies heavily on the Riemann-Roch Theorem, sgk [3 O

It is clear that the set aF/; codes related to order domains of transcendence de-
gree 1 contains the 1-point geometric Goppa codes as a salmsply because
u>_,L(mQ) is an order domain whe@ is rational (the first part of proposi-
tion 1.10.10), and because the residue map iBamorphism. Similar it is clear
that the set of’; codes related t&® contains the set of duals dfpoint geomet-

ric Goppa codes as a subset. Now from the second part of ptiopols10.10

we know that any order domaiR with a weight function

p:R— A o CNyU{—oc}

can be described on the forfh= k[ X1, ..., X;,]/I, such that the quotient field
F := Quot(R) is an algebraic function field (of one variable) with a unique
place P at infinity, and such that this place satisfigs) = —vp(f) for any

f € R. Regarding the nature of the surjective morphigms i — F;, Mat-
sumoto shows in [26], that any surjective morphigm i — [y is of the form
o(f) = (f(P1),...,f(P,)) whereP,,..., P, are rational places itF (this
result also holds for non finite constant fielks From this fact it is (as noted



114 New codes and new descriptions of old codes  Ch. .12

in [26]) clear that everyy; code related to an order domain of transcendence
degreel can be understood as a 1-point geometric Goppa code. Andldas
that a similar result holds for th€; codes. Finally of course also thfép(d)
codes can be understood in the language of geometric Goplpa.celatsumoto
notes that they corresponds to what he calls Miura’s gematin of 1-point
geometric Goppa codes (the references are [27] and [28]).

Regarding the estimation of the minimum distance, it isrcieat the bound in

theorem 1.11.23 equals the bound in theorem 1.12.6. Matsumates that the

bounds on the minimum distance @f and(f’w(d), that we treated eatrlier in this
thesis, equals the bounds stated by Miura.

The advantage of using order domain theory to describeritgebmetric Goppa
codes should be obvious. Note that from an order domain pbiriew singular
points are no more difficult to handle that nonsingular ones.

1.12.3 The new constructions versus previous constructien

As demonstrated in section 1.12.1 and section 1.12.2, thef s®des constructed
from order domains contains as important special casesotteving codes.
Namely the 1-point geometric Goppa codes, the duals of Atpgpéometric
Goppa codes and the WRM-codes. Further in the case of an dodeain R

of transcendence degréehe C‘@(d) construction can be viewed as an improve-
ment of the duals of 1-point geometric Goppa codes.

Beside these codes we get a new large class of descriptiocmdes coming
from order domains of transcendence degree larger thaMvhenever these
codes are of typ€, C(d) or C,(d), the description includes an estimation of
their minimum distances. One can think of thgcodes as generalizations of
the duals of the 1-point geometric Goppa codes. That is argledion to the
case of function fields of arbitrary high transcendence ekgwWe mention that
J. P. Hansen in [15] and S. H. Hansen in [16] succeed in castgugeneral-
izations of geometric Goppa codes, to the case of higherrdimeal function
fields by use of algebraic geometry.

All together the application of order domain theory in cagltheory has three
important advantages.

. The descriptions are simplified for many of the already knoates

. We get new classes of codes coming frémalgebras of transcendence
degree larger thah
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. We get improvements by tr(ép(d) construction.

In figure 1.12.1 an overview of the different constructiossgiven. It is im-
portant to notice that the figure gives a picture of the retethip between the
different classes of constructions; not a clear picturdefrelationship between
the different classes of codes. To see why this is so, justeyathat actually
all linear codes can be described as geometric Goppa caae$34]), and that
some 1-point geometric Goppa codes can also be describachbsad 1-point
geometric Goppa codes (see [1] for an example).

A

This thin box:_,
WRM-codes

This thin box:

“~C.(d) codes
¢ D

trdg=3

1 point

This box:
trdg=2 Duals of
codes

v

This box:
frdg=1 <+ 1 point
codes

First grey region: t Second grey region:
E, codes This box: C, codes
Geometric

Goppa codes

Figure 1.12.1: The relationship between the different sgasof constructions.
The E; codes are left out folf,-algebras of transcendence de-
gree larger thar, as no estimation of their minimum distances is
known.
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Changing the parameters of@(d) by changing
<A

Every order domairk of transcendence degree at least 2 presented in this thesis,
possesses infinitely large families of weight functionghsthat if p andp’ are
weight functions in the family then the following holds. Bgt andp’ has value
semigroupA but the corresponding monomial orderings/oare different. Fur-
ther there exists a basis fét that is an order basis for bofhandp’. And p
andp’ are identical on this basis. In other words, the indexedrdreses are the
same.

While theC(d) construction is unaffected by this change of ordering orirthe
dexed order basis, this is clearly in general not the casth&r; construction.
Regarding the’,(d) construction, we will see in the following, that it is in some
cases unaffected, and in other cases affected by a changeeoiing onA.

In the following example we show tha{ﬂp(d) might be independent of the
choice of ordering on\, although infinitely many choices of proper ordering
on A exist.

Example 1.13.1
Consider the toric ideal

I:= (X1 Xy + X3) CF X1, Xo, X3].
We have a weight function

p: R =T [Xl,XQ,X:}}/I — A—oo = <(2,0), (0,2), (1, 1)> U {—OO}

induced by
plzr:=X1+1) = (2,0
p(ze =Xy +1) = (0,2)
plzs:=Xs+1) = (1,1)
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and by some arbitrary monomial orderirg, onA. Let A(I) be one of the two
possibilities of a footprint of, and

B:={M+I|MeAdI)}

the corresponding basis f&. Now if we index the elements & according to
their orders and if we then order the element#jnaccording to<x (used on
the indices), then we get a well behaving basis. For any mé@iardering< 5
onA_,, we know in advance that

. x; Is of lower index tharx{ fora > 1 andi =1,...,3
. x3 IS of lower index tharx|x3, 323 andzzs

(to see thatcs is of lower index thanc,zy just note thap(xzs) = (1,1) and

plz122) = (2,2)).
Now the variety corresponding ois

Vr, (I) = {(0,0,0),(1,0,0),(0,1,0),(1,1,1)}
giving us the evaluation mamw. We have
ev(zr;) =ev(zy) fora>1,i=1,...,3

1

ev(zs) = ev(z129) = ev(r123) = ev(zoxs).

So no matter which ordering » we choose then a basis eleméggtin B such
that

ev(f) € spang, {ev(fx) [N <ng} (1.13.4)

must be eithett, 1,29 or x3. As the number of possible choices bf such
that (1.13.4) is satisfied equaj$Vr, (I), we conclude the following. Differ-
ent choices ok, might give different codes’;, but the codes’,,(d) will be
independent of the choice efy.

In the next example we will see that there exist order domsiich that different
legal choices of ordering oA give differentéw(d) codes. In the example,
actually even the parameters of the codes, will be deperafetiie choice of
the ordering on\.

Example 1.13.2
Consider the toric ideal

I:=(X1X2 - X3) CF3[X;, Xy, X3].
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We have a weight function

p: R:=TF3[X1, X0, X3]/T = Ao :={((0,6),(3,0),(2,2)) U{—o0}

induced by
plzy =X +1) = (0,6)
plze i =Xo+1I) = (3,0)
plzs =Xz +1) = (2,2)

and by some arbitrary monomial orderirg, on A. Consider the footprint
A(I) = (X7 X7 X] |y < 3}
and the corresponding indexed order basigor
By = {fpusn =M +1|M e A(I)}.

In the following we will construct codes of the typka(d) corresponding to two
different orderings< .
The variety ofl is

Vi, (I) = {(0,0,0),(1,0,0),(2,0,0),(0,1,0),(0,2,0),
(1,1,1),(1,2,1),(2,1,2),(2,2,2)}

defining ourev map. So the codes will be of lengdh In the following we use
the notationf := F + 1.

Case't
Assume<N3 is the standard orderings;. One can show that the basis elements
fi in B such thatC; # C;_, are

{1, 29, 23,1, 73, Toxs, T2, Tox3, T2}
(ordered with respect taNg). The corresponding set pfvalues is
{1,2,2,2,3,4,3,6,3}.
Now C,,(3) has parity check matrix

H,(3) = (1.13.5)

OO O =
_0 O =
N OO =
O O ==
O O N =
—_ = = =
— = N
N N = =
NN N =
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and the order bound is tight as
(1,1,1,0,0,0,0,0,0) € Cy(3).

Of course the dimension ks= 9 — 4 = 5.
Turning to the cod€’,(4) we have parity check matrix

1111111 11
000121212
000001122

Hy(4)=1]10 12 00 1 1 2 2 (1.13.6)
000111111
000001111
001100111 1]

The order bound is tight as
(0,0,0,1,2,2,1,0,0) € Cy(4)
and the dimension s =9 — 7 = 2.

Case
We choose<N3 to be the weighted degree lexicographic ordering composed
by w((1,0)) = 2, w((0,1)) = 1 and(1,0) >, (0,1). And <, to be the
restriction of this. One can show that the basis elemgnits B such thatC; #+
C;_, are

{1, 21,23, 29, 2%, 2123, 129, 3, 2329}

(ordered with respect taNg ). The corresponding set pfvalues is
{1,2,2,2,3,4,4,3,6}.

Now theC,(3) code is exactly the same as in case |. Howeverthgt) code
is improved as the row

ev(z3) = (0,0,0,0,0,1,1,1,1)

is to be removed from (1.13.6) to establish the néfyg(zl). The order bound is
again tight as of course stil0),0,0,1,2,2,1,0,0) € C,(4). The dimension is
larger than before namely= 9 — 6 = 3. So the code is indeed improved.
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Some tools for constructing the codes

In this chapter we will describe some tools that are nice t@hboth when one
construct codes in practice, and when one constructs codetheoretical level.
First we will be concerned with the length of the codes. We will derive an
upper bound om in the cases op being an evaluation mag. Next we will be
concerned with narrowing the set of elemefitsn the order basi§fy | A € A}
that need to be considered when the codes are constructedllyRive will
derive some bounds on the valyes',) in certain special cases.

1.14.1 The restricted footprint bound
Assumey : ;[ X]/T — T} is an evaluation map, that isis of the form

L RIX]/T — Ty
e“'{ F+l o (F(P).....F(Py) (1.14.1)

where
{Py,...,P,} C VF, (I). (1.14.2)
In the rest of this section we choose
n = #Vg, (I),

that is we use all the points froiy, (7).

Given any ideall C k[X], then the footprint bound (see appendix |.A) states
that
#Vi(J) < #A(J) (1.14.3)

whereA(J) is the footprint ofJ with respect to some monomial ordering on
M (X). And equality holds in (1.14.3) precisely wheh= 7 (Vi (J)).

So a way to determine without actually evaluating all the points & in
the generatord?,..., Fy; of I C F,[Xy,...,X,,], would be to findl" :=
Z(Vg,(I)). The footprint bound then tells us that = #A(I"), where the
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footprint is taken with respect to any monomial ordering[Qnx;, ..., X,,].
Unfortunately there apparently is no general method to fihd However 1"
must contait

I' = IT+(X!'—Xy,..., X% — X,,)
= (F,...,F, X0 Xy,..., X% — X,).

ThatisA(I") C A(I') giving us the bound
n < #A(I').
Note that in the case = #A(I') we havel’ = I".

Example 1.14.1

Assume we want to study type-l curvds® + Y’ + G(X,Y) wherea > b

is known, butu # 0 andG(X,Y) is not. The only thing that is known about
G(X,Y) is, that it contains no monomiak®Y? such thaixb + Ba > ab. In
this general setting we will not be able to calculate a Gedlirasis for

I'=(X°4+uY"+G(X,Y),X1- X, YY),
meaning that we will not be able to determifz¢l’). However
A(I') C{M € A(I)| degy M < g.degy M < q} =: Ag(I).

Giving usn < #A,(I). Now different choices of monomial ordering on
M (X,Y), may (and will in many cases) lead to different valuesfaX,(I).

In the case of. < ¢ the most narrow bound is found by choosiyi§ as the
leading monomial. We get < aq. Choosing instea® to be the leading
monomial gives the weaker bound< min{bq, ¢*}.

In general we have the following definition.

Definition 1.14.2
Given a monomial ordering oM (X1, ..., X,,,), define the restricted footprint
to be

AyI):={M e A(I)| degx, M < q,i=1,...,m}.

We have the general result.

!Note added in the second edition: In the manuscript “On thestraction of codes from order
domains”, june 2000 by Olav Geil, it is shown that= 1",



122 Some tools for constructing the codes Ch. .14

Theorem 1.14.3
The number of points in a varieW, (I) is bounded by

n = #Vr, (I) < min{#A,(I) | A(I) a footprint ofI}. (.14.7)
We will refer to this result as the restricted footprint bdun

Example 1.14.4

Consider the order idedl := (X* — Y?) C F4[X,Y]. The following calcu-
lations are with respect to the weighted degree lexicogecaptalering given by
w(X) = 3, W(Y) = 4 andY =, X. The footprint is given byA(I) =
{X2Y®| B < 3} and the restricted footprint equats,(I) = {X°Y?|a <
4,8 < 3}. Tofind A(I') we use Buchberger’s algorithm ¢i® — X*, X4 —
X, Y* — Y7} to get the reduced Grébner ba$ls® — X*, YX +Y, X% + X}.
We conclude thaf(I') = {1, X,Y,Y?2}. NowI is a toric ideal. From propo-
sition 1.6.10 we havetVy, (I) = ¢ = 4. And we conclude thal” = I'. The
situation is illustrated in figure 1.14.1.

1 X X X

Figure 1.14.1: The shadowed regionAgI), the framed regiom\,(I) and the
boldet dots constituteA (I') = A(I").

Note that the restricted footprint is a footprint in the specase wherer =
A, (I). That the restricted footprint bound can actually be agt@jris seen in
the following example.

Example 1.14.5
Consider the Hermitian curve (I) where

[:= (X" —Y7-Y) CFp[X.Y]
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From (1.14.7) we have < ¢* (there are only two possible restricted footprints
to consider). It is well known (and easily seen) that acyual= ¢* holds.

Example 1.14.6

This example is a continuation of example 1.10.15 and exarhp4.1. We wiill
discuss the restricted footprint bound versus the sodaalesse-Weil bound in
the case of a type-I curve, that is a curve

F(X,Y)=X"+uY’"+G(X,Y) € F,[X,Y]

whereged(a, b) = 1 andwdeg(G) < ab (Wlog. we assume > b). LetF be an
algebraic function field of one variable ovigf, and denote bNp the number
of rational places ofF. The Hasse-Weil bound gives the following bound on
Np

INp = (g +1)| < 2gq'/ (.14.9)

whereg is the genus af (for a proof see [38, Sec. V.2]). Recall that the function
field F corresponding to a type-I curve has precisely one placefiattin and
that this place is rational. According to the discussion agg86, any other
rational place must correspond to a nonsingular affine gmirthe curve, or to

a singular eventually projective point on the curve. Andwo tifferent points
correspond to the same place. Beside these points thereersydular points
that does not correspond to rational places. From (I.14e9)ev that the number
nnons Of NONsingular points ivr, ((F(X,Y))) is bounded by

Nnons < 2gq1/2 +q. (|.l4.10)

To translate (1.14.10) into something useful we must havietaye of the size of
the genugy. According to Weierstrass Gap theorem (theorem 1.10.9)émis
equals

g = {v|v €N, there exist no elemerftc F
such thavp,_(f) =~ andvg(f) >0V Q # Px}.

We have

g < #(No\(a,b)) (1.14.11)
= (a—1)(b-1)/2 (1.14.12)

and equality holds in (1.14.11) iR ~ L(P) (the equality in (1.14.12) can be
found in [21, Prop. 5.11]). Combining (1.14.10) and (I.12) e get

Tonons < (a — 1)(b = 1)¢"/% + . (1.14.13)



124 Some tools for constructing the codes Ch. .14

Using instead the restricted footprint bound we get
Nnons < n < min{q?, bq}. (1.14.14)

If a = ¢'/2 +1 andb < ¢ then the bounds (1.14.13) and (1.14.14) are equal.
For some choices af, b, q (1.14.13) constitutes the narrowest bound, for other
choices (1.14.14) does.

Example 1.14.7

This is a continuation of example 1.6.11 and example |.6ld2he first example

we studied the toric idedl C Fy[X11, Xo1, X192, Xo9, X713, Xo3] generated by
the2 x 2 minors of the2 x 3 matrix [X;;] of indeterminates. We noted that
the varietyVr, (I) contains 22 points. That is, considerable more than our first
guess, that was 16 points. By inspection on the generatatealleal, we see
that the restricted footprint bound sta#¥y, (I) < 32. So we can not conclude
that#Vr, (I) is nearly maximal in that sense. Repeating for the secorigea

that is for the toric ideal := <X11X22 — X21X12> C Iy [XH,X21,X12, X22],

we saw that#Vr, (I) = 10. In this case the restricted footprint bound tells us

1.14.2 Detection of thef,’s that are superfluous

In the previous subsection we invented the notion of theictst footprint to
give an upper bound am. In this section we will see that the concept is relevant
for more purposes. L&k = F,[ X, ..., X,,]/I be an order domain that can be
understood from Pellikaan’s factor ring theorem. Lt = F),+1 | A € A} be

a corresponding order basis, whéi@, | A € A} is a footprint of. Denote this
footprint by A(I). In the following, we will be concerned with detecting, whic
fx's we need to consider, when we are to construct codes of gesfy,, C,,
C(d) andC,,(d) using a surjective morphism. Take anyF, € A(I)\A,(I).
Now there exists &; such that?, /X ¢~ ' is a monomial (and thereby contained
in A(I)). Lety' be the value such thdt, = F, /X! '. We have

We conclude the following.
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Remark 1.14.8

When we are to construct codes of one of the following tyBgsC\, C(d)
or C,(d), then we need only include thg’s, whereFy € A,(I), in our de-
scription. Also the problem of determining the valugg\) is considerable
simplified, and so is the problem of finding the dimension efabove codes.

We suggest the following definitién

Definition 1.14.9
Assume thaf? is anF,-algebra with an order bas{sy = F + 1 | A € A},
defined from a footprin\(I) = {F» | A € A}. We define

dq(>\) = min{,u(f/\:) ‘ Fy € Aq(I),A <A )\I} (|1415)
Clearlyd,(\) > dy(X) > d(X) (see definition 1.11.37)

Example 1.14.10
In this example we construct codes from the order domain ampte 1.7.7 in
the casé: = IF5. Recall thatk := F3[X,Y, Z]/I where

I[:=Y?>-X’Z+YZ%+ 2%

is shown to be an order domain, by use of Pellikaan’s factay theorem. The
considered weights are(X) = (1,0), w(Y') = (1,1) andw(Z) = (0,2), and
the considered ordering 0% is <., where(0,1) <., (1,0). We get a weight
function

p:R— A_:=((1,0),(1,1),(0,2)) U{—o00}

induced byp(z := X + 1) = (1,0), ply :==Y +1I) = (1,1) andp(z :=
7Z + I) = (0,2). Consider the weighted degree lexicographic ordergon
M (X,Y, Z) given by the above weights, by the above specified ordeting
on A, and by the lexicographic ordering;,, on M (X,Y, Z) whereZ <,
X <., Y. Denote byA(I) the corresponding footprint. We get an order basis

B:={F+1|FeA()).

As the involved ordering om is not isomorphic with the ordering @, the
indices, we are going to use, are not the natural numbershbuglements of
A. We know that we need only consider the basis vectors carnelpg to the

2This definition is a very natural consequence of remark 8.14 was suggested in the spring
1999 by Johnny Weile and Sgren Raunsbaek Jgrgensen (boémtstad Dept. of Math., Aalb.
Uni. at that time) while they were studying a previous vardthat included remark 1.14.8) of
this thesis.
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elements of the restricted footpritts(I). These are (the indices increasing
with respect to<,.,.)

{fo0 =1, fo2 =2 foa =2 fan = fai) =y

(0,0)
faz =z fas =y fon = 22 fus) =92 fan = 7,
fn) = 2y, fog) = 7°2, fo,3) = 22, fo4) = 2°27,
f(2,5) = myz2,f(3,1) = x2y’f(3’3) = .’E2yz,f(3’5) — nyZQ}. (|-14-16)

By inspection we find thatr, (I) consists of the 12 points

{(0,0,0),(1,0,0),(2,0,0),(1,0,1),(2,0,1),(0,1,1),
(1,2,1),(2,2,1),(1,0,2),(2,0,2),(1,2,2),(2,2,2)}.

As morphism we choose the evaluation map defined from thesd#spoSo
among the 18 elements of (1.14.16), the 6 are superfluous weeare to con-
struct codes. For instan€g, 5y = C; 4) asev(f(1,5)) = ev(f(1,1)). To sort out
the remaining 5 superfluous elements, or in other words tectifie 12 indices
(a,b) such that

C(a:b) 7& C(C,d) for any (Ca d) <lex (a, b) (|1417)

we do the following. Consider tHe8 x 12 matrix

T ev(f(0,0))
2 _ e’U(f(O, ))
18 ev(f(3,5))

On this matrix we perform Gaussian elimination in a certastnicted way. The
only row operations that we allow, are the ones where arpis substituted by
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1.14.2.

a linear combinatiom; + 3, _; a;r;. We get

— AN = NN~ NN = NN~ NN N NANN——ON—A——OCco oo
— N~ = NN " N NN~ NN N N NOO—HOODODOoO N NODODOODOoO OO
— AN NO T O NO IO NO 1O AN - ANONOD—HODNONODOD OO OO
— AN A O NO A O IO NO—1 OO0 AN —H OO NODODOoOO OO
— o= = AN AN AN ANANN AT~ NN = ONN—H OO N - NODODODODCDCOoOCOo O
o = N = AN N N N AN NN - O NOOoOOoOOoOOoONoOoOoOoOoooDOo oo
— o O = OO OO0 00000000 OO -HNOOODOoOOoooOoooCco oo
—rH = AN O NONOD AT O —1 OO0 H—ONO—HODODODONODODODODODODOO OO
— e = O OO OO — OO0 —H—HO—"AOODODODODODODOOOOOOCOCO
— OO NOODOOO IO DD HOOoONOOoCOoOOoOOoON oD oc oo oo oo
— O O OO0 CO—H OO0 OO HOOODOoOOoOOoOOocoOoooco oo
—_ O OO OO OO OO OO OO OO0 OO OO oo oo ocoocoooo
L ] L
_

|

— N w

S K S

Now the 12 pivots correspond to the 12 basis vectors (anélifréndices) such



128 Some tools for constructing the codes Ch. .14

that (1.14.17) is satisfied. That is, the interestingalues are the ones in ta-
ble 1.14.1. The parameters related to @g ;) codes and th€’,(d) codes are
stated in table 1.14.2 and table 1.14.3.

(a,b) (0,0) | (0,2) | (0,4) | (1,0) | (1,1) | (1,2)
p(fap) 1 2 3 2 2 4

(a,b) (1,3) | (1,4) | (2,0) | (2,1) | (2,2) | (2,3)
:U(f(a,b)) 4 6 3 4 7 8

Table 1.14.1: The: values that need to be considered.

@b) [©00]©02)] 04 @0 @] 12
k(a,b) || 11 | 10 | 9 8 7 6
dy(a,b) || 2 2 2 2 3 3

(a,b) 13 1,420 21)] (22| (2,3
Kab) || 5 | 4 | 3 [ 2 | 1 | 0
ds(a,b) 3 3 4 7 8 00

Table 1.14.2: The parameters related to the cadgs, from example 1.14.10.

©
o
w
N
=
o

k(@) | 11
d || 2 |13|4|6|7]|8]| x

Table 1.14.3: The parameters related to the cmﬁg(si) from example 1.14.10.

We note that one can also detect the desired pivots in theafmly way. First
transpose the initial matrix, then perform Gaussian elatiém without any re-
strictions, and finally transpose back again.

In the caser = #A,(I) the situation is particular simple. This is illustrated in
the following two examples.

Example 1.14.11

In this example we will construct codes ovér from an order domain of the
type described in example 1.8.7. LgtT) := T?> + T + 1 and leta be a
root inp(T). We identify the elements df, with the polynomials irlFy [T
of degree at most one evaluatedoin Starting with the Hermitian polynomial
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H(X1,X3) = X} + X2 + X, overFy, we get, by following the construction in
example 1.8.7,

H = X’+XY’+Y34+22+W?+2Z
Hy = XY’+X’Y+W?+W.

Now with I := (Hy, Hy) we know thatR := F4[X,Y,Z, W]/I is an order
domain with a weight function

piR— Ao = {(2,0),(0,2),(3,0), (2,1)) U {00}

induced byp(X + I) = (2,0), p(Y + I) = (0,2), p(Z + 1) = (3,0),
p(W + I) = (2,1) and by using the standard ordering; onN3.

Let <,, be the weighted degree lexicographic orderingvdt X,Y, Z, W), in-
duced by the weighte (X ) = p(X +1),w(Y) = p(Y + 1), w(Z) = p(Z +1),
w(W) = p(W + I), by the ordering<s; onN2, and by the lexicographic or-
dering<je, on M (X, Y, Z, W), whereW <ep X <z Y <jex Z. We have
Im(H,) = Z? andlm(H,) = W?2. We denote byA(I) the footprint ofI with
respect toe<,,. The important fact is that

B:={F+I|FeA()}

is an order basis faR. Let(f; = F1+1, fo = F»+1,...) be the corresponding
well-behaving sequence. Consider the restricted fodtwith respect to<,,,
that is consider

Ay(I) = {F amonomial| degx(F),degy (F) < 4,
degz (F), degy (F) < 2}.
We labelA(I) by
Ay(I) =:{F;,,F;,,... F,,},

wherei; < i;4q forj =1,...,63. We know that the set
{Fin | Cm1 # Cim} (1.14.19)

is contained inA4(I). That is we can forget about the outsideA4(I). By
inspection we next find, that the number of common rooE?lim)f H, andH,
equals#A,(I) = 64. And we choose as morphism the evaluation raap
R — T$* that corresponds to these points. So our codes are of lengtl4.
The very nice consequence of= #A4(I) is that{ev(F)|F € A4(I)} is a
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basis forF}. So the codes are particular simple to construct, and wehget t
following nice expression for the dimension of the cége

kiy =n—1, (1.14.20)
and the following nice expression for the dimension of théaraw(d)
k(d) =n — #{F; € A1) | pj < d}. (1.14.21)

To estimate the minimum distances we need a list ofithelues corresponding
to the elements in the restricted footprint. This is corgdiin figure 1.14.2.

® (61@62@9a3 o @

©)

SISISIOIOIOIO
® ©
HQEEEG®E
HEEEE G
@RRPBE®E®
OISIGIGINIS)
SENORNOR NS
@@@@@@
Be®e® e
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Figure 1.14.2: The figure describes the situation in exarhfi.11. A number
w with a circle around in the positiofs, t), means that there is a
monomial F; in A4(I) with p(f;) = (s,t) and thatu; = p. A
e in position (s, t) denotes that there existsFa € A(I)\A4(I)
with p(f;) = (s, ).

From (1.14.20) and figure 1.14.2 (and the knowledge, Mats ordered by< ;)
we get table 1.14.4 of the parameters related to the c6ges he valued,... is
the best known achieved minimum distance for any linear cw6€F, of length

n = 64, and dimensiom: according to Brouwer’s table of linear codes at
“http://www.win.tue.nl/math/dw/personalpages/aebfiimcod. html”.

Note that the codes in certain nontrivial cases reach the lyesvn result.
From (1.14.21) and figure 1.14.2 we get table 1.14.5 of theapaeters related
to the codesf*w(d). Again some of the codes are as good as the best known.
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i i1 | is | dg | 16 | G17 | 423 | I36 | %41
ki, 63| 59| 56| 48| 47| 41| 28| 23
)| 2] 3] 4] 5] 6] 8] 12| 16
drec 2 3 5 8 8| 11| 18| 24
i i52 | 953 | 955 | U50 | @60 | 61 | U63
ki, 12| 11 9 5 4 3 1
d,(i) || 24| 30| 32| 40| 44| 48| 64
drec 33| 35| 38| 45| 48| 48| 64

Table 1.14.4: Parameters related to the codgdrom example 1.14.11.

k(d) | 63|59 57|50 49| 44| 4335|3433 27| 26| 25
d 2| 3| 4] 5] 6| 7| 8|10| 11| 12| 14| 15] 16
dree || 2] 3| 4| 7| 7|10 10| 14| 14| 15] 22| 23| 23
k(d) 20191816 15|12|11| 9] 6| 5| 4| 3| 1
d |[18]19] 20| 22 24| 26|30 | 32| 36| 40| 44| 48] 64
droe || 27 | 27 [ 27 | 28 30 | 33| 35 | 38 | 44 | 45 | 48 | 48 | 64

Table 1.14.5: Parameters related to the cadgéd) from example 1.14.11,

Example 1.14.12
Consider the tensor product of the Hermitian order domain

DY =F X, Y]/(X?+ Y2 +Y)

with itself. Thatis defind := (X3 +Y?2+Y, Z34+W?2+W) C F4[X,Y, Z, W],
and consider the order domdD{,? =4 [X,Y, Z, W]/I with weight function

p: Dy

(2)

induced byp(X + I) =

(2,0), p(Y + 1)

— A« :=1((2,0),(3,0),(0,2),(0,3)) U{—o0}

= (3,0), p(Z + 1) = (0,2),

p(W + I) = (0,3) and by using the standard orderirg, on A. Consider
the weighted degree lexicographic ordering on M (X,Y, Z, W) given by
the weightsw(X) = p(X + I),...,w(W) = p(W + I), by the ordering
<st on A and by the lexicographic ordering;., on M (X,Y, Z, W) where
X <iex Y <iex 7 <100 W. With respect to this ordering the footprint bfs

A(I) = {M a monomial| degy (M), degy (M) < 2}.
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And
B:={M+1|MeA(I)}

is an order basis faf)g). As in the previous example we have
#A4(I) = #Vp, (I) = 64 =: n.

So if we as morphism choose the evaluation map corresporalihg64 points

in Vg, (I), then we are in a situation exactly as simple as the situaticx-
ample 1.14.11. In particular (1.14.20) and (1.14.21) dtitllds. To estimate the
minimum distances, we need a list of ihwvalues corresponding to the elements
in the restricted footprint. These are stated in figure 814.

1616 @3G2@0 @8

¢ ®
@3

Figure 1.14.3: A number with a circle around in the positiofs, ) means that
there is a monomia¥; in the restricted footprint with (F;+1) =
(s,t) and thatuf; = p. Afilled circle in position(s,¢) denotes
that there exists &; € A(I)\A,(I) with p(F; + I) = (s, t).

From (1.14.20) and figure 1.14.3 (and the knowledge, Hats ordered by< ;)
we get table 1.14.6 of the parameters related to the cOgednd from (1.14.21)
and figure 1.14.3 we get table 1.14.7 of the parameters rétatthe code§’,,(d).
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1 11 | i | 48 | 415 | d17 | 123 | i36
T || 63|59 56| 49| 47| 41 28
d, (i1) 2 3 4 5 6 81| 12

i 41 | 52 | %56 | U590 | t61 | U63
k23] 12| 8] 5| 3| 1
d, (i1) 16 | 24| 32| 40| 48| 64

Table 1.14.6: Parameters related to the codgdrom example 1.14.12.

k(d) || 63|59 |57 |51|49|43|37|36|32| 26| 24
d 2 3| 4| 5] 6| 8| 9|10|12|15] 16

k(d) ||19|17 15|11 |10| 8| 6| 5| 3| 1
d 1812024 |25|30|32|36|40| 48| 64

Table 1.14.7: Parameters related to the cadgéd) from example 1.14.12.

Example 1.14.13

In example 1.14.11 and 1.14.12 we considered codes Byvarf lengthn = 64.

It is natural to compare the; codes from these examples with the Reed-Muller
codes oveif, of lengthn = 64. Using the results from section 1.12.1 one
gets the results described in table 1.14.8. For five dimensthe Reed-Muller

1 0| 1 2| 3| 4| 5| 6| 7| 8
k| 63|60|54|44(32|20|10| 4| 1
d 2| 3| 4| 8|12|16| 32| 48| 64

Table 1.14.8: The parameters of tRé//;" (i, 3) codes;j = 0,...,8.

codes are the best, for two dimensions they are equally gedltbacodes from
example 1.14.11 and 1.14.12, and finally for two dimensidrey/tare worse.

The technique described in this section holds in an apdgsremire general
setting. LetR be an order domain with an order basis= {f\ | A € A} that

is multiplicatively finitely generated and closed in theldeling sense. There
exists a se{ f\,,..., fi,} such that whenevef, is an element ir3 then one
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can finda&”, e ,ak(f) € Ny such that
S o)

=1l
i=1

and contrary every

T oM o )
Hf/\l_’ o e €Ny
i=1

is an element ilB. When constructing codes ovEgy one need only consider the
elements in

s o™ ) )
{(h=]]ry eBlaW <qi=1,.. s}
i=1

We leave it as an open problem to decide if this setting isadigtmore general
than the ones considered above.

1.14.3 Bounds onu(f))

Assume that we are given an order dom&in= k[X,...,X,,]/I that pos-
sesses an order badigy = F\ +1 | A € A} suchthat{F), | A € A} isa
footprint. Consider an arbitrargf, = X' X352 --- X~. Any factor of F, will
be a new element i (7), and by assumption no two different factavg and
M, satisfyp(M, + I) = p(M2 + I). We conclude that

m

p(fr) > #{M dividesFy} = [[(e; +1). (1.14.22)
7=1

We next give an example where the bound (1.14.22) is attaioedll the ele-
mentsf; that are of interest when constructing codes.

Example 1.14.14
Consider a type-1 curvé&(® + uY® + G(X,Y) € F,[X,Y], wherea > b and
a > q. Denotel := (X® +uY"’ + G(X,Y)), and let

p:F X, Y]/I = A :=(a,b) U{—o0}
be the weight function induced X + I) = b, p(Y + I) = a. Assume

p(XYP + 1) = p(Xx*Y? +1I). (1.14.23)
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Thena = o' mod a andB = B mod b. Further ifa > o' thenB < ' and
vice versa. We conclude that(if,, 3) # (o', 8') satisfy (1.14.23) then

a>a or [>0. (1.14.24)

Consider the weighted degree lexicographic orderingv®fX,Y) given by
w(X) =b,w(Y) =aandX <, Y. The corresponding footprint is

A(T) = {X°Y? | 8 < b}

and
B:={M+1|MceA()}

is an order basis. Léff, = F\ +1, fo = F»+1,...) be the corresponding well-
behaving sequence. As noted in section 1.14.2, the pify) -values that we are
interested in knowing, are the ones corresponding taFtfeein the restricted
footprint

AT = {X°YP|a < q, B < b} (1.14.25)

Take an arbitrary element®Y? € A,(I). By comparing (1.14.24) with (1.14.25),
and by using the assumptian> ¢, we get that an identity(X*Y? + I) =
p(X¥YP + I) willimply (a,) = (o, 8"). We have shown that

w(X°YP + 1) = #{M | M afactor ofX°Y"} = (a +1)(8+1) (1.14.26)
for XY € A, (I).

For later use let us pursue the investigations a little &mthConsiderB C
Ay (I), where eitheB equalsA,(I), or is a footprint that is strictly contained
in Ay(I). Forinstance3 can be the seh(I") wherel” := Z(Vr, (I)). Denote
np = #B and consider the-values corresponding to elementsdn Assume
these are denoted

{1, ting } (1.14.27)

such thaj; < pipq fori =1,....,np—1. We claim that (1.14.27) is dominated
by{1,2,...,ng} in the sense that

i <i,i=1,...,np. (1.14.28)

Assume for a moment that this was not the case. That is as$igredxists an
i € {1,...,np} such thaf.; > i. But then according to the structure Bfand
to the first equality in (1.14.26), there will exigt — 1 > i, u-values in (1.14.27)
that are strictly smaller tham;, a contradiction. The inequalities (1.14.28) will
be important when we investigate the asymptotic behavibtiieocodes corre-
sponding to the repeated tensor products of type-I curvéeeadbove type.
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Example 1.14.15

Assume that we are given an order dom&in= k[X1,...,X,,]/I that pos-
sesses an order badigy = F\ +1 | A € A} suchtha{F, | A € A} isa
footprint. Assume further that the restricted footprxf(I) contains precisely
n = #Vr, (I) elements. We have seen that the assumptions for instansatare
isfied for the ideal§0) C F,[X1,..., Xp], (X4 —Y?-Y) C F,[X,Y], and
(X XY24 Y34+ 224 W2+ Z, XY2 4 X2Y + W24+ W) C Ry [X,Y, Z, W].
We claim that

{u(fa=Fx+1)|Fx € Ag(I)} (1.14.29)
isdominated by1.2, ... ,n} inthe sense that if (1.14.29) is writtdp1, . . . , jin }
wherep; < i1 ~forz‘ =1,...,n—1, thenu; < i. To see this, we consider the

codesC,,(d) = C(d) defined fromiF,[Xy, ..., X]/I1. Now on the one hand
C(ui), @ > 2 has of course minimum distande> ;. On the other hand the
dimension is bounded By > n — (i — 1) (equality holds ifu;—1 # u;), and the
Singleton bound states that— k > d — 1. Sod < i. All togetherp; < i. We
have proved our claim.



1.15
The asymptotic behaviour of some classes of codes

In this chapter we will be concerned with the asymptotic béha of the codes
coming from certain classes of order domains. In the first warinvestigate
sequences of codes coming from repeated tensor producestaircorder do-
mains. In the last part we will discuss the tower of Garcia &tidhtenoth from
an order domain point of view.

[.15.1 Codes coming from the tensor products of order domais

In section 1.8.2 we introduced the tensor products of ordenains, and in ex-
ample 1.14.12 we investigated the codes related to the ptaduwo Hermitian
order domains. In the following the notation from sectio8.2. will be used
heavily. The reader might want to consult this section efoceeding.

Now let a sequence of order domains be given
(Ri =F,[X1]/I1, Ry = Fy[Xs]/Io, Ry =F,[X3]/I3,...)  (1.15.1)

where eaclR; can be understood from Pellikaan’s factor ring theorem floghs
ing the footprintsA(7Z;), i« = 1,.... EventuallyR;, = Ry fori = 1,2,....
Now from the sequence (1.15.1) we construct a new sequenaelef domains
namely

(DW= Ry = F,[X1]/IV, D? := R, ® Ry =: F,[ X1, X ]/ T,

DB = R ® Ry ® Ry =: F,[ X1, X0, X3]/1®),..). (1.15.2)
If we denoten; := #Vg, (I;) then the number of zeros df? is given by
n® = T[;_, n;. We may assume; > 2. Son(") tends to infinity as tends

to infinity. A natural question now is if there exists a sequeenf type (1.15.2)
from which we can construct a good sequence of codes. Thatdguence

(cM c® )
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with corresponding parameters

<(n(1>’ KV 4Dy, (0@ @) 42, )

such that both
(9)
R :=1lim infk—. >0 (1.15.5)
1—00 n(l)
and
d®
0 := liminf — > 0. (1.15.6)
1—00 n(l)

We will not answer this question completely, but describmsdmportant cases
where the sequences of codes are bad, at least with respbetdcder bound.

ConsiderD() from the sequence (1.15.2). A footprint fdf") satisfying the
conditions in Pellikaan’s factor ring theorem is given by

A(IDy = (M My - M;| M; € A(T}), 5 =1,...,i} (1.15.7)
and the corresponding restricted footprint is given by
AyTDY = (M My--- M; | M; € Ay(I}), 5 =1,...,i}. (1.15.8)
Next we consider tha-values. We note that
w(Mj + 1) = p(M; + 1), i > j
(here the firsju-value is with respect to the order domdi), and the second

p-value is with respect to the order domdin?)). Further forM; € I;, j =
1,...,1, we have

(M My - M; +10) = HM(MJ' + 1)
j=1

T (05 + 1;).
7=1

We are now ready to give some conclusions on the asymptoliaviomur of
codes corresponding to certain classes of sequences2jl.18/e will study
three cases.
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Case |

The assumptions are as follows. Assume= #A,(I;) for any R; in the
sequence (1.15.1), and assume that there exists a wgjgesuch that

nj < Npag foryj=1,.... (1.15.10)

According to (1.15.8) we have® = #A,(I)),i = 1,.... Referring to sec-
tion 1.14.2 we will need precisely the elements/af(7(")), when we construct
the parity check matrices of the codes of tyggsC/(d) and C‘@(d). In this spe-

cial case of coursé!(d) = C‘w(d) for anyd. We now show that every sequence
of C(d)-codesl, (d)-codes is bad (at least with respect to the order bound). Of
course then also every sequencepfcodes is bad (at least with respect to the
order bound).

First consider any?; in (1.15.1). Write the set of:-values corresponding to
elements iM\,(I;) as

Uj =A{p1(4) - pn,; (45} (1.15.11)

whereys(j) < ps+1(4), s = 1,...,n;—1. From example 1.14.15 we know that
the sequence (1.15.11) is dominated{dy2, ...,n;} in the sense thai,(j) <
s, = 1,...,n;. Turning our attention t&(") the set of-values corresponding
to elements im\,(I?) is

i

U = {J n6) I uli) €eUG), j=1.....i}.

i=1

Therefore the set gfi-values corresponding to elementsAg (1) is domi-
nated by

(T #G) 1 G) € {1,2,....n;}}. (1.15.13)
j=1

Assume now that a good sequence

(0(d<1>), C(d?), .. )

exists (good wrt. the order bound). Then there ekst> 0, &' > 0 and anV

such that

d@ L9

— >, — >R fori> N. (1.15.14)
n(z) n(z)
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Consider a fixed > N. We will calculate a lower bound on the mean value
of the u-values corresponding to elementsAg (7). From (1.15.14) we have
dD > §'n andk® > R'n(). That is there are at least?) p-values inU (%)
greater tha’n(?). So the mean value of the elementdiff) is bounded by

1) 57 (0
o)
(4

> R'&'n®

mean value >

(2
= R¢'[]n; (1.15.15)
j=1

On the other hand we can conclude from (1.15.13) that the rnaalae is upper
bounded by

i i

nj+1 1

mean value< H ;— < H(n]- -5 (1.15.16)
j=1 7j=1

(here we used; > 2). Using the assumption (1.15.10) we see that the upper

bound on the mean value is smaller than the lower bound dafficiently large.

We have reached a contradiction.

Note that the set of codes that we have investigated abovainsrthe Reed-
Muller codes (the casg®) = (0),7 =1,...). These codes are known to have
minimum distance equal to the Feng-Rao bound, giving us gikkmown fact,
that Reed-Muller codes are asymptotic bad.

Some general results

Before proceeding to case Il and case Ill, we discuss somerglemesults. As
in previous sections we will use the notatidi := Z(Vr,(I)). In particu-
lar (I0)" := Z(Vg, (ID)). We haveA((ID)") C A,(ID), #A((ID)") =
#Vs, (I1) and that{ev(M) | M € A((I1))")} is a basis fof™2 . Let they-
values corresponding to the elementaif(1())") be enumerate@ugi), e uff()i)}
such tha'gu;i) < uﬁl,j = 1,....n(¥ — 1. The first important observation is
that the dimension of (1" + 1) is bounded by

k<n®—s (1.15.17)

(note that this observation need not hold @r(d)—codes). The other important
observation is, that we can easily fids((7(V))") ones we know the(I}),
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4 =1,...4. Just note that
(M My M; | Mj € A(I}), j=1,...,i} C A(ITD)") (1.15.18)

and that the cardinality of both sides equﬁ[§:1 n;. That is we have equality
in (1.15.18).
Case ll

The assumptions are as follows. Assume the maximalue corresponding to
an element inA(I7) is bounded byuy, (j) < n; for j = 1,.... Assume further
that a valuer,q, exists, such that; < ny,., forj =1,....

Now the maximalu-value corresponding ta((I()") is bounded by

nl =Tl wn; G) < T[] (n5 — 1),
j=1 j=1

giving us the bound

M(i) Lomg—1
nl < T —~—. (1.15.20)
n(l) nj
7j=1
But the rhs. of (1.15.20) tends to zero7agnds to infinity (here we used the fact
thatn; is bounded). So even a sequenc€dil) codes all of dimension at most
one, will satisfy
d®
lim inf — = 0.
1—00 n(l)
It follows that the codeé‘(d) are (with respect to the order bound) asymptotic
bad. But then are so the codés

That the assumptions corresponding to case Il can actaddtyplace is seen by
the following example.

Example 1.15.1
Consider the order domain

R:=TF[X,Y]/(X} +Y?).

There are two choices of weighted degree lexicographicrmgien M (X,Y)
that satisfies the conditions in Pellikaan’s factor ringotieen. In both cases
w(X) = 2 andw(Y) = 3. For the one choic& <., Y and for the other
Y <jex X. Now X3 —Y? has the root$0, 0), (1,1), (o, 1), (o2, 1) wherea? +
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a+1 = 0. Calculating a Grobner basis fir:= (X?>-Y?, X*- X, Y*-Y) we
get for both orderings the footprit(I') = {1, X, X2,Y}. The corresponding
p-values ard 1,2, 3,2}. By inspection the code

Cz3={ccFi|c-ev(l)=c-ev(X)=c-ev(Y) =0}

actually has minimum distance equaBto

Case lll

The assumptions are as follows. Assume that
Rj = Fy[ X1, X (7)1 + (x5 + G(x ), x57)),

j =1,...is atype-l curve withu; > ¢, j = 1,... (see example 1.10.15 for a
definition of a type-I curve).
Recall that in example 1.14.22 we showed that for such cuheset ofu-values
corresponding to elements ih(7}) is dominated by{1,...,n;}. Recall also
that

AT = {M My~ M; | My € A(I)), j =1,....i}.

Assume that a good sequence of codes of @pé) exists. As a best case we
may assume equality holds in (1.15.17). But now we can makéasi calcula-
tions as in case |, which we remember lead to a contradic8or(with respect to
the order bound) no good sequence’:dfl)-codes exists, and then does neither
any good sequence @f;-codes exist.

1.15.2 The tower of Garcia and Stichtenoth
In [10] Garcia and Stichtenoth gave a description of a tower
F1CFCFC -

of algebraic function fields ovef,. (for any prime powey) of one variable,
that has some very nice properties. Their tower is definagrsaely by

.7:1 = Fq2 (1‘1)
Fit1 = Fi(2i+1)

wherez;,; satisfies the equation

q+1

[

q _
Ziggtzip1 =17
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and where; for i > 1 is given by

2j
T 1= € Fi.
Ti-1

Denote byN; the number of rational places Rz, and byg; the genus ofF;,
The nice properties of the tower are

. N; — oo fori — oo
. lim inf; & =q—1.
9i
The second property is rather impressing as the Drinfeltivi bound states
thatq — 1 is the highest possible attainable value (see [38, Ch. V]).

Using theorem 1.12.6 one can conclude, that there to thertoaeesponds
good sequences of geometric Goppa codes. One way of cdirggracgood
sequence of codes

(Cc(D1,G1),Cr(Dg, Ga), . . .)

(whereCr(D;, G;) is a geometric Goppa code constructed from the function
field ;) is by for eachF; to choose one rational plade. Then defineD; to be

the sum of the remaining rational places @&\do beG; := m; P;, wherem; is a
natural number satisfying a certain criterion. Choosirgyih'’s in the right way,
one gets sequences of codes that attains the so-calledmesfagladut-Zink
bound. A rather impressing result as there §ér> 49 is a region where the
Tsfasman-Vladut-Zink bound is better than the import@ibert-Varshamov
bound.

Although this very nice tower is given, it is certainly noeal how one should
construct the corresponding good sequences of codes itiggradMany re-
searchers have tried (and still try) to find bases for fAgpaces involved in
the construction. However the problem is not at all solvetd Ybere are algo-
rithms for finding the bases for thegespaces (see [14] and [24]) but they are of
rather high complexity. Also in [44] Vo3 and Hgholdt succéediving general
descriptions of bases for many choicestgpaces for the first three function
fields in the tower.

As shown already in [10] the unique palg® of z; in F is totally ramified in
the extensionF; /F1, i > 1. Denote byP™ the unique place itP x, that lies
over P°, and note thaP’ is rational. Now an obvious choice of a sequence of
L-spaces corresponding to a good sequence of codes is thwifal

(L(m1Pr°), L(maoP3°), L(msP5°),...)
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wherem;, i > 1, is to be chosen properly s.t. the codes attains the Tsfasman
Vladut-Zink bound. In [35] Pellikaan, Stichtenoth andes takes the first step

to determine a basis for the vector sp@en,; P>°), i > 1, as they determine the
Weierstrass semigroup; for P>°. According to [35] the Weierstrass semigroup
A; can be found by the following recursive formula

o qm_qm/2 if m=0 mod?2
m g" —q™tD/2 if m=1 mod?2

A =Ny

Ai=qA; 1 U {a €Ny | a > Ci} fori > 1. (1.15.25)

As already noted in section 1.10.2, for any algebraic fuorcfield overk, and
for any rational placeP in P, there exists an index: and an ideall C
E[X1,..., X;] such that

F ~ Quot(k[X1,. .., Xml/I) (1.15.26)

and such that the place Quot(k[X1,..., X,]/I) isomorphic withP is the
only place at infinity. If a description similar to the rhs. @f15.26) could be
found for eachZ;, then we would more or less have solved our problem with
finding bases for certaif-spaces. This suggests the following strategy for find-
ing a sequence of well-described order domains to whicletb@mresponds good
sequences of codes attaining the Tsfasman-Viadut-Zinké. Fori = 1,...

do the following.

Step Extract the generators for the Weierstrass semigroup

Consider them as weights. Construct the toric ideal say
It(zl)Z"z'c = (G(12)’ RN Gg?) - FIIZ [Xla cee 7Xmi}

corresponding to these weights.

Step Add terms to the defining ponnomiaGSi), ce Ggi) to get
G\, G that satisfies tha#Vis , (G, GI))
is near the valuev; — 1.

Implementing the algorithm from theorem [.6.2 in a compptegram (MapleV),
the author calculated a reduced Grobner bAsi®r 19 = 1,...,5,inthe

toric’

case ofF . = F,. The following high values explain why the results are not
listed. We have# 81 = 0, #By = 1, #B3 = 11, #B4 = 57, and#B; = 238.
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The high value offB5 suggests that it might not be an easy task to describe
Ifélic in general. We propose the following research problem. Eimice de-
scription of the sequence
1 2
(It(ogic’ It(ogic’ e )

of toric ideals related to the semigroups in (1.15.25).



Appendix I.A
Grobner basis theory

This appendix contains a survey of the Grobner basis théwtyis needed in
the present thesis. All the results listed below can be fonpdl]. See also [19].

I.LA.1 Grobner bases

The definition of a Grobner basis for an iddaC k[ X1, ..., X,,] with respect
to a given monomial orderingt on M,,, uses the well-known concept of the
leading monomial of a polynomial.

Definition LA.1

LetI C k[Xy,...,X,,] be an ideal andk a monomial ordering on\,,.
Consider a nonzero polynomid(X) = Y.  ¢; X% wherec; # 0 for
i =1,...,n, anda; # a; fori # j,1 <i4,5 < n. The unique monomial
X% such thatX® -~ X% forall1 < i < n,i # k is called the lead-
ing monomial ofP(X) and is denotetin(P). The termc, X ®* is called the
leading term ofP(X') and is denotett(P).

Definition LA.2

LetI C k[Xy,...,X,] be a nonzero ideal and a monomial ordering on
M. Afinite subseg = {G1,....Gs} CI,G; #0fori =1,...,sis said

to be a Grobner basis fdrwrt. <, if there for anyP(X) € I exists an index
te{l,...,s}s.tim(Gy)Im(P).

Theorem I.LA.3
Let< be any monomial ordering oM ,,,. Every nonzero idedl C k[ X, ..., X,,]
possesses a Grbbner basis wit.

The following theorem justifies the name “Grobner basis”.

Theorem |.A.4
If G ={G,...,Gs} is a Grobner basis fdr wrt. <, theng is a basis (that is a
generating set) faF.
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It may very well happen that a given Grobner basis contaiogemolynomials
than necessary. Assunig, G; are two elements in a given Grobner bagitor
I wrt. <. From the very definition of a Grobner basis, we see, thah{f7;) |
Im(G;), then alsoG\{G,} is a Grobner basis fof wrt. <. The process of
removing superfluous elements from the Grobner basis lsccedduction.

Definition LA.5
LetG = {Gy,....Gs} be a Grobner basis wrk. We will say thatG is a
minimal Grébner basis wrk if the following two conditions are satisfied.

(1) I6(G;) =lm(Gi), i=1,...,s
(2) there does not exist indices

ij€{l,... shi]

Another interesting type of a Grobner basis is the follaydime.

Definition LA.6

LetI C k[X1,...,X,,] be a nonzero ideal. Assume tltat= {G1,...,Gs} is
a Grébner basis faf wrt. any possible monomial ordering on M,,,. ThenG
is said to be a universal Grébner basis.

We have the following surprisingly result.

Proposition I.LA.7
Any nonzero ideal C k[X1,...,X,,] possesses a universal Grébner basis.

I.LA.2 The division algorithm

In the following we describe the so-called division aldgamit that gives a par-
ticular informative result when a Grobner basis is usednsgiter a polynomial
P(X)=Y", X% € k[Xy,...,Xmn], wherec; # 0fori=1,...,n. And
consider a set of nonzero polynomidls; (X),...,Gs(X)} C k[X1,..., Xn].
Assume that there exist indices!) € {1,...,n} andv € {1,...,s} s.t.
Im(G 1)) | X %™, Consider the polynomial

Cu(l)Xau(l)

Pl(X) = P(X) — va(l)

(X).

We will say thatP is reduced modul& 1) to P;. Note thatlm(P;) < Im(P).
Continuing the proces®; possible may be reduced modulo S@y) to Ps.
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And P, possible may be reduced £ and so forth. Until finally & is attained
that can not be reduced modulo any of the polynomigls. . ., G5. Given any
polynomial P; in a sequencéP, ..., Ps) as above, then we will say tha#t
can be reduced moduld~,, ..., G} to P;. Note that in general the sequence
(P1, ..., P;) is not unique, but is dependent on the choice ofifi¢'s. The
procedure described above is known as the division algorithit gives us a
way to describe’(X) as a linear combinatiof?(X) = >~7 | a;(X)G;(X) +
Ps(X) wherelm(a;G;) < Im(P), and no of the monomials iR; are divisible
by any of the leading monomials 6fy, . .., G;.

Definition LA.8
The polynomialPs; from above is called a residue Bf modulo{G1,...,G,},
or a remainder oP after division with{G,...,Gs}.

Remark 1.A.9
In generalP may have many different residues modie, , . . . , G} according
to the choice of the!)s.

However if {G1,...,Gs} is a Grobner basis, then the situation is simplified
dramatically.

Theorem I.A.10

IfG ={G1,...,Gs} C k[X1,...,X,,] is a Grobner basis wrk, and if the
division algorithm is used o?(X) wrt. <. Then the remainder dP after
division withG is unique.

In particular we have the following theorem.

Theorem [.A.11

LetI C k[X;,..., X, be a nonzero ideal with Grébner basis

G ={G1(X),...,Gs(X)} wrt. <. The following two statements are equiva-
lent

(1) P(X)el
(2) the remainder oP after division withg is zero
I.LA.3 Abasis for k[X,..., X/

One of the most important reasons for using Grobner baswyhin this thesis,
is that it gives us an easy way to find a basis forithector spacé[ X1, ..., X,,]/1.
To explain how this works we will need the concept of a foatpri
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Definition .LA.12
LetI C k[X1,...,X,,] be any ideal, an&k a monomial ordering otM,,.
Consider the set

As(I) = {M(X)e M, | M(X)isnot
a leading monomial of any polynomial ir}.

We call AL (I) the footprint ofl wrt. <, and use the abbreviated notitI),
when< is clear from the context.

Remark .A.13
Note thatA . (1) is easily read from any Grébner ba§idor I wrt. <.

We have the following important result.

Theorem .A.14
LetI C k[Xy,...,X,,] be an ideal, and\,(I) the footprint ofI wrt. some
monomial ordering< on M. Then

B:={M(X)+1|M(X)eA()}
is a basis for thé-vector spacé|[X1, ..., X]/I.

We conclude the following. If we can develop a Grobner bésisa given
ideal I, then we will have a method to find a basis for thevector space
k[X1,...,Xm]/I. As we will see in the following, the so-called Buchberger's
algorithm is the right tool to develop a Grobner basisKavrt. any given<.

I.LA.4 Buchberger’s algorithm

To describe Buchberger’s algorithm we will need the conoéph S-polynomial.

Definition 1.A.15
Consider polynomial$i, (X)), G2(X) € k[Xq1,...,X,,] and a monomial or-
dering< on M,,. Denote byX"7 the smallest monomial (wrt:) that is di-
visible both byim(G1) and bylm(Gs). TheS-polynomial ofG, andGs is the
polynomial

X7 X7

S(G1,Gq) := —lt(Gl)Gl - —lt(Gg)GQ'

A particular nice thing happenslifa(G;) andlm(G,) are relatively prime.
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Lemmal.A.16
If Im(G4) andlm(G>) are relatively prime, then th&-polynomial S(G1, G2)
reduces to zero modukdz, G2} .

We have the following important theorem.

Theorem I.A.17

LetlI C k[X4,...,X] be a nonzero ideal ane a monomial ordering om,,,.
Then a basi§ = {G1,...,G} for I is a Grobner basis fdr if and only if for
all pairsi # j, S(G;, G;) reduces modul§G, . ..,G,} to zero.

Now assume that a badi&, ..., G} for I is given that is not a Grobner basis
wrt. <. One easily verifies that a residue$(G;, G;) modulo{G4,...,G,} is
contained again i. By assumption (at least) one of these residues is nonzero.
Denote it byG, ;. If all the S-polynomialsS(G;, G;), 1 <i,j < s+1 reduces
modulo{G1,...,Gs, G411} to zero, then of cours€Gy,...,Gs,Gs1} IS @
Grobner basis. If this is not the case we continue the psdegadding a nonzero
residue to the Grobner basis to §ét,, ..., G412 }. We continue this way. The
very nice thing now is, that after finitely many steps, sagteps, we will end
up with a se{ Gy, ..., G4, } that is a Grobner basis. That is we have a simple
method to extend a basis to a Grobner basis. The above precscknown as
Buchberger’s algorithm.

Theorem |.A.18
With a basis forl as the input Buchberger’s algorithm returns a Grébnersbasi
for I wrt. <.

I.LA.5 The footprint bound

Another result frequently used in the present material ésstbrcalled footprint
bound. As discussed in [12] it represents an alternativbd@agyeneralized Be-
zout's theorem.

Theorem I.A.19
LetI C k[X1,...,X,,] be anideal. I\(I) is finite then

#Vip(I) < #A(T).
And equality holds ifl is a radical ideal.

Remark 1.A.20
In particular of course

#Vi(I) < #A(I). (LA.1)
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holds. And one can verify, that equality holds in (I.A.1) gisely whenl =
T (Vi (I)). Note that according to theorem 1.A.14, the numpex - (I) is inde-
pendent of the choice of monomial orderiag



Bibliography of part |

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

[11]

A.l. Barbero, C. MunueraThe weight hierarchy of Hermitian codes.
Preprint University of Valladolid , june 1998.

Peter BeelenError-correcting codes and algebraic geometiaster
thesis, The University of Utrecht, 1997.

Winfried Bruns, Udo VetterDeterminantal rings Lecture Notes in
Mathematics 1327 (A. Dold, B. Eckmann eds.), Springer \¢er#88.

David Cox, John Little and Donal O’Shelaleals, Varieties, and Algo-
rithms, Second EditiorSpringer, 1997.

David Cox, John Little and Donal O’Shedsing Algebraic Geometry.
Springer, 1998.

G.-L. Feng and T.R.N. RadA Simple Approach for Construction of
Algebraic-Geometric Codes from Affine Plane Curv&EE Trans.
Inf. Theory, vol. 40, pp. 1003-1012, july 1994.

G.-L. Feng and T.R.N. Radmproved Geometric Goppa Codes, Part
I:Basic theory.lEEE Trans. Inf. Theory, vol. 41, pp. 1678-1693, nov.
1995.

G.-L. Feng, V. Wei, T.R.N. Rao and K.K. Tzen&implified Under-
standing and Efficient Decoding of a Class of Algebraic-Genim
CodeslEEE Trans. Inf. Theory, vol. 40, pp. 981-1002, july 1994.

John B. FraleighA First Course of Abstract Algebra, Fourth Edition.
Addison-Wesley Publishing Company, 1989.

Arnaldo Garcia and Henning Stichtenoth.Tower of Artin-Schreier
Extensions of Function Fields Attaining the Drinfeld-Ml&adBound.
Invent. Math121, pp. 211-222, 1995.

Arnaldo Garcia and Henning Stichteno®n the asymptotic behaviour
of some towers of function fields over finite fieldisurnal of Number
Theory.61(2), pp. 248-273, 1996.



Bibliography of part | 153

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

Olav Geil and Tom Hgholdfootprints or Generalized Bezout's The-
orem Submitted to IEEE Trans. Inf. Theory, 1999.

Olav Geil and Ruud Pellikaai©n the structure of order domainen-
der construction. Preleminary version 1999.

Gaétan Hach&onstruction Effective des Codeg&@retriques PhD-
thesis, Univesité Paris 6, 1996.

Johan P. Hanseiforic Surfaces and Error-correcting CodeRreprint
Series No. 9, Department of Mathematics, University of AarhAu-
gust 1998.

Sgren Have HansenThe geometry of Deligne-Lusztig varieties;
Higher-Dimensional AG codesPhD-thesis, University of Aarhus,
1999.

Petra Heijnen and Ruud Pellikagbeneralized Hamming weights gf
ary Reed-Muller codesEEE Trans. Inf. Theory, vol. 44, pp. 181-196,
jan. 1998.

T. Helleseth, T. Klgve, and J. MykkeltveiThe weight distribution
of irreducible cyclic codes with block lengths ((¢' — 1)/N). Discr.
Math. vol. 18, pp. 179-211, 1977.

Tom Hgholdt.On (or in) Dick Blahut's “footprint”. In Codes, Curves
and SignalqA. Vardy ed.), pp. 3-9, Kluwer 1998.

Tom Hgholdt, Jacobus H. van Lint and Ruud Pellika@rder Func-
tions and Evaluation Code®roc AAECC-12, Toulouse 23-27 June,
1997, (T. Mora and H. Mattson eds.), Lect. Notes Comp. St. 1255,
pp. 138-150, Springer, Berlin 1997.

Tom Hgholdt, Jacobus H. van Lint and Ruud Pellik#dgebraic Ge-
ometry CodesChapter 10 irHandbook of Coding TheorfV.S. Pless,
and W.C. Huffman, eds.), vol. 1, pp. 871-961, Elsevier, Aerddam
1998.

Nathan Jacobseimheory of Fields and Galois Thearyol. Il in Lec-
tures in Abstract AlgebreD. Van Nostrand Company, USA 1953.

C. Kirfel and R. PellikaanThe minimum distance of codes in an array
coming from telescopic semigroupEEE Trans. Inf. Theory, vol. 41,
pp. 1720-1731, nov. 1995.



154 Bibliography of part |

[24] Kaj Sgndergaard LaurserConstructing Geometric Goppa Codes
PhD-thesis, Aalborg University, 1998.

[25] Florence Jessie MacWilliams and Neil James Alexandearg.The
Theory of Error-Correcting Codedorth-Holland, 1993.

[26] Ryutaroh MatsumotoHgholdt, van Lint and Pellikaan’s Generaliza-
tion of One-Point AG Codes is Equivalent to Miura’'s Generali
tion. IEICE Trans. Fundamentals of Electronics, Communicatimd
Computer Sciences, vol. E82-A, no.10, pp. 2007-2010, @91

[27] Shinji Miura. PhD-thesis University of Tokyo, 1997 (japanese).

[28] Shinji Miura. Linear codes on affine algebraic curvégans. IEICE
j81-A, no. 10, pp. 1398-1421, 1998 (japanese).

[29] Michael E. O’SullivanDecoding of codes defined by a single point on
a curve IEEE Trans. Inf. Theory, vol. 41, pp. 1709-1719, nov. 1995.

[30] Michael E. O’Sullivan.Grobner Basis and Decoding of Algebraic Ge-
ometry CodesPreleminary version of [31], oct. 24, 1997.

[31] Michael E. O'Sullivan.New Codes for the Berlekamp-Massey-Sakata
Algorithm, to appear in Finite Fields and their Applications.

[32] Ruud Pellikaan.On the efficient decoding of algebraic-geometric
codes Eurocode 92, CISM Courses and Lectures, vol. 339, pp. 231-
253, Springer, New York 1993.

[33] Ruud PellikaanOn the existense of order functiof® appear in Jour-
nal of Statistical Planning and Inference.

[34] Ruud Pellikaan, B.-Z. Shen and G.J.M. van Wééhich linear codes
are algebraic-geometric?lEEE Trans. Inf. Theory, vol. 37, pp. 583-
602, march 1991.

[35] Ruud Pellikaan, Henning Stichtenoth and FernandoeEdWeierstrass
semigroups in an asymptotically good tower of function $igkinite
Fields Appl., vol. 4, pp. 381-392, 1998.

[36] L. Robbiano.On the theory of graded structure3. Symb. Comp2,
pp. 139-170, 1986.

[37] G. Schiffels.Orderings and algorithms in commutative algebfdrika

Mathematika, Series 3, vol. 2, pp. 79-101, 1993.



Bibliography of part | 155

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

Henning StichtenothAlgebraic Function Fields and Codesniversi-
text, Springer-Verlag, 1993.

B.-Z. Shen and K.K. Tzengseneration of matrices for determining
minimum distance and decoding of algebraic-geometric sodeEE
Trans. Inf. Theory, vol. 41, pp. 1703-1708, nov. 1995.

Bernd SturmfelsGrobner Bases and Convex Polutop&s/S, Provi-
dence RI, 1996.

Anders Bjeert SgrensekiVeighted Reed-Muller Codes and Algebraic-
Geometric CodeslEEE Trans. Inf. Theory, vol. 38, pp. 1821-1827,
nov. 1992.

Michael A. Tsfasman and Serge G. Vlad@eometric Approach to
Higher WeightsIEEE Trans. Inf. Theory, vol. 41, pp. 1564-1588, nov.
1995.

Jacobus Hendricus van Lidhtroduction to Coding Theonspringer-
Verlag, 1981.

Conny Vol3 and Tom Hghold&n explicit construction of a sequence of
codes attaining the Tsfasman-Vladut-Zink bound. The tegisSEEE
Trans. Inf. Theory, vol. 43, pp. 128-135, jan. 1997.

V. K. Wei. Generalized Hamming weights for linear codéEEE
Trans. Inf. Theory, vol. 37, pp. 1412-1418, sept. 1991.

O. Zariski and P. SamuelCommutative Algebra, Vol.ISpringer-
Verlag, 1975.



List of symbols in part |

%, 91

H, 21
B,, 17
BP;'<A’ 17

C(d), 104
C,(d), 104
C, 91

Ch, 99
Cc(D,G), 113
deg(P), 83
dim(A), 84
d(l), 97
d()), 103
d,(1), 97
d,()), 103

I",120
1,52
1,51
k, 52
k, 51

o

l,18

In, 17
lm(P), 146
1t(P), 146
L;, 18
£(A), 84
A )9
M, 101
M, 9
M(X,Y), 9
1, 96

i, 95

125% 101
-0, 9
Np,123
Ny, 95

Ny, 101
Nnons, 123
vy, 95

Op, 83
0,, 81

P, 83

P, 81
Pr, 83

p, 13

Pa,ir 26
p:z,i’ 26
Pocr 27

po: 27
RM,(r,m), 110
Ry, 17
S(G1,Gs), 149
<A, 10
<lexs 10
<N6, 10
<st, 11
<w, 11



List of symbols in part |

157

trdg(R), 15
trdg(Quot(R)), 15

v, 80

vp, 83

Vi(I), 43
WRM,(r,m,W), 111



Index of part |

absolutely irreducible ideal, 52 dual of, 6, 90-104
adding terms to defining polynomials, 62 evaluation map, 17, 92
algebraic function field, 5, 82 extension theorem, 43

of one variable, 82

tower of, 142 Feng, 5, 17, 90, 97, 104
algebraic geometry, 5, 86 Feng-Rao distance, 6, 97, 103

asymptotic behaviour of codes, 137-145 footprint, 50, 149
footprint bound, 120, 150

basis function field, 83
for k[ X]/I, 148 of one variable, 82
indexed, 17
well-ordered indexed, 17 gap, 84
Beelen, 88 Garcia, 142
bound onu(f;), 134 generalized Hamming weight, 106
bound onn, 120 genus, 84
Buchberger's algorithm, 149, 150 geometric Goppa code, 90, 112-114, 143

1-point, 90, 109, 112, 114
changing the parameters of the codes, 11gbod sequence of codes, 137, 143

commutative monoid, 7 Grobner basis, 146-151
coordinate wise multiplication, 91 minimal, 147
curve, 5, 86 universal, 147

nonsingular, 86

singular, 86 Hasse-Weil bound, 123

type-l, 88, 121, 123, 134, 142 Heijnen, 107

Hermitian code, 108

decoding algorithm, 6, 98 Hermitian curve, 89, 122
determinantal ring, 54 Hermitian order domain, 71, 131, 137
different choices of lex-part o%,,, 58 Hermitian polynomial, 71, 128
division algorithm, 147 Hgholdt, 5, 14, 16, 90, 104, 143
divisor, 83

canonical, 84 improved dual code, 95, 104-106

degree of, 83 integral domain, 14

Drinfeld-VIadut bound, 143

k-algebra, 13
elimination ideal, 40
elimination theory, 40 leading monomial, 146
evaluation code, 6, 90-104 leading term, 146



Index of part | 159

[-function 17 place, 83
L-space, 82, 84 at infinity, 85
degree of, 83
matrix of syndromes, 94 rational, 83, 123
Matsumoto, 85, 87, 114 point
minimum distance, 5, 90, 98, 105, 114 nonsingular, 86, 114
Miura, 114 singular, 86, 114
morphism, 91 pole number, 84
polynomial ring

O’Sullivan, 5, 6, 14, 20, 29, 79, 82 subalgbra of, 31
order basis, 19, 92

indexed, 19 quotientring, 34

non closed under multiplication, 78
order bound, 5, 6, 90, 103, 105, 138 ramification theory, 88
for generalized Hamming weights, 10Rao, 5, 90, 97, 104

order domain, 5, 13 Reed-Muller code, 5, 90, 108-112, 133
constructing new by substitution, 70 weighted, 111, 114
infinitely generated, 32 remainder, 148
new from old ones, 61-73 residue ofP modulog, 148
sub, 16 restricted footprint, 123
toric, 37-48, 61 restricted footprint bound, 120, 122, 124
trivial, 15 restriction of<ny to A, 10
order function, 5, 13 Riemann-Roch theorem, 5, 84, 113
equivalence, 23, 25 Robbiano, 29
family of, 52
monomial, 78 S-polynomial, 149
non monomial, 79 semigroup, 7
ordering, 8 group of differences of, 8
admissible, 8 inverse free, 7,9
approximation of, 100 torsion free, 7, 9
graded lexicographic, 11 well-ordered, 9
isomorphic withN, 8, 90, 99 slope
legal wrt.3,, 28 legal, 28
lexicographic, 10 Stichtenoth, 83, 142
monomial, 9-10 superfluosfy’s, 124
one dimensional weighted degree lexsyndrome, 94
icographic, 11 Sgrensen, 111

standard, 11
standard weighted degree lexicograpteicsor product, 65
11 tensor product construction, 64—70, 137
weighted degree lexicographic, 11 toric ideal, 37, 51
the variety of, 43-48
Pellikaan, 5, 6, 14, 16, 49, 90, 104, 107toric order domain, 37
144 toric ring, 37-48
Pellikaan’s factor ring theorem, 50-60  Torres, 144



160 Index of part |

transcendence degree, 5, 6, 14, 74, 114
Tzeng, 5, 90

valuation, 80—89

discrete, 5, 77, 83
valuation ring, 80
valuation theory, 80
value semigroup of, 22
van Lint, 5, 14, 16, 90, 104
variety, 43

the size of a, 62
\VoR3, 143

Wei, 5, 90
Weierstrass Gap theorem, 84
Weierstrass semigroup, 84, 144
weight, 10
weight function, 21, 80
trivial, 22
well-behaving basis, 16-29, 99
equivalence, 24
permutation equivalence, 23
well-behaving sequence, 5, 16, 18, 91
well-order, 8



