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The Feng-Rao bound for the minimum distance and generalized
Hamming weights of dual codes:

I Linear code level.
I Level with supporting algebra:

I Affine variety.
I Order domain.
I Algebraic function field (arbitrary transcendence degree).

For one-point AG codes an improvement to the Goppa bound.

This talk:

I Illustrative examples at affine variety code level.

I Enhancements and improvements at linear code level.

Olav Geil, Stefano Martin Further improvements on the Feng-Rao bound for dual codes



The Feng-Rao bound for the minimum distance and generalized
Hamming weights of dual codes:

I Linear code level.
I Level with supporting algebra:

I Affine variety.
I Order domain.
I Algebraic function field (arbitrary transcendence degree).

For one-point AG codes an improvement to the Goppa bound.

This talk:

I Illustrative examples at affine variety code level.

I Enhancements and improvements at linear code level.

Olav Geil, Stefano Martin Further improvements on the Feng-Rao bound for dual codes



Order of improvements

I The Feng-Rao bound with WB.

I The Feng-Rao bound with WWB.

I The Feng-Rao bound with OWB.

I The advisory bound (Salazar, Dunn, Graham, 2006).

I New improvement.

We also lift the advisory bound as well as our bound to deal with
generalized Hamming weights.
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Generalized Hamming weights

Definition: Let D ⊆ Fn
q. The support-size of D is the number of

entries for which some word in D is non-zero.

Example: D = {(01001), (00011)}. The support-size is 3.

Definition: Let C be a linear code. The minimum distance is the
minimum of the support-size of D, when D ⊆ C runs through all
possible subspaces of dimension 1.

Definition: The tth generalized Hamming weight is the minimum
of the support-size of D, when D ⊆ C runs through all possible
subspaces of dimension t.

Applications: Wiretap channel of type II (Wei), and secret sharing
schemes (Kurihara, Uyematsu, Matsumoto).
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Example 1

I8 = 〈X 4 +X 2 +X −Y 6−Y 5−Y 3,X 8−X ,Y 8−Y 〉 ⊆ F8[X ,Y ].

VF8(I8) = {P1, . . . ,P32}.

ev : F8[X ,Y ]/I8 → F32
8

ev(F + I8) = (F (P1), . . . ,F (P32)).

From a monomial basis {M1 + I8, . . . ,M32 + I8} for F8[X ,Y ]/I8
we produce a basis {~b1, . . . ,~b32} for F32

8 .
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Example 1 - cont.

Weighted degree lexicographic ordering with w(X ) = 3 and
w(Y ) = 2.

Y 7 XY 7 X 2Y 7 X 3Y 7

Y 6 XY 6 X 2Y 6 X 3Y 6

Y 5 XY 5 X 2Y 5 X 3Y 5

Y 4 XY 4 X 2Y 4 X 3Y 4

Y 3 XY 3 X 2Y 3 X 3Y 3

Y 2 XY 2 X 2Y 2 X 3Y 2

Y XY X 2Y X 3Y
1 X X 2 X 3

Monomials {M1, . . . ,M32} from which

we produce {~b1, . . . ,~b32}.

1421 1726 2030 2332

1217 1523 1828 2131

1013 1319 1625 1929

89 1115 1422 1727

66 911 1218 1524

44 78 1014 1320

22 55 810 1116

01 33 67 912

za means: weight is z
and index is a

C (s) = {~c ∈ F32
8 | ~c · ~b1 = · · · = ~c · ~bs = 0}.
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Example 1 - cont.

Feng-Rao Feng-Rao Feng-Rao Advisory New
WB WWB OWB bound bound

d1 7 7 8 9 10
d2 8 8 10 12 13

Tabel: Estimates on first and second generalized Hamming weight of the
code C (16). Dimension is 32− 16 = 16.
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Comparison with a class of AG codes

Important observation: For one-point AG codes the same weight
does not appear more than once among the basis vectors.

This gives better results when the Feng-Rao bound is used.

Fair to compare our codes with norm-trace codes. We consider
improved code construction.

NT 32 28 24 22 21 20 18 18 16 15 14
Ex. 1 32 28 26 24 22 20 18 16 16 15 14

NT 12 12 12 11 10 9 8 8 7 6 6
Ex. 1 13 12 12 12 10 10 9 8 8 6 6

NT 6 5 4 4 4 3 3 2 2 1
Ex. 1 6 5 4 4 4 3 3 2 2 1
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Example 2

Similar example, but now over F27. Codes are of length n = 243.

Feng-Rao Feng-Rao Feng-Rao Advisory New
WB WWB OWB bound bound

d1(C (75)) 15 15 21 29 33
d2(C (75)) 16 16 24 34 38

d1(C (76)) 15 15 21 33 36
d2(C (76)) 16 16 24 38 39

d1(C (83)) 16 16 24 34 38
d2(C (83)) 17 17 27 39 41

Tabel: Estimates of minimum distance and second generalized Hamming
weight. Codes are of dimension 168, 167, and 160, respectively.
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Example 2 - cont.

Figur: Dimension and minimum distance of the codes C (s) over F27.
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Example 2 - cont.

Figur: Second generalized Hamming weight of the codes C (s) over F27.

Olav Geil, Stefano Martin Further improvements on the Feng-Rao bound for dual codes



Notation by example

Fq = {P1, . . . ,Pn=q}.

~c = ev(F ) = (F (P1), . . . ,F (Pn)).

~b1 = ev(1),~b2 = ev(X ), . . . ,~bn = ev(X n−1).

ρ(~c) = i if ~c ∈ span{~b1, . . . ,~bi}\span{~b1, . . . ,~bi−1}. That is, if
deg(F mod X n − X ) = i − 1.

Component wise product: ~u ∗ ~v = (u1v1, . . . , unvn).

(i , j) is OWB if ρ(~bi ′ ∗ ~bj < ρ(~bi ∗ ~bj for all i ′ < i .

Example: Assume (i − 1) + (j − 1) < n. Then ~bi ∗ ~bj = ~bi+j−1 and
~bi ′ ∗ ~bj = ~bi ′+j−1 for all i ′ < i . Hence, (i , j) is OWB.
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The theory

{~b1, . . . ,~bn} a basis for Fn
q.

I ρ(~c) = i if i is the smallest index such that
~c ∈ SpanFq

{~b1, . . .~bi}.
I m(~c) = l if l is the smallest index such that

~c /∈
(

SpanFq
{~b1, . . .~bl}

)⊥
.

(i , j) ∈ {1, . . . , n} × {1, . . . , n} is OWB if for all i ′ < i it holds that
ρ(~bi ′ ∗ ~bj) < ρ(~bi ∗ ~bj) (here, ∗ is the component-wise product).

µ(l) = #{i | for some j , (i , j) is OWB and ρ(~bi ∗ ~bj) = l}.

The Feng-Rao bound: wH(~c) ≥ µ(m(~c)).
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The advisory bound

Uses the following relaxation:

Let I ′ ⊆ {1, . . . , n}.

(i , j) ∈ I ′ × {1, . . . , n} is OWB with respect to I ′ if for all
i ′ < i , i ′ ∈ I ′ it holds that ρ(~bi ′ ∗ ~bj) < ρ(~bi ∗ ~bj)
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Our method

I Relax OWB further. Technical definition – but manageable.
I Take into account not only m(~c) = l , but also l + 1, . . . , l + v .

I Consider v + 1 different cases corresponding to if the numbers
~c · ~bl+1, · · · ,~c · ~bl+v are zero or non-zero.

I Bound comes from worst-case consideration.
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The definition that should NOT go into the presentation

Definition:
Consider the numbers 1 ≤ l , l + 1, . . . , l + g ≤ n. A set I ′ ⊆ I is
said to have the µ-property with respect to l with exception
{l + 1, . . . , l + g} if for all i ∈ I ′ a j ∈ I exists such that

(1a) ρ̄W(~ui ∗ ~vj) = l , and

(1b) for all i ′ ∈ I ′ with i ′ < i either ρ̄W(~ui ′ ∗ ~vj) < l or
ρ̄W(~ui ′ ∗ ~vj) ∈ {l + 1, . . . , l + g} holds.

Assume next that l + g + 1 ≤ n. The set I ′ is said to have the
relaxed µ-property with respect to (l , l + g + 1) with exception
{l + 1, . . . , l + g} if for all i ∈ I ′ a j ∈ I exists such that either
conditions (1a) and (1b) above hold or

(2a) ρ̄W(~ui ∗ ~vj) = l + g + 1, and

(2b) (i , j) is OWB with respect to I ′, and

(2c) no i ′ ∈ I ′ with i ′ < i satisfies ρ̄W(~ui ′ ∗ ~vj) = l .
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The theorem that should NEITHER find its way to the talk

Theorem:
Consider a non-zero codeword ~c and let l = m(~c). Choose a non-negative
integer v such that l + v ≤ n. Assume that for some indexes
x ∈ {l + 1, . . . , l + v} we know a priori that ~c · ~wx = 0. Let l ′1 < · · · l ′s be
the remaining indexes from {l + 1, . . . , l + v}. Consider the sets
I ′0, I ′1, . . . , I ′s such that:

I I ′0 has the µ-property with respect to l with exception
{l + 1, . . . , l + v}.

I For i = 1, . . . , s, I ′i has the relaxed µ-property with respect to (l , l ′i )
with exception {l + 1, . . . , l ′i − 1}.

We have
wH(~c) ≥ min{#I ′0,#I ′1, . . . ,#I ′s}. (1)

To establish a lower bound on the minimum distance of a code C we

repeat the above process for each l ∈ m(C ). For each such l we choose a

corresponding v , we determine sets I ′i as above and we calculate the

right side of (1). The smallest value found constitutes a lower bound on

the minimum distance.
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The proposition that should in NO WAY being displayed

Proposition:
Let the notation be as above. Consider a subspace D ⊆ C of dimension 2, say m(D) = {a, b}. Let va be the v
corresponding to l = a. Let a′1 < · · · < a′sa be the numbers l′1 < · · · < l′s corresponding to l = a. Analogously

for the case b. Referring to the definition above, for α = 1, . . . , sa and β = 1, . . . , sb we define subsets of I as
follows:

I I′′0,0 is a set such that for all i ∈ I′′0,0 for an l ∈ {a, b} a j exists such that (1a) and (1b) hold with

g = va if l = a, and g = vb if l = b.

I I′′α,0 is a set such that for all i ∈ I′′α,0 a j exists such that one of the following two conditions holds:

I Either (1a), (1b) or (2a), (2b), (2c) hold with l = a and
g + 1 = a′α.

I (1a) and (1b) hold with l = b and g = vb.
I I′′0,β is defined similarly to I′′α,0.

I I′′α,β is a set such that for all i ∈ I′′α,β an l ∈ {a, b} and a j ∈ I exist such that either (1a), (1b) or

(2a), (2b), (2c) hold. Here, g + 1 = a′α if l = a, and g + 1 = b′β if l = b.

The support of D is of size at least equal to the smallest cardinality of the above sets. To establish a lower bound on

the second generalized Hamming weight of a code C we repeat the above process for each (a, b) ∈ m(C)× m(C)

with a < b. The smallest value found constitutes a lower bound on the second generalized Hamming weight.
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Concluding remarks

I The advisory bound and our new bound are tailored for affine
variety codes. Do the bounds have implications for algebraic
geometric codes? If they do, it might be via the equations
X q
i − Xi .

I The usual Feng-Rao bound suggests that affine variety codes
do not have very good parameters. Is it the Feng-Rao bound
or the affine variety code construction that is the problem?
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