n applications of the footprint bound $(n \geq 3)$

Olav Geil
Aalborg University Denmark

Universität Basel, 2012

PART 1: THE TOOLS

ILLUSTRATED WITH EXAMPLES OF POLYNOMIAL CODES

The tool

$\vec{X}=\left(X_{1}, \ldots, X_{m}\right)$
$F_{1}(\vec{X}), \ldots, F_{s}(\vec{X}) \in \mathbb{F}[\vec{X}]$

- Question: How many zeros do F_{1}, \ldots, F_{s} have in common?
- Question: $I=\left\langle F_{1}(\vec{X}), \ldots, F_{s}(\vec{X})\right\rangle$. How large is $\mathbb{V}_{\mathbb{F}}(I)$?

Tools:

- Footprint bound.
- Schwartz-Zippel bound (Ore-bound)

The tool

$\vec{X}=\left(X_{1}, \ldots, X_{m}\right)$
$F_{1}(\vec{X}), \ldots, F_{s}(\vec{X}) \in \mathbb{F}[\vec{X}]$

- Question: How many zeros do F_{1}, \ldots, F_{s} have in common?
- Question: $I=\left\langle F_{1}(\vec{X}), \ldots, F_{s}(\vec{X})\right\rangle$. How large is $\mathbb{V}_{\mathbb{F}}(I)$?

Tools:

- Footprint bound.
- Schwartz-Zippel bound (Ore-bound).

Monomial orderings

A monomial ordering \prec is a total ordering on $\left\{\vec{X} \vec{\alpha} \mid \vec{\alpha} \in \mathbb{N}_{0}^{m}\right\}$ such that

- $\vec{X}^{\vec{\alpha}} \prec \vec{X}^{\vec{\beta}} \Rightarrow \vec{X}^{\vec{\alpha}+\vec{\gamma}} \prec \vec{X} \vec{\beta}+\vec{\gamma}$.
- Every subset has a unique smallest element.

Monomial orderings

A monomial ordering \prec is a total ordering on $\left\{\vec{X} \vec{\alpha} \mid \vec{\alpha} \in \mathbb{N}_{0}^{m}\right\}$ such that

- $\vec{X}^{\vec{\alpha}} \prec \vec{X}^{\vec{\beta}} \Rightarrow \vec{X}^{\vec{\alpha}+\vec{\gamma}} \prec \vec{X} \vec{\beta}+\vec{\gamma}$.
- Every subset has a unique smallest element.

Examples: $\prec_{\text {lex }}, \prec_{\text {glex }}, \prec_{\text {grlex }}, \prec_{\text {wdeglex }}$.
$X^{2} Y^{3} \prec$ glex $X Y^{5}$ because $5<6$.
$X^{2} Y^{3} \prec$ glex $X^{3} Y^{2}$ because $5=5$ and $2<3$.

Footprint

$$
I \subseteq \mathbb{F}[\vec{X}] .
$$

$$
\begin{array}{r}
\Delta_{\prec}(I)=\left\{\vec{X}^{\vec{\alpha}} \mid \vec{X}^{\vec{\alpha}}\right. \text { is not leading monomial } \\
\text { of any polynomial in } I\}
\end{array}
$$

If $I=\langle F(\vec{X})\rangle$ then
 $\Delta_{\prec}(I)=\left\{\vec{X}^{\vec{\alpha}} \mid \vec{X}^{\vec{\alpha}}\right.$ does not divide $\left.\operatorname{Im}(F)\right\}$

More polynomials $=$ analyzis more involved.

Footprint

$I \subseteq \mathbb{F}[\vec{X}]$.

$$
\begin{array}{r}
\Delta_{\prec}(I)=\left\{\vec{X}^{\vec{\alpha}} \mid \vec{X}^{\vec{\alpha}}\right. \text { is not leading monomial } \\
\text { of any polynomial in } I\}
\end{array}
$$

If $I=\langle F(\vec{X})\rangle$ then
$\Delta_{\prec}(I)=\left\{\vec{X}^{\vec{\alpha}} \mid \vec{X}^{\vec{\alpha}}\right.$ does not divide $\left.\operatorname{Im}(F)\right\}$.

More polynomials $=$ analyzis more involved.

Footprint

$I \subseteq \mathbb{F}[\vec{X}]$.

$$
\begin{array}{r}
\Delta_{\prec}(I)=\left\{\vec{X}^{\vec{\alpha}} \mid \vec{X}^{\vec{\alpha}}\right. \text { is not leading monomial } \\
\text { of any polynomial in } I\}
\end{array}
$$

If $I=\langle F(\vec{X})\rangle$ then
$\Delta_{\prec}(I)=\left\{\vec{X}^{\vec{\alpha}} \mid \vec{X}^{\vec{\alpha}}\right.$ does not divide $\left.\operatorname{Im}(F)\right\}$.
More polynomials $=$ analyzis more involved.

The main tools

Theorem:
$\left\{M+I \mid M \in \Delta_{\prec}(I)\right\}$ constitutes a basis for $\mathbb{F}[\vec{X}] / I$ as a vectorspace.

Corollary:
$\left|\mathbb{V}_{\mathbb{F}}(I)\right| \leq|\Delta \quad(I)|$ (whenever latter is finite).

Lagrange-polynomial type of argument proves that surjective.

The main tools

Theorem:
$\left\{M+I \mid M \in \Delta_{\prec}(I)\right\}$ constitutes a basis for $\mathbb{F}[\vec{X}] / I$ as a vectorspace.

Corollary:
$\left|\mathbb{V}_{\mathbb{F}}(I)\right| \leq\left|\Delta_{\prec}(I)\right|$ (whenever latter is finite).
Proof: Consider $\left\{P_{1}, \ldots, P_{n}\right\} \subseteq \mathbb{V}_{\mathbb{F}}(I)$ and define ev : $\mathbb{F}[\vec{X}] / I \rightarrow \mathbb{F}^{n}$ by ev $(F+I)=\left(F\left(P_{1}\right), \ldots, F\left(P_{n}\right)\right)$.
Lagrange-polynomial type of argument proves that surjective.

An importan special case

Corollary: Let $F(\vec{X}) \in \mathbb{F}_{q}[\vec{X}], \operatorname{Im}(F)=X_{1}^{i_{1}} \ldots X_{m}^{i_{m}}$. Then F has at most $q^{m}-\prod_{s=1}^{m}\left(q-i_{s}\right)$ zeros.

Proof:
number of zeros $\leq\left|\Delta_{\prec}\left(\langle F(\vec{X})\rangle+\left\langle X_{1}^{q}-X_{1}, \ldots, X_{m}^{q}-X_{m}\right\rangle\right)\right|$

$$
\leq\left|\left\{\vec{X}^{\vec{\alpha}} \mid 0 \leq \alpha_{1}<q, \ldots, 0 \leq \alpha_{m}<q, \vec{X}^{\vec{i}} \nmid \vec{X}^{\vec{\alpha}}\right\}\right| .
$$

Generalizes in a straightforward manner to any finite point ensemble $S_{1} \times \cdots \times S_{m}$.

RM codes and Massey-Costello-Justesen codes

RM codes and Massey-Costello-Justesen codes

8	7	6	5	4	3	2	1
16	14	12	10	8	6	4	2
24	21	18	15	12	9	6	3
32	28	24	20	16	12	8	4
40	35	30	25	20	15	10	5
48	42	36	30	24	18	12	6
56	49	42	35	28	21	14	7
64	56	48	40	32	24	16	8

$\mathrm{RM}_{8}(5,2)=\{\operatorname{ev}(F) \mid \operatorname{deg} F \leq 5\}$ is [64, 21, 24]
$\operatorname{Span}_{\mathbb{F}_{8}}\left(\left\{\operatorname{ev}\left(\vec{X}^{\vec{\alpha}}\right) \mid \operatorname{deg} \vec{X}^{\vec{\alpha}} \leq 5\right\} \cup\left\{X^{4} Y^{2}, X^{2} Y^{4}\right\}\right)$ is $[64,23,24]$
$\operatorname{RM}_{8}(9,2)=\{\operatorname{ev}(F) \mid \operatorname{deg} F \leq 9\}$ is $[64,49,6]$
$\operatorname{Span}_{\mathbb{F}_{8}}\left(\left\{\operatorname{ev}\left(\vec{X}^{\vec{\alpha}}\right) \mid \operatorname{deg} \vec{X}^{\vec{\alpha}} \leq 9\right\}\right.$

RM codes and Massey-Costello-Justesen codes

8	7	6	5	4	3	2	1
16	14	12	10	8	6	4	2
24	21	18	15	12	9	6	3
32	28	24	20	16	12	8	4
40	35	30	25	20	15	10	5
48	42	36	30	24	18	12	6
56	49	42	35	28	21	14	7
64	56	48	40	32	24	16	8

$\mathrm{RM}_{8}(5,2)=\{\operatorname{ev}(F) \mid \operatorname{deg} F \leq 5\}$ is $[64,21,24]$
$\operatorname{Span}_{\mathbb{F}_{8}}\left(\left\{\operatorname{ev}\left(\vec{X}^{\vec{\alpha}}\right) \mid \operatorname{deg} \vec{X}^{\vec{\alpha}} \leq 5\right\} \cup\left\{X^{4} Y^{2}, X^{2} Y^{4}\right\}\right)$ is $[64,23,24]$
$\mathrm{RM}_{8}(9,2)=\{\operatorname{ev}(F) \mid \operatorname{deg} F \leq 9\}$ is $[64,49,6]$
$\operatorname{Span}_{\mathbb{F}_{8}}\left(\left\{\operatorname{ev}\left(\bar{X}^{\vec{\alpha}}\right) \mid \operatorname{deg} \bar{X}^{\vec{\alpha}} \leq 9\right\}\right.$

RM codes and Massey-Costello-Justesen codes

8	7	6	5	4	3	2	1
16	14	12	10	8	6	4	2
24	21	18	15	12	9	6	3
32	28	24	20	16	12	8	4
40	35	30	25	20	15	10	5
48	42	36	30	24	18	12	6
56	49	42	35	28	21	14	7
64	56	48	40	32	24	16	8

$\mathrm{RM}_{8}(5,2)=\{\operatorname{ev}(F) \mid \operatorname{deg} F \leq 5\}$ is [64, 21, 24]
$\operatorname{Span}_{\mathbb{F}_{8}}\left(\left\{\operatorname{ev}\left(\vec{X}^{\vec{\alpha}}\right) \mid \operatorname{deg} \vec{X}^{\vec{\alpha}} \leq 5\right\} \cup\left\{X^{4} Y^{2}, X^{2} Y^{4}\right\}\right)$ is $[64,23,24]$
$\mathrm{RM}_{8}(9,2)=\{\operatorname{ev}(F) \mid \operatorname{deg} F \leq 9\}$ is $[64,49,6]$
$\operatorname{Span}_{\mathbb{F}_{8}}\left(\left\{\operatorname{ev}\left(\vec{X}^{\vec{\alpha}}\right) \mid \operatorname{deg} \vec{X}^{\vec{\alpha}} \leq 9\right\}\right.$

$$
\left.\cup\left\{X^{4} Y^{6}, X^{5} Y^{5}, X^{5} Y^{6}, X^{6} Y^{4}, X^{6} Y^{5}\right\}\right) \text { is }[64,54,6]
$$

RM codes and Massey-Costello-Justesen codes

8	7	6	5	4	3	2	1
16	14	12	10	8	6	4	2
24	21	18	15	12	9	6	3
32	28	24	20	16	12	8	4
40	35	30	25	20	15	10	5
48	42	36	30	24	18	12	6
56	49	42	35	28	21	14	7
64	56	48	40	32	24	16	8

$\mathrm{RM}_{8}(5,2)=\{\operatorname{ev}(F) \mid \operatorname{deg} F \leq 5\}$ is [64, 21, 24]
$\operatorname{Span}_{\mathbb{F}_{8}}\left(\left\{\operatorname{ev}\left(\vec{X}^{\vec{\alpha}}\right) \mid \operatorname{deg} \vec{X}^{\vec{\alpha}} \leq 5\right\} \cup\left\{X^{4} Y^{2}, X^{2} Y^{4}\right\}\right)$ is $[64,23,24]$
$\mathrm{RM}_{8}(9,2)=\{\operatorname{ev}(F) \mid \operatorname{deg} F \leq 9\}$ is $[64,49,6]$
$\operatorname{Span}_{\mathbb{F}_{8}}\left(\left\{\operatorname{ev}\left(\vec{X}^{\vec{\alpha}}\right) \mid \operatorname{deg} \vec{X}^{\vec{\alpha}} \leq 9\right\}\right.$

$$
\left.\cup\left\{X^{4} Y^{6}, X^{5} Y^{5}, X^{5} Y^{6}, X^{6} Y^{4}, X^{6} Y^{5}\right\}\right) \text { is }[64,54,6]
$$

Weighted Reed-Muller codes

Point set $S_{1} \times \cdots \times S_{m}, S_{i} \subseteq \mathbb{F}_{q}$.
$F_{1}(\vec{X})=\prod_{x \in S_{1}}\left(X_{1}-x\right), \ldots, F_{m}(\vec{X})=\prod_{x \in S_{m}}\left(X_{m}-x\right)$.
$I_{q}=\left\langle F_{1}(\vec{X}), \ldots, F_{m}(\vec{X})\right\rangle$.
$\Delta\left(I_{q}\right)=\left\{X_{1}^{i_{1}} \cdots X_{m}^{i_{m}}\left|0 \leq i_{1}<\left|S_{1}\right|, \ldots, 0 \leq i_{m}<\left|S_{m}\right|\right\}\right.$.

Weighted Reed-Muller codes

Point set $S_{1} \times \cdots \times S_{m}, S_{i} \subseteq \mathbb{F}_{q}$.

$$
\begin{aligned}
& F_{1}(\vec{X})=\prod_{x \in S_{1}}\left(X_{1}-x\right), \ldots, F_{m}(\vec{X})=\prod_{x \in S_{m}}\left(X_{m}-x\right) . \\
& I_{q}=\left\langle F_{1}(\vec{X}), \ldots, F_{m}(\vec{X})\right\rangle . \\
& \Delta\left(I_{q}\right)=\left\{X_{1}^{i_{1}} \ldots X_{m}^{i_{m}}\left|0 \leq i_{1}<\left|S_{1}\right|, \ldots, 0 \leq i_{m}<\left|S_{m}\right|\right\} .\right.
\end{aligned}
$$

$\operatorname{RM}\left(S_{1}, \ldots, S_{m}, u, w_{1}, \ldots w_{m}\right)$

Weighted Reed-Muller codes

Point set $S_{1} \times \cdots \times S_{m}, S_{i} \subseteq \mathbb{F}_{q}$.

$$
\begin{aligned}
& F_{1}(\vec{X})=\prod_{x \in S_{1}}\left(X_{1}-x\right), \ldots, F_{m}(\vec{X})=\prod_{x \in S_{m}}\left(X_{m}-x\right) . \\
& I_{q}=\left\langle F_{1}(\vec{X}), \ldots, F_{m}(\vec{X})\right\rangle . \\
& \Delta\left(I_{q}\right)=\left\{X_{1}^{i_{1}} \ldots X_{m}^{i_{m}}\left|0 \leq i_{1}<\left|S_{1}\right|, \ldots, 0 \leq i_{m}<\left|S_{m}\right|\right\} .\right.
\end{aligned}
$$

$$
\begin{aligned}
& \operatorname{RM}\left(S_{1}, \ldots, S_{m}, u, w_{1}, \ldots w_{m}\right) \\
& =\operatorname{Span}_{\mathbb{F}_{q}}\left\{\operatorname{ev}\left(X_{1}^{i_{1}} \cdots X_{m}^{i_{m}}\right) \mid i_{1} w_{1}+\cdots+i_{m} w_{m} \leq u,\right. \\
& \left.0 \leq i_{1}<\left|S_{1}\right|, \ldots, 0 \leq i_{m}<\left|S_{m}\right|\right\}
\end{aligned}
$$

Optimal choice of weights

The case $\left|S_{1}\right|=18,\left|S_{2}\right|=6$:

Region I, region II, region III.

Optimally weighted Reed-Muller codes

Some improvement in region I.
Substantial improvement in region II. Region II increases.

A combinatorial result

Proposition: Consider $S \times \cdots \times S$ (finite) and $F(\vec{X}) \in \mathbb{F}[\vec{X}]$. Let $\operatorname{lm}(F)=\vec{X}^{\vec{\alpha}}$ with respect to LEXICOGRAPHIC ordering. The number of zeros is at most

$$
|S|^{m}-\prod_{t=1}^{m}\left(|S|-\alpha_{t}\right)
$$

Proof: (by induction after m).
Reformulate result as "number of non-zeros is at least..." Clearly true for $m=1$.
Induction step: Write

A combinatorial result

Proposition: Consider $S \times \cdots \times S$ (finite) and $F(\vec{X}) \in \mathbb{F}[\vec{X}]$. Let $\operatorname{Im}(F)=\vec{X}^{\vec{\alpha}}$ with respect to LEXICOGRAPHIC ordering. The number of zeros is at most

$$
|S|^{m}-\prod_{t=1}^{m}\left(|S|-\alpha_{t}\right)
$$

Proof: (by induction after m).
Reformulate result as "number of non-zeros is at least..." Clearly true for $m=1$.
Induction step: Write

$$
\begin{aligned}
F(\vec{X})=F_{0}\left(X_{1}, \ldots, X_{m-1}\right)+ & F_{1}\left(X_{1}, \ldots, X_{m-1}\right) X_{m}+ \\
& \cdots+F_{\alpha_{m}}\left(X_{1}, \ldots, X_{m-1}\right) X_{m}^{\alpha_{m}}
\end{aligned}
$$

Schwartz-Zippel bound (Ore bound)

Corollary:
Consider finite point ensemble $S \times \cdots \times S$ and $F(\vec{X})$ of degree $t<|S|$. Then F has at most $t|S|^{m-1}$ zeros.
Proof:

$$
\begin{aligned}
& \max \left\{|S|^{m}-\prod_{s=1}^{m}\left(|S|-\alpha_{s}\right) \mid \sum_{s=1}^{m} \alpha_{s} \leq t\right\} \\
= & |S|^{m}-|S|^{m-1}(|S|-t) \\
= & t|S|^{m-1}
\end{aligned}
$$

(worst case is on the border).

Second smallest weight of RM codes

Theorem:
If I is radical and \mathbb{F} is algebraically closed then $\left|\mathbb{V}_{\mathbb{F}}(I)\right|=\left|\Delta_{\prec}(I)\right|$ (whenever latter is finite).

Fact: $I_{q}=\left\langle F_{1}\left(\vec{X}, \ldots, F_{s}(\vec{X}), X_{1}^{q}-X_{1}, \ldots, X_{m}^{q}-X_{m}\right\rangle\right.$ is radical.
To calculate exact footprint requires Buchberger's algorithm.

Gives closed formula descriptions of second smallest weight of any
$\mathrm{RM}_{a}(s, 2)$
Translates into closed formula descriptions for any $\mathrm{RM}_{q}(s, m)$. Establishing the weights in general is a very hard problem.

Second smallest weight of RM codes

Theorem:
If I is radical and \mathbb{F} is algebraically closed then $\left|\mathbb{V}_{\mathbb{F}}(I)\right|=\left|\Delta_{\prec}(I)\right|$ (whenever latter is finite).

Fact: $I_{q}=\left\langle F_{1}\left(\vec{X}, \ldots, F_{s}(\vec{X}), X_{1}^{q}-X_{1}, \ldots, X_{m}^{q}-X_{m}\right\rangle\right.$ is radical.
To calculate exact footprint requires Buchberger's algorithm.
Gives closed formula descriptions of second smallest weight of any $\mathrm{RM}_{q}(s, 2)$.
Translates into closed formula descriptions for any $\mathrm{RM}_{q}(s, m)$
Establishing the weights in general is a very hard problem.

Second smallest weight of RM codes

Theorem:
If I is radical and \mathbb{F} is algebraically closed then $\left|\mathbb{V}_{\mathbb{F}}(I)\right|=\left|\Delta_{\prec}(I)\right|$ (whenever latter is finite).

Fact: $I_{q}=\left\langle F_{1}\left(\vec{X}, \ldots, F_{s}(\vec{X}), X_{1}^{q}-X_{1}, \ldots, X_{m}^{q}-X_{m}\right\rangle\right.$ is radical.
To calculate exact footprint requires Buchberger's algorithm.
Gives closed formula descriptions of second smallest weight of any $\mathrm{RM}_{q}(s, 2)$.
Translates into closed formula descriptions for any $\mathrm{RM}_{q}(s, m)$.
Establishing the weights in general is a very hard problem.

Second smallest weight of RM codes

Theorem:
If I is radical and \mathbb{F} is algebraically closed then $\left|\mathbb{V}_{\mathbb{F}}(I)\right|=\left|\Delta_{\prec}(I)\right|$ (whenever latter is finite).

Fact: $I_{q}=\left\langle F_{1}\left(\vec{X}, \ldots, F_{s}(\vec{X}), X_{1}^{q}-X_{1}, \ldots, X_{m}^{q}-X_{m}\right\rangle\right.$ is radical.
To calculate exact footprint requires Buchberger's algorithm.
Gives closed formula descriptions of second smallest weight of any $\mathrm{RM}_{q}(s, 2)$.
Translates into closed formula descriptions for any $\mathrm{RM}_{q}(s, m)$.
Establishing the weights in general is a very hard problem.

PART 2: ONE-POINT ALGEBRAIC GEOMETRIC CODES

One-point algebraic geometric codes

P_{1}, \ldots, P_{n}, Q rational places of function field over \mathbb{F}_{q}.
To construct $C_{\mathcal{L}}\left(D=P_{1}+\cdots+P_{n}, v Q\right)$ we need basis for: $\cup_{s=0}^{v} \mathcal{L}(s Q) \subseteq \bigcup_{s=0}^{\infty} \mathcal{L}(s Q)$.

Everything, can be translated into affine variety description: $\cup_{s=0}^{\infty} \mathcal{L}(s Q)=\mathbb{F}_{q}\left[X_{1}, \ldots, X_{m}\right] / / \quad\left\{P_{1}, \ldots, P_{n}\right\} \subseteq \mathbb{V}_{\mathbb{E}_{q}}(I)$.

Affine variety description includes determination of minimum distance via footprint bound.

One-point algebraic geometric codes

P_{1}, \ldots, P_{n}, Q rational places of function field over \mathbb{F}_{q}.
To construct $C_{\mathcal{L}}\left(D=P_{1}+\cdots+P_{n}, v Q\right)$ we need basis for: $\cup_{s=0}^{v} \mathcal{L}(s Q) \subseteq \bigcup_{s=0}^{\infty} \mathcal{L}(s Q)$.

Everything, can be translated into affine variety description:
$\cup_{s=0}^{\infty} \mathcal{L}(s Q)=\mathbb{F}_{q}\left[X_{1}, \ldots, X_{m}\right] / I \quad\left\{P_{1}, \ldots, P_{n}\right\} \subseteq \mathbb{V}_{\mathbb{F}_{q}}(I)$.
Affine variety description includes determination of minimum distance via footprint bound.

Weights versus valuation

Weierstrass semigroup:
$H(Q)=-\nu_{Q}\left(\cup_{s=0}^{\infty} \mathcal{L}(s Q)\right)=\left\langle w_{1}, \ldots, w_{m}\right\rangle$.
Definition: Given weights w_{1}, \ldots, w_{m} define $w\left(\vec{X}^{\vec{\alpha}}\right)=\vec{\alpha} \cdot\left(w_{1}, \ldots, w_{m}\right)$. Define \prec_{w} by $\vec{X}^{\vec{\alpha}} \prec_{w} \vec{X}^{\vec{\beta}}$ if

- $w\left(\vec{X}^{\vec{\alpha}}\right)<w\left(\vec{X}^{\vec{\beta}}\right)$
- or $w\left(\vec{X}^{\vec{\alpha}}\right)=w\left(\vec{X}^{\vec{\beta}}\right)$ but $\vec{X}^{\vec{\alpha}} \prec_{\mathcal{M}} \vec{X}^{\vec{\beta}}$
$\left(\prec_{\mathcal{M}}\right.$ can be anything, for instance $\left.\prec_{\text {lex }}\right)$

Weights versus valuation

Weierstrass semigroup:
$H(Q)=-\nu_{Q}\left(\cup_{s=0}^{\infty} \mathcal{L}(s Q)\right)=\left\langle w_{1}, \ldots, w_{m}\right\rangle$.
Definition: Given weights w_{1}, \ldots, w_{m} define $w\left(\vec{X}^{\vec{\alpha}}\right)=\vec{\alpha} \cdot\left(w_{1}, \ldots, w_{m}\right)$. Define \prec_{w} by $\vec{X}^{\vec{\alpha}} \prec_{w} \vec{X}^{\vec{\beta}}$ if

- $w\left(\vec{X}^{\vec{\alpha}}\right)<w\left(\vec{X}^{\vec{\beta}}\right)$
- or $w\left(\vec{X}^{\vec{\alpha}}\right)=w\left(\vec{X}^{\vec{\beta}}\right)$ but $\vec{X}^{\vec{\alpha}} \prec_{\mathcal{M}} \vec{X}^{\vec{\beta}}$
$\left(\prec_{\mathcal{M}}\right.$ can be anything, for instance $\left.\prec_{\text {lex }}\right)$
Example: $w(X)=q, w(Y)=q+1, \prec_{\mathcal{M}}=\prec_{\text {lex }}$ with $X \prec_{\text {lex }} Y$. $\overline{F(X, Y)}=X^{q+1}-Y^{q}-Y, w\left(X^{q+1}\right)=w\left(Y^{q}\right)=q(q+1)$ and $\operatorname{Im}(F)=Y^{q}$.

Order domain conditions

$I=\left\langle F_{1}(\vec{X}), \ldots, F_{s}(\vec{X})\right\rangle \subseteq \mathbb{F}[\vec{X}]$ and w_{1}, \ldots, w_{m} satisfy ODC if:

1. $\left\{F_{1}, \ldots, F_{s}\right\}$ is a Gröbner basis w.r.t. \prec_{w}.
2. $F_{i}, i=1, \ldots, s$ contains exactly two monomials of highest weight.
3. No two monomials in $\Delta_{\prec_{w}}\left(\left\langle F_{1}, \ldots, F_{s}\right\rangle\right)$ are of the same weight.

Order domain conditions

$I=\left\langle F_{1}(\vec{X}), \ldots, F_{s}(\vec{X})\right\rangle \subseteq \mathbb{F}[\vec{X}]$ and w_{1}, \ldots, w_{m} satisfy ODC if:

1. $\left\{F_{1}, \ldots, F_{s}\right\}$ is a Gröbner basis w.r.t. \prec_{w}.
2. $F_{i}, i=1, \ldots, s$ contains exactly two monomials of highest weight.
3. No two monomials in $\Delta_{\prec_{w}}\left(\left\langle F_{1}, \ldots, F_{s}\right\rangle\right)$ are of the same weight.

4. OK
5. OK
6. $\Delta_{\prec_{w}}(I)=\left\{X^{i} Y^{j} \mid 0 \leq j<q, 0 \leq i\right\}$ OK

Presentation Theorem

Theorem (Miura, Pellikaan):
$\cup_{s=0}^{\infty} \mathcal{L}(s Q)=\mathbb{F}[\vec{X}] / I$ where I and corresponding weights satisfy order domain conditions.

Corollary:

Presentation Theorem

Theorem (Miura, Pellikaan):
$\cup_{s=0}^{\infty} \mathcal{L}(s Q)=\mathbb{F}[\vec{X}] / I$ where I and corresponding weights satisfy order domain conditions.

Corollary:

$$
\begin{aligned}
& C_{\mathcal{L}}\left(P_{1}+\cdots+P_{n}, v Q\right) \\
= & \operatorname{Span}_{\mathbb{F}_{q}}\left\{\left(M\left(P_{1}\right), \ldots, M\left(P_{n}\right)\right) \mid M \in \Delta_{\prec_{w}}(I), w(M) \leq v\right\} .
\end{aligned}
$$

Dimension and generator matrix

Remember in general $\left\{M+J \mid M \in \Delta_{\prec}(J)\right\}$ is a basis for $\mathbb{F}[\vec{X}]$.
Define $I_{q}=I+\left\langle X_{1}^{q}-X_{1}, \ldots, X_{m}^{q}-X_{m}\right\rangle$.
ev : $\mathbb{F}_{q}[\vec{X}]\left(I_{q} \rightarrow \mathbb{F}_{q}^{n}\right.$ given by ev $\left(F+I_{q}\right)=\left(F\left(P_{1}\right), \ldots, F\left(P_{n}\right)\right)$ is a bijection.

$$
\begin{aligned}
& C_{\mathcal{L}}\left(P_{1}+\cdots+P_{n}, v Q\right) \\
= & \operatorname{Span}_{\mathbb{F}_{q}}\left\{\left(M\left(P_{1}\right), \ldots, M\left(P_{n}\right)\right) \mid M \in \Delta_{\prec_{w}}\left(I_{q}\right), w(M) \leq v\right\} .
\end{aligned}
$$

Dimension can be read off directly. So can generator matrix.

Hermitian function field

$$
\begin{aligned}
& I_{9}=\left\langle X^{4}-Y^{3}-Y, X^{9}-X, Y^{9}-Y\right\rangle \subseteq \mathbb{F}_{9}[X, Y] . \\
& \begin{array}{rrrrrrrrrrrrrr}
8 & 11 & 14 & 17 & 20 & 23 & 26 & 29 & 32 & 35 & 38 & \cdots \\
4 & 7 & 10 & 13 & 16 & 19 & 22 & 25 & 28 & 31 & 34 & \cdots \\
0 & 3 & 6 & 9 & 12 & 15 & 18 & 21 & 24 & 27 & 30 & \cdots
\end{array} \\
& H^{*}(Q)=w\left(\Delta_{\alpha_{w}}\left(I_{9}\right)\right) \subseteq w\left(\Delta_{\alpha_{w}}(I)\right)=H(Q) .
\end{aligned}
$$

What about minimum distance?

Applying the footprint bound

Let $I=\left\langle F_{1}(\vec{X}), \ldots, F_{s}(\vec{X})\right\rangle$ and w_{1}, \ldots, w_{m} satisfy ODC.
Code word $\vec{c}=\operatorname{ev}\left(F+I_{q}\right)$ where $\operatorname{Supp}(F) \subseteq \Delta_{\prec_{w}}\left(I_{q}\right)$.
Hamming weight equals
$n-\left|\Delta_{\prec_{w}}\left(\langle F(\vec{X})\rangle+I_{q}\right)\right|$.
For every monomial M
$\operatorname{Im}\left(M F(\vec{X})\right.$ rem $\left.\left\{F_{1}(\vec{X}), \ldots, F_{s}(\vec{X})\right\}\right)$
DOES NOT BELONG TO $\Delta_{z_{w}}\left(\langle F(\vec{X})\rangle+I_{q}\right)$.
We can easily detect the above leading monomial!

Applying the footprint bound

Let $I=\left\langle F_{1}(\vec{X}), \ldots, F_{s}(\vec{X})\right\rangle$ and w_{1}, \ldots, w_{m} satisfy ODC.
Code word $\vec{c}=\operatorname{ev}\left(F+I_{q}\right)$ where $\operatorname{Supp}(F) \subseteq \Delta_{\prec_{w}}\left(I_{q}\right)$.
Hamming weight equals
$n-\left|\Delta_{\prec_{w}}\left(\langle F(\vec{X})\rangle+I_{q}\right)\right|$.
For every monomial M
$\operatorname{Im}\left(M F(\vec{X})\right.$ rem $\left.\left\{F_{1}(\vec{X}), \ldots, F_{s}(\vec{X})\right\}\right)$
DOES NOT BELONG TO $\Delta_{\prec_{w}}\left(\langle F(\vec{X})\rangle+I_{q}\right)$.
We can easily detect the above leading monomial!

The weights tell it all...

$$
w\left(\operatorname{Im}(M F(\vec{X}))=w\left(\operatorname{lm}\left(M F(\vec{X}) \operatorname{rem}\left\{F_{1}(\vec{X}), \ldots, F_{s}(\vec{X})\right\}\right)\right)\right.
$$

because:

- No two monomials in $F(\vec{X})$ are of the same weight (as no two monomials in $\Delta_{\prec_{w}}(I)$ are of the same weight).
- Every $F_{i}(\vec{X})$ has exactly two monomials of highest weight.

Hamming weight of \vec{c}

In conclusion we can estimate

$$
\begin{align*}
& w_{H}(\vec{c}) \\
= & n-\left|\Delta_{\prec_{w}}\left(\langle F(\vec{X})\rangle+I_{q}\right)\right| \\
= & \left|\Delta_{\prec_{w}}\left(I_{q}\right) \backslash \Delta_{\prec_{w}}\left(\langle F(\vec{X})\rangle+I_{q}\right)\right| \\
\geq & \mid w\left(\Delta_{\prec_{w}}\left(I_{q}\right)\right) \cap\{w(M \cdot \operatorname{Im}(F)) \mid M \text { a monomial }\} \mid \tag{1}\\
\geq & n-|H(Q) \backslash(w(\operatorname{lm}(F))+H(Q))| \\
= & n-w(\operatorname{lm}(F)) .
\end{align*}
$$

Last line corresponds to Goppa bound. Last equality comes from semigroup theory.

Minimum distance of Hermitian codes

$$
\begin{aligned}
& I_{9}=\left\langle X^{4}-Y^{3}-Y, X^{9}-X, Y^{9}-Y\right\rangle \subseteq \mathbb{F}_{9}[X, Y] . \\
& \begin{array}{rrrrrrrrrr}
19 & 16 & 13 & 10 & 7 & 4 & 3 & 2 & 1 \\
23 & 20 & 17 & 14 & 11 & 8 & 6 & 4 & 2 \\
27 & 24 & 21 & 18 & 15 & 12 & 9 & 6 & 3
\end{array}
\end{aligned}
$$

Green=Goppa bound, Blue=Equation 1.

Improved code construction straight forward.

Everything works for general one-poing algebraic geometric code.

Minimum distance of Hermitian codes

$$
I_{9}=\left\langle X^{4}-Y^{3}-Y, X^{9}-X, Y^{9}-Y\right\rangle \subseteq \mathbb{F}_{9}[X, Y]
$$

19	16	13	10	7	4	3	2	1
23	20	17	14	11	8	6	4	2
27	24	21	18	15	12	9	6	3

Green=Goppa bound, Blue=Equation 1.
Improved code construction straight forward.

Everything works for general one-poing algebraic geometric code.

Minimum distance of Hermitian codes

$$
I_{9}=\left\langle X^{4}-Y^{3}-Y, X^{9}-X, Y^{9}-Y\right\rangle \subseteq \mathbb{F}_{9}[X, Y] .
$$

19	16	13	10	7	4	3	2	1
23	20	17	14	11	8	6	4	2
27	24	21	18	15	12	9	6	3

Green=Goppa bound, Blue=Equation 1.

Improved code construction straight forward.

Everything works for general one-poing algebraic geometric code.

PART 3: SMALL-BIAS SPACES

Small-bias space

For program verification etc. we need a probability space

1. Random binary vector of length k.
2. Statistical property close to \mathbb{F}_{2}^{k} with uniform distribution.
3. Size of \mathcal{X} much smaller than $\left|\mathbb{F}_{2}^{k}\right|$.

Small-bias space - definition

Definition: A multiset $\mathcal{X} \subseteq \mathbb{F}_{2}^{k}$ is called an ϵ-bias space if

$$
\frac{1}{|\mathcal{X}|}\left|\sum_{\vec{x} \in \mathcal{X}}(-1)^{\sum_{i \in T^{\prime}}}\right| \leq \epsilon
$$

for every $T \subseteq\{1, \ldots, k\}$.
Interpretation: If \vec{x} appears $i(\vec{x})$ times in \mathcal{X} then

Small-bias space - definition

Definition: A multiset $\mathcal{X} \subseteq \mathbb{F}_{2}^{k}$ is called an ϵ-bias space if

$$
\frac{1}{|\mathcal{X}|}\left|\sum_{\vec{x} \in \mathcal{X}}(-1)^{\sum_{i \in T^{x_{i}}}}\right| \leq \epsilon
$$

for every $T \subseteq\{1, \ldots, k\}$.
Interpretation: If \vec{x} appears $i(\vec{x})$ times in \mathcal{X} then

$$
\operatorname{Pr}(\vec{X}=\vec{x})=\frac{i(\vec{x})}{|\mathcal{X}|}
$$

Example

Generator matrix for Walsh-Hadamard code

$$
\left[\begin{array}{llllllllllllllll}
0 & 1 & 0 & 0 & 0 & 1 & 1 & 1 & 0 & 0 & 0 & 1 & 1 & 1 & 0 & 1 \\
0 & 0 & 1 & 0 & 0 & 1 & 0 & 0 & 1 & 1 & 0 & 1 & 1 & 0 & 1 & 1 \\
0 & 0 & 0 & 1 & 0 & 0 & 1 & 0 & 1 & 0 & 1 & 1 & 0 & 1 & 1 & 1 \\
0 & 0 & 0 & 0 & 1 & 0 & 0 & 1 & 0 & 1 & 1 & 0 & 1 & 1 & 1 & 1
\end{array}\right]
$$

Columns constitute an 0-bias space (actually $\mathcal{X}=\mathbb{F}_{2}^{4}$)

From code to small-bias space

$$
\left[\begin{array}{llllllllllllllll}
0 & 1 & 0 & 0 & 0 & 1 & 1 & 1 & 0 & 0 & 0 & 1 & 1 & 1 & 0 & 1 \\
0 & 0 & 1 & 0 & 0 & 1 & 0 & 0 & 1 & 1 & 0 & 1 & 1 & 0 & 1 & 1 \\
0 & 0 & 0 & 1 & 0 & 0 & 1 & 0 & 1 & 0 & 1 & 1 & 0 & 1 & 1 & 1 \\
0 & 0 & 0 & 0 & 1 & 0 & 0 & 1 & 0 & 1 & 1 & 0 & 1 & 1 & 1 & 1
\end{array}\right]
$$

A code is ϵ-balanced if for $\vec{c} \neq \overrightarrow{0}: \quad \frac{1-\epsilon}{2} \leq \frac{w_{H}(\vec{c})}{n} \leq \frac{1+\epsilon}{2}$.

From code to small-bias space

$$
\left[\begin{array}{llllllllllllllll}
0 & 1 & 0 & 0 & 0 & 1 & 1 & 1 & 0 & 0 & 0 & 1 & 1 & 1 & 0 & 1 \\
0 & 0 & 1 & 0 & 0 & 1 & 0 & 0 & 1 & 1 & 0 & 1 & 1 & 0 & 1 & 1 \\
0 & 0 & 0 & 1 & 0 & 0 & 1 & 0 & 1 & 0 & 1 & 1 & 0 & 1 & 1 & 1 \\
0 & 0 & 0 & 0 & 1 & 0 & 0 & 1 & 0 & 1 & 1 & 0 & 1 & 1 & 1 & 1
\end{array}\right]
$$

A code is ϵ-balanced if for $\vec{c} \neq \overrightarrow{0}: \quad \frac{1-\epsilon}{2} \leq \frac{w_{H}(\vec{c})}{n} \leq \frac{1+\epsilon}{2}$.

$$
\begin{gathered}
\epsilon-\text { bias set } \\
\mathcal{X}=\left\{\vec{x}_{1}, \ldots, \vec{x}_{n}\right\}
\end{gathered} \quad \Leftrightarrow \quad \begin{gathered}
\epsilon-\text { balanced code } \\
G=\left[\vec{x}_{1}, \ldots, \vec{x}_{n}\right]
\end{gathered}
$$

A standard construction

Construction:

Outer code: $[N, K, D]_{2^{s}}$.
Inner code: Walsh-Hadamard.
Concatenated code: $\epsilon=\frac{N-D}{N}, n=N 2^{s}, k=K s$.

- Reed-Solomon codes: $\mathcal{X} \subseteq \mathbb{F}_{2}^{\Omega(k)}$ and $|\mathcal{X}|=\mathcal{O}\left(\frac{k^{2}}{\epsilon^{2} \log ^{2}(k / \epsilon)}\right)$
- AG-codes with $\operatorname{deg} G>g$ (Drinfeld-Vladut)
- Hermitian codes with $\operatorname{deg} G<g$ (Ben-Aroy and Ta-Shma).
- Norm-Trace codes with $\operatorname{deg} G<g$
- Product of Hermitian codes with $\operatorname{deg} G>g \ldots$
- Gilbert-Varhamov bound
- LP-bound.

A standard construction

Construction:

Outer code: $[N, K, D]_{2^{s}}$.
Inner code: Walsh-Hadamard.
Concatenated code: $\epsilon=\frac{N-D}{N}, n=N 2^{s}, k=K s$.

- Reed-Solomon codes: $\mathcal{X} \subseteq \mathbb{F}_{2}^{\Omega(k)}$ and $|\mathcal{X}|=\mathcal{O}\left(\frac{k^{2}}{\epsilon^{2} \log ^{2}(k / \epsilon)}\right)$.
- AG-codes with deg $G>g$ (Drinfeld-Vladut)...
- Hermitian codes with $\operatorname{deg} G<g$ (Ben-Aroy and Ta-Shma)...
- Norm-Trace codes with $\operatorname{deg} G<g$...
- Product of Hermitian codes with $\operatorname{deg} G>g \ldots$
- Gilbert-Varhamov bound...
- LP-bound...

Asymptotic behaviour

Let $\epsilon=k^{-\alpha}, k \rightarrow \infty$ and consider $\log _{k}(|\mathcal{X}|)=f(\alpha)$

For $\alpha<0.5$ AG-construction requires Garcia-Stichtenoth towers.

Comparison with Norm-Trace codes

Product of Hermitian codes

- q-ary Reed-Muller codes are products of Reed-Solomon codes.
- Remember improvement to RM-construction (Massey-Costello-Justesen).
- We consider similar construction with product of Hermitian codes.

Product of Hermitian order domains

$$
I^{(2)}=\left\langle X_{1}^{q+1}-Y_{1}^{q}-Y_{1}, X_{2}^{q+1}-Y_{2}^{q}-Y_{2}\right\rangle
$$

$$
\begin{aligned}
& I_{q^{2}}^{(2)}=\left\langle X_{1}^{q+1}-Y_{1}^{q}-Y_{1}, X_{2}^{q+1}-Y_{2}^{q}-Y_{2}, X_{1}^{q^{2}}-X_{1},\right. \\
& \left.Y_{1}^{q^{2}}-Y_{1}, Y_{2}^{q^{2}}-Y_{2}, X_{2}^{q^{2}}-X_{2}\right\rangle \\
& \\
& \mathbb{V}_{\mathbb{F}_{q^{2}}}\left(l_{q^{2}}^{(2)}\right)=\mathbb{V}_{\mathbb{F}_{q^{2}}}\left(I_{q^{2}}\right) \times \mathbb{V}_{\mathbb{F}_{q^{2}}}\left(I_{q^{2}}\right)=\left\{Q_{1}, \ldots, Q_{q^{6}}\right\}
\end{aligned}
$$

Monomial ordering \prec_{w}

$$
\begin{aligned}
& w^{(2)}\left(X_{1}\right)=(q, 0), w^{(2)}\left(Y_{1}\right)=(q+1,0), w^{(2)}\left(X_{2}\right)=(0, q) \\
& w^{(2)}\left(Y_{2}\right)=(0, q+1)
\end{aligned}
$$

$\prec_{\mathbb{N}_{0}^{2}}$ any monomial ordering on \mathbb{N}_{0}^{2}.

if one of the following two conditions holds:

Here, $X_{1} \prec$ lex $Y_{1} \prec$ lex $X_{2} \prec$ lex Y_{2} is assumed.

Olav Geil, Aalborg University, Denmark

Monomial ordering \prec_{w}

$w^{(2)}\left(X_{1}\right)=(q, 0), w^{(2)}\left(Y_{1}\right)=(q+1,0), w^{(2)}\left(X_{2}\right)=(0, q)$,
$w^{(2)}\left(Y_{2}\right)=(0, q+1)$.
$\prec_{\mathbb{N}_{0}^{2}}$ any monomial ordering on \mathbb{N}_{0}^{2}.

$$
X_{1}^{\alpha_{1}^{(1)}} Y_{1}^{\beta_{1}^{(1)}} X_{2}^{\alpha_{1}^{(2)}} Y_{2}^{\beta_{1}^{(2)}} \prec_{W}^{(2)} X_{1}^{\alpha_{2}^{(1)}} Y_{1}^{\beta_{2}^{(1)}} X_{2}^{\alpha_{2}^{(2)}} Y_{2}^{\beta_{2}^{(2)}}
$$

if one of the following two conditions holds:

$$
\begin{aligned}
& \text { 1. } w^{(2)}\left(X_{1}^{\alpha_{1}^{(1)}} Y_{1}^{\beta_{1}^{(1)}} X_{2}^{\alpha_{1}^{(2)}} Y_{2}^{\beta_{1}^{(2)}}\right) \prec_{\mathbb{N}_{0}^{2}} w^{(2)}\left(X_{1}^{\alpha_{2}^{(1)}} Y_{1}^{\beta_{2}^{(1)}} X_{2}^{\alpha_{2}^{(2)}} Y_{2}^{\beta_{2}^{(2)}}\right) \\
& \text { 2. } w^{(2)}\left(X_{1}^{\alpha_{1}^{(1)}} Y_{1}^{\beta_{1}^{(1)}} X_{2}^{\alpha_{1}^{(2)}} Y_{2}^{\beta_{1}^{(2)}}\right)=w^{(2)}\left(X_{1}^{\alpha_{2}^{(1)}} Y_{1}^{\beta_{2}^{(1)}} X_{2}^{\alpha_{2}^{(2)}} Y_{2}^{\beta_{2}^{(2)}}\right) \\
& \text { but } \\
& X_{1}^{\alpha_{1}^{(1)}} Y_{1}^{\beta_{1}^{(1)}} X_{2}^{\alpha_{1}^{(2)}} Y_{2}^{\beta_{1}^{(2)}} \prec_{\mathrm{lex}} X_{1}^{\alpha_{2}^{(1)}} Y_{1}^{\beta_{2}^{(1)}} X_{2}^{\alpha_{2}^{(2)}} Y_{2}^{\beta_{2}^{(2)}} .
\end{aligned}
$$

Here, $X_{1} \prec_{\text {lex }} Y_{1} \prec_{\text {lex }} X_{2} \prec_{\text {lex }} Y_{2}$ is assumed.
$\left\{X_{1}^{q+1}-Y_{1}^{q}-Y_{1}, X_{2}^{q+1}-Y_{2}^{q}-Y_{2}, X_{1}^{q^{2}}-X_{1}, X_{2}^{q^{2}}-X_{2}\right\}$ is a Gröbner basis for $I_{q^{2}}^{(2)}$ with respect to $\prec_{w^{(2)}}$

$$
\left\{X_{1}^{i_{1}} Y_{1}^{j_{1}} X_{2}^{i_{2}} Y_{2}^{j_{2}}+I_{q^{2}} \mid 0 \leq i_{1}, i_{2}<q^{2}, 0 \leq j_{1}, j_{2}<q\right\}
$$

a basis for $\mathbb{F}_{q^{2}}\left[X_{1}, Y_{1}, X_{2}, Y_{2}\right] / l_{q^{2}}^{(2)}$.
EV : $\mathbb{F}_{q^{2}}\left[X_{1}, Y_{1}, X_{2}, Y_{2}\right] / I^{(2)} \rightarrow \mathbb{F}_{q^{2}}^{q^{6}}$ is given by
$\operatorname{EV}\left(F\left(X_{1}, Y_{1}, X_{2}, Y_{2}\right)+I_{q^{2}}^{(2)}\right)=\left(F\left(Q_{1},\right), \ldots, F\left(Q_{q^{6}}\right)\right)$.
$\left\{X_{1}^{q+1}-Y_{1}^{q}-Y_{1}, X_{2}^{q+1}-Y_{2}^{q}-Y_{2}, X_{1}^{q^{2}}-X_{1}, X_{2}^{q^{2}}-X_{2}\right\}$ is a Gröbner basis for $I_{q^{2}}^{(2)}$ with respect to $\prec_{w^{(2)}}$

$$
\left\{X_{1}^{i_{1}} Y_{1}^{j_{1}} X_{2}^{i_{2}} Y_{2}^{j_{2}}+I_{q^{2}} \mid 0 \leq i_{1}, i_{2}<q^{2}, 0 \leq j_{1}, j_{2}<q\right\}
$$

a basis for $\mathbb{F}_{q^{2}}\left[X_{1}, Y_{1}, X_{2}, Y_{2}\right] / l_{q^{2}}^{(2)}$.
$\mathrm{EV}: \mathbb{F}_{q^{2}}\left[X_{1}, Y_{1}, X_{2}, Y_{2}\right] / I^{(2)} \rightarrow \mathbb{F}_{q^{2}}^{q^{6}}$ is given by
$\operatorname{EV}\left(F\left(X_{1}, Y_{1}, X_{2}, Y_{2}\right)+I_{q^{2}}^{(2)}\right)=\left(F\left(Q_{1},\right), \ldots, F\left(Q_{q^{6}}\right)\right)$.

Value semigroup

Recall, $H(Q)$ Weierstrass semigroup for Q in Hermitian function field.

Recall, $H(Q)=w\left(\Delta_{\prec_{w}}(I)\right)$ and $H^{*}(Q)=w\left(\Delta_{\prec_{w}}\left(I_{q^{2}}\right)\right)$.
Define $H^{(2)}=H(Q) \times H(Q)$ and $\left(H^{(2)}\right)^{*}=H^{*}(Q) \times H^{*}(Q)$. We have

$$
\left(H^{(2)}\right)^{*}=w^{(2)}\left(\Delta_{\prec_{w}(2)}\left(I_{q^{2}}^{(2)}\right)\right)
$$

where no two monomials in $\Delta_{\prec_{w}(2)}\left(I_{q^{2}}^{(2)}\right)$ have the same weight.

Hamming weight

$\vec{c}=\operatorname{EV}\left(F\left(X_{1}, Y_{1}, X_{2}, Y_{2}\right)+I_{q^{2}}^{(2)}\right)$ with
$\operatorname{Supp}\left(F\left(X_{1}, Y_{1}, X_{2}, Y_{2}\right)\right) \subseteq \Delta_{\prec_{w}(2)}\left(I_{q^{2}}^{(2)}\right)$.
Write $\lambda^{(2)}=\left(\lambda_{1}, \lambda_{2}\right)=W^{(2)}(\operatorname{Im}(F))$. We can estimate
$\left|\Delta_{\prec_{w}(2)}\left(\left\langle F\left(X_{1}, Y_{1}, X_{2}, Y_{2}\right)\right\rangle+I_{q^{2}}^{(2)}\right)\right| \leq\left|H^{(2)}-\left(\lambda^{(2)}+H^{(2)}\right)\right|$

Hence, $w_{H}(\vec{c}) \geq\left(q^{3}-\lambda_{1}\right)\left(q^{3}-\lambda_{2}\right)$.

Hamming weight

$\vec{c}=\operatorname{EV}\left(F\left(X_{1}, Y_{1}, X_{2}, Y_{2}\right)+I_{q^{2}}^{(2)}\right)$ with
$\operatorname{Supp}\left(F\left(X_{1}, Y_{1}, X_{2}, Y_{2}\right)\right) \subseteq \Delta_{\prec_{w}(2)}\left(I_{q^{2}}^{(2)}\right)$.
Write $\lambda^{(2)}=\left(\lambda_{1}, \lambda_{2}\right)=w^{(2)}(\operatorname{Im}(F))$. We can estimate

$$
\begin{aligned}
\left|\Delta_{\prec_{w}(2)}\left(\left\langle F\left(X_{1}, Y_{1}, X_{2}, Y_{2}\right)\right\rangle+I_{q^{2}}^{(2)}\right)\right| & \leq\left|H^{(2)}-\left(\lambda^{(2)}+H^{(2)}\right)\right| \\
& \leq q^{6}-\left(q^{3}-\lambda_{1}\right)\left(q^{3}-\lambda_{2}\right) .
\end{aligned}
$$

Hence, $w_{H}(\vec{c}) \geq\left(q^{3}-\lambda_{1}\right)\left(q^{3}-\lambda_{2}\right)$.

Code construction

$$
\begin{aligned}
& \tilde{E}(\delta):= \\
& \operatorname{Span}_{\mathbb{F}_{q^{2}}}\left\{\operatorname{EV}\left(X_{1}^{i_{1}} Y_{1}^{j_{1}} X_{2}^{i_{2}} Y_{2}^{j_{2}}+l_{q^{2}}^{(2)}\right) \mid 0 \leq i_{1}, i_{2}<q^{2}, 0 \leq j_{1}, j_{2}<q,\right. \\
& \\
& \left.\left(q^{3}-w\left(X_{1}^{i_{1}} Y_{1}^{j_{1}}\right)\right)\left(q^{3}-w\left(X_{2}^{i_{2}} Y_{2}^{j_{2}}\right)\right) \geq \delta\right\} . \\
& d(\tilde{E}(\delta)) \geq \delta .
\end{aligned}
$$

To estimate dimension use ONLY genus and conductor $=2 g$.
Translates into calculation of volume.

Code construction

$$
\begin{aligned}
& \tilde{E}(\delta):= \\
& \quad \operatorname{Span}_{\mathbb{F}_{q^{2}}}\left\{\operatorname{EV}\left(X_{1}^{i_{1}} Y_{1}^{j_{1}} X_{2}^{i_{2}} Y_{2}^{j_{2}}+l_{q^{2}}^{(2)}\right) \mid 0 \leq i_{1}, i_{2}<q^{2}, 0 \leq j_{1}, j_{2}<q,\right. \\
& \\
& \left.\quad\left(q^{3}-w\left(X_{1}^{i_{1}} Y_{1}^{j_{1}}\right)\right)\left(q^{3}-w\left(X_{2}^{i_{2}} Y_{2}^{j_{2}}\right)\right) \geq \delta\right\} . \\
& d(\tilde{E}(\delta)) \geq \delta .
\end{aligned}
$$

To estimate dimension use ONLY genus and conductor $=2 g$.
Translates into calculation of volume.

Small-bias space from $\tilde{E}(\delta)$

Theorem:
For any $\epsilon, 0<\epsilon<1$ using codes $\tilde{E}(\delta)$ as outer code one can construct ϵ-bias spaces with

$$
\begin{equation*}
\mathcal{X} \subseteq \mathbb{F}_{2}^{\Omega(k)}, \quad|\mathcal{X}|=O\left(\left(\frac{k}{\epsilon+(1-\epsilon) \ln (1-\epsilon)}\right)^{\frac{4}{3}}\right) \tag{2}
\end{equation*}
$$

PART 4: LINEAR NETWORK CODING

Simplest possible network coding problem

Sender s wants to send two messages $a, b \in \mathbf{F}_{2}$ to both receivers r_{1} and r_{2} simultaneously.

Two partial solutions

The network

Flow F_{2}

The flow system is $\mathcal{F}=\left\{F_{1}, F_{2}\right\}$ $F_{1}=\{(1,5),(2,4,6,8)\}, F_{2}=\{(1,3,6,9),(2,7)\}$

A solution

Routing is insufficient, but problem is solvable

Receiver r_{1} can reconstruct b as $a+(a+b)$
Receiver r_{2} can reconstruct a as $(a+b)+b$

Linear network coding

Alphabet is \mathbf{F}_{q} and coefficients below belong to \mathbf{F}_{q}.

$$
\begin{gathered}
Y(j)=\sum_{i \in \operatorname{in}(j)} f_{i, j} Y(i)+\sum_{K\left(X_{i}\right)=\operatorname{tail}(j)} a_{i, j} X_{i} \\
Z_{j}^{\left(r_{l}\right)}=\sum_{i \in \operatorname{in}\left(r_{l}\right)} b_{i, j}^{\left(r_{l}\right)} Y(i)
\end{gathered}
$$

Matrices

A is $h \times|E|$
$A_{i, j}=a_{i, j}$ if $K\left(X_{i}\right)=\operatorname{tail}(j)$
$A_{i, j}=0$ else
F is $|E| \times|E|$
$F_{i, j}=f_{i, j}$ if $i \in \operatorname{in}(j)$
$F_{i, j}=0$ else

For $I=1, \ldots,|R|$
$B^{\left(r_{1}\right)}$ is $|E| \times h$
$B_{i, j}^{\left(r_{l}\right)}=b_{i, j}^{\left(r_{l}\right)}$ if $i \in \operatorname{in}\left(r_{l}\right)$
$B_{i, j}^{\left(r_{1}\right)}=0$ else

Topological meaning of F^{s}

The $F_{i, j}$ "holds" information on all paths of length 2 starting in edge i and ending in edge j.

G being cycle free $F^{N}=0$ for some big enough N.
$l+F+\cdots+F^{N-1}$ holds information on all paths of any length

Topological meaning of F^{s}

The $F_{i, j}$ "holds" information on all paths of length 2 starting in edge i and ending in edge j.

The (i, j) th entry of F^{n} "holds" information on all paths of length $n+1$ starting in edge i and ending in edge j.

$$
\left(F^{n}\right)_{i, j}=\sum_{\substack{\left(i=j_{0}, j_{1}, \ldots, j_{n}=j\right) \\ \text { a path } \\ \text { in } G}} f_{i=j_{0}, j_{1} f_{j_{1}, j_{2}} \cdots f_{j_{n-1}, j_{n}=j}}
$$

G being cycle free $F^{N}=0$ for some big enough N.

Topological meaning of F^{s}

The $F_{i, j}$ "holds" information on all paths of length 2 starting in edge i and ending in edge j.

The (i, j) th entry of F^{n} "holds" information on all paths of length $n+1$ starting in edge i and ending in edge j.

$$
\left(F^{n}\right)_{i, j}=\sum_{\substack{\left(i=j_{0}, j_{1}, \ldots, j_{n}=j\right) \\ \text { a path } \\ \text { in } G}} f_{i=j_{0}, j_{1} f_{j_{1}, j_{2}} \cdots f_{j_{n-1}, j_{n}=j}}
$$

G being cycle free $F^{N}=0$ for some big enough N.
$I+F+\cdots+F^{N-1}$ holds information on all paths of any length.

Modification of network. In original network two sources at s_{1} and one source at s_{2}.

In modified network the $a_{i, j}$'s and the $b_{i, j}^{\left(r_{l}\right)}$,s from the original network plays the same role as the $f_{i, j}$'s

Transfer matrix

Lemma:
$M^{\left(r_{l}\right)}=A\left(I+F+\cdots+F^{N-1}\right) B^{\left(r_{l}\right)}$
holds information on all paths from s^{\prime} to $\left\{r_{1}^{(I)}, \ldots, r_{h}^{(I)}\right\}$

From this we derive:
Theorem: $\left(X_{1}, \ldots, X_{h}\right) M^{\left(r_{1}\right)}=\left(Z_{1}^{\left(r_{1}\right)}, \ldots Z_{h}^{\left(r_{1}\right)}\right)$
$M^{\left(r_{1}\right)}$ is called the transfer matrix for r_{l}

Transfer polynomial

For successful encoding/decoding we require $M^{\left(r_{1}\right)}=\cdots=M^{\left(r_{|R|}\right)}=I$

Relaxed requirement:
$\operatorname{det}\left(M^{\left(r_{1}\right)}\right) \neq 0$ for $I=1 \ldots|R|$
Success iff
$\prod_{l=1 \ldots \ldots|R|} \operatorname{det}\left(M^{(r)}\right) \neq 0$
Considered as a polynomial in the $a_{i, j}$'s, $f_{i, j}$'s and $b_{i, j}^{\left(r_{1}\right)}$'s this product is called the transfer polynomial.

Transfer polynomial

For successful encoding/decoding we require $M^{\left(r_{1}\right)}=\cdots=M^{\left(r_{|R|}\right)}=I$

Relaxed requirement: $\operatorname{det}\left(M^{\left(r_{1}\right)}\right) \neq 0$ for $I=1, \ldots,|R|$.

Success iff
$\prod_{l=1, \ldots,|R|} \operatorname{det}\left(M^{\left(r_{l}\right)}\right) \neq 0$
Considered as a polynomial in the $a_{i, j}$'s, $f_{i, j}$'s and $b_{i, j}^{\left(r_{i}\right)}$'s this product is called the transfer polynomial.

Transfer polynomial

For successful encoding/decoding we require $M^{\left(r_{1}\right)}=\cdots=M^{\left(r_{|R|}\right)}=I$

Relaxed requirement: $\operatorname{det}\left(M^{\left(r_{1}\right)}\right) \neq 0$ for $I=1, \ldots,|R|$.

Success iff
$\prod_{l=1, \ldots,|R|} \operatorname{det}\left(M^{\left(r_{l}\right)}\right) \neq 0$
Considered as a polynomial in the $a_{i, j}$'s, $f_{i, j}$'s and $b_{i, j}^{\left(r_{1}\right)}$'s this product is called the transfer polynomial.

Topological meaning of $\operatorname{det} M^{r}$

Theorem: The permanent $\operatorname{per}\left(M^{\left(r_{l}\right)}\right)$ is the sum of all monomial expressions in the $a_{i, j}$'s, $f_{i, j}$'s and $b_{i, j}^{\left(r_{l}\right)}$'s which correspond to a flow of size h from s^{\prime} to $\left\{r_{1}^{(I)}, \ldots, r_{h}^{(I)}\right\}$ in the modified graph.

Proof: Apply the lemma carefully.

As a consequence $\operatorname{det}\left(M^{\left(r_{l}\right)}\right)$ is a linear combination of the
expressions corresponding to flows. The coefficients being 1 or -1 .
In the transfer polynomial $\prod_{/=1, \ldots,|R|} \operatorname{det}\left(M^{(r)}\right)$ every monomial corresponds to a flow system.

Coefficients are integers
which in \mathbf{F}_{q} becomes elements in F_{p}, p being the characteristic.

Topological meaning of $\operatorname{det} M^{r}$

Theorem: The permanent $\operatorname{per}\left(M^{\left(r_{l}\right)}\right)$ is the sum of all monomial expressions in the $a_{i, j}$'s, $f_{i, j}$'s and $b_{i, j}^{\left(r_{l}\right)}$,s which correspond to a flow of size h from s^{\prime} to $\left\{r_{1}^{(I)}, \ldots, r_{h}^{(I)}\right\}$ in the modified graph.

Proof: Apply the lemma carefully.

As a consequence $\operatorname{det}\left(M^{\left(r_{1}\right)}\right)$ is a linear combination of the expressions corresponding to flows. The coefficients being 1 or -1 .

In the transfer polynomial $\prod_{l=1, \ldots,|R|} \operatorname{det}\left(M^{\left(r_{l}\right)}\right)$ every monomial corresponds to a flow system.

Coefficients are integers which in \mathbf{F}_{q} becomes elements in \mathbf{F}_{p}, p being the characteristic.

Main theorem on linear network coding

Terms MAY cancel out when taking the product of the $\operatorname{det}\left(M^{\left(r_{l}\right)}\right)$'s.

If all $\operatorname{det}\left(M^{\left(r_{l}\right)}\right)$'s are different from 0 then so is the transfer polynomial.

Theorem: A multicast problem is solvable iff the graph contains a flow system of size h. If solvable then solvable with linear network coding whenever $q \geq \mid R$

Proof (almost): Necessity follows from unicast considerations. Assume a flow system exists. The transfer polynomial is non-zero and no indeterminate appears in power exceeding $|R|$. Therefore if $q>|R|$ then over \mathbf{F}_{q} a non-zero solution exists according to the Schwarts-Zippel bound)

Main theorem on linear network coding

Terms MAY cancel out when taking the product of the $\operatorname{det}\left(M^{\left(r_{l}\right)}\right)^{\prime}$ s.

If all $\operatorname{det}\left(M^{\left(r_{l}\right)}\right)$'s are different from 0 then so is the transfer polynomial.

Theorem: A multicast problem is solvable iff the graph contains a flow system of size h. If solvable then solvable with linear network coding whenever $q \geq|R|$.

Proof (almost): Necessity follows from unicast considerations. Assume a flow system exists. The transfer polynomial is non-zero and no indeterminate appears in power exceeding $|R|$. Therefore if $q>|R|$ then over \mathbf{F}_{q} a non-zero solution exists according to the Schwarts-Zippel bound).

Global coding vectors

In linear network coding we always have
$Y(i)=c_{1} X_{1}+\cdots+c_{h} X_{h}$ for some $c_{1}, \ldots, c_{h} \in \mathbf{F}_{q}$.
We shall call $\left(c_{1}, \ldots, c_{h}\right)$ the global coding vector for edge i.

A receiver that does not know how encoding was done can learn how to decode (if possible) as follows.

\square

These generate the global coding vectors at each edge including the in edges of r_{1}.

If the received global coding vectors span \mathbf{F}_{q}^{h} then proper $b_{i, j}^{\left(r_{1}\right)}$'s can be found.

Global coding vectors

In linear network coding we always have
$Y(i)=c_{1} X_{1}+\cdots+c_{h} X_{h}$ for some $c_{1}, \ldots, c_{h} \in \mathbf{F}_{q}$.
We shall call $\left(c_{1}, \ldots, c_{h}\right)$ the global coding vector for edge i.

A receiver that does not know how encoding was done can learn how to decode (if possible) as follows.

Senders inject into the system h message vectors $(1,0, \cdots, 0),(0,1,0 \ldots, 0), \ldots,(0, \ldots, 0,1)$.

These generate the global coding vectors at each edge including the in edges of r_{1}.

If the received global coding vectors span \mathbf{F}_{q}^{h} then proper $b_{i, j}^{\left(r_{1}\right) \text { 's }}$ can be found.

Global coding vectors

In linear network coding we always have
$Y(i)=c_{1} X_{1}+\cdots+c_{h} X_{h}$ for some $c_{1}, \ldots, c_{h} \in \mathbf{F}_{q}$.
We shall call $\left(c_{1}, \ldots, c_{h}\right)$ the global coding vector for edge i.
A receiver that does not know how encoding was done can learn how to decode (if possible) as follows.

Senders inject into the system h message vectors $(1,0, \cdots, 0),(0,1,0 \ldots, 0), \ldots,(0, \ldots, 0,1)$.

These generate the global coding vectors at each edge including the in edges of r_{1}.

If the received global coding vectors span \mathbf{F}_{q}^{h} then proper $b_{i, j}^{\left(r_{1}\right)}$,s can be found.

Jaggi-Sanders algorithm

Jaggi-Sanders algorithm takes as input a solvable multicast problem.
It add a new source s^{\prime} and moves all processes to this point and add edges e_{1}, \ldots, e_{h} from s^{\prime} to S.
In the extended graph a flow system is found.
The algorithm for every receiver keeps a list of edges corresponding to a cut.

Also it updates along the way encoding coefficients in such a way that the global coding vectors corresponding to any of the $|R|$ cuts at any time span the whole of \mathbf{F}_{q}^{h}.

Edges in the flow system are visited according to an ancestral ordering.

In every update at most one edge is replaced in a given cut. $\overline{\text { B }}$. ๑のc

The Jaggi-Sanders algorithm cont.

Lemma 1.1: Given a basis $\left\{\vec{b}_{1}, \ldots, \vec{b}_{h}\right\}$ for \mathbf{F}_{q}^{h} and $\vec{c} \in \mathbf{F}_{q}^{h}$,
there is exactly one choice of $a \in \mathbf{F}_{q}$ such that $\vec{c}+a \vec{b}_{h} \in \operatorname{span}_{\mathbf{F}_{q}}\left\{\vec{b}_{1}, \ldots, \vec{b}_{h-1}\right\}$.

From the Jaggi-Sanders algoritm we get $q \geq|R|$ is enough!!! (the zero-solution does not work for any receiver)

Random network coding

In random network coding a (possible empty) subset of the $a_{i, j}{ }^{\prime} s, f_{i, j}{ }^{\prime} s$ are chosen a priori in such a way that the resulting network coding problem is still solvable.

Remaining encoding coefficients are chosen in a distributed manner.
They are chosen independently by uniform distribution.
The transfer polynomial with the a priori chosen coefficients plugged in considered as a polynomial with coefficients in $F_{q}\left(b_{i, j}^{(r)} s\right)$, is called the a priori transfer polynomial.

Random network coding

In random network coding a (possible empty) subset of the $a_{i, j}{ }^{\prime} s, f_{i, j}{ }^{\prime} s$ are chosen a priori in such a way that the resulting network coding problem is still solvable.

Remaining encoding coefficients are chosen in a distributed manner.
They are chosen independently by uniform distribution.
The transfer polynomial with the a priori chosen coefficients plugged in considered as a polynomial with coefficients in $\mathbf{F}_{q}\left(b_{i, j}^{(r)^{\prime}} s\right)$, is called the a priori transfer polynomial.

Success probability

Assume the a priori transfer polynomial F is non-zero.
Let $X_{1}^{i_{1}} \ldots X_{m}^{i_{m}}$ be its leading monomial with respect to \prec. The number of combinations of $a_{i, j}{ }^{\prime} s, f_{i, j}{ }^{\prime} s$ that plugged into F give a non-zero element in $\mathbf{F}_{q}\left(b_{i, j}^{(r)} s\right)$ is at least $\left(q-i_{1}\right) \cdots\left(q-i_{m}\right)$

If q is big enough this is a possitive number.
Recall, $b_{i, j}^{\left(r_{1}\right)}$ appears in power at most 1
For each of the above solutions:
$b_{i, i}^{\left(r_{1}\right)}$ can be chosen such that F evaluates to non-zero in F_{q}.
In conclussion:
$P_{\text {succ }} \geq\left(q-i_{1}\right)$
$\left(q-i_{m}\right)=P_{\text {FP2 }}$

Success probability

Assume the a priori transfer polynomial F is non-zero.
Let $X_{1}^{i_{1}} \ldots X_{m}^{i_{m}}$ be its leading monomial with respect to \prec. The number of combinations of $a_{i, j}{ }^{\prime} s, f_{i, j}{ }^{\prime} s$ that plugged into F give a non-zero element in $\mathbf{F}_{q}\left(b_{i, j}^{(r)} s\right)$ is at least $\left(q-i_{1}\right) \cdots\left(q-i_{m}\right)$

If q is big enough this is a possitive number.
Recall, $b_{i, j}^{\left(r_{1}\right)}$ appears in power at most 1.
For each of the above solutions:
$b_{i, j}^{\left(r_{1}\right)}$ can be chosen such that F evaluates to non-zero in \mathbf{F}_{q}.

In conclussion:

Success probability

Assume the a priori transfer polynomial F is non-zero.
Let $X_{1}^{i_{1}} \ldots X_{m}^{i_{m}}$ be its leading monomial with respect to \prec. The number of combinations of $a_{i, j}{ }^{\prime} s, f_{i, j}{ }^{\prime} s$ that plugged into F give a non-zero element in $\mathbf{F}_{q}\left(b_{i, j}^{(r)} s\right)$ is at least $\left(q-i_{1}\right) \cdots\left(q-i_{m}\right)$

If q is big enough this is a possitive number.
Recall, $b_{i, j}^{\left(r_{1}\right)}$ appears in power at most 1.
For each of the above solutions:
$b_{i, j}^{\left(r_{1}\right)}$ can be chosen such that F evaluates to non-zero in \mathbf{F}_{q}.
In conclussion: $\quad P_{\text {succ }} \geq\left(q-i_{1}\right) \cdots\left(q-i_{m}\right)=P_{\text {FP2 }}$

Success probability - cont.

Any monomial in transfer polynomial corresponds to a flow system

$$
\begin{aligned}
P_{\text {succ }} & \geq \min \left\{\left(q-i_{1}\right) \cdots\left(q-i_{m}\right) \mid X_{1}^{i_{1}} \cdots X_{m}^{i_{m}}\right. \text { corresponds } \\
& =P_{\mathrm{FP} 1} \\
& \text { to a flow system in } G\}
\end{aligned}
$$

Note

- not all flow systems need to appear in transfer polynomial
- not all monomials can be chosen as leading

Success probability - cont.

Lemma 1.2: Let $F \in k\left[X_{1}, \ldots, X_{m}\right] \backslash\{0\}$ where k is a field containing \mathbf{F}_{q}. Assume all monomials $X_{1}^{i_{1}} \cdots X_{m}^{i_{m}}$ in the support of F satisfies

1. $j_{1}, \ldots, j_{m} \leq d$, where d is some fixed number $d \leq q$.
2. $j_{1}+\cdots+j_{m} \leq d N$ for some fixed integer N with $N \leq m$

The probability that F evaluates to a non-zero value when $\left(X_{1}, \ldots, X_{m}\right) \in \mathbf{F}_{q}^{m}$ is chosen by random (uniformly) and is plugged into F is at least

$$
\left(\frac{q-d}{q}\right)^{N}
$$

Proof 1: A lot of technical lemmas and the Schwartz-Zippel bound.

Proof 2: The footprint bound plus one simple observation.

Success probability - cont.

Every monomial in transfer polynomial comes from a flow system $\mathcal{F}=\left(F_{1}, \ldots, F_{|R|}\right)$. Consider all possibe flows (not systems).

Let η^{\prime} be the maximal number of encoding coefficients not chosen a priori. Then for all monomials we have cond. 1 and cond. 2 with
$d=|R|$ and $N=\eta^{\prime}$
We get

$$
P_{\text {succ }} \geq\left(\frac{q-|R|}{q}\right)^{\eta^{\prime}}=P_{\mathrm{Ho} 2}
$$

Clearly $\eta^{\prime} \leq|E|$ which gives

Success probability - cont.

Every monomial in transfer polynomial comes from a flow system $\mathcal{F}=\left(F_{1}, \ldots, F_{|R|}\right)$. Consider all possibe flows (not systems).

Let η^{\prime} be the maximal number of encoding coefficients not chosen a priori. Then for all monomials we have cond. 1 and cond. 2 with
$d=|R|$ and $N=\eta^{\prime}$
We get

$$
P_{\text {succ }} \geq\left(\frac{q-|R|}{q}\right)^{\eta^{\prime}}=P_{\mathrm{Ho} 2}
$$

Clearly $\eta^{\prime} \leq|E|$ which gives

$$
P_{\text {succ }} \geq\left(\frac{q-|R|}{q}\right)^{|E|}=P_{\mathrm{Ho} 1}
$$

Success probability - cont.

$$
P_{\mathrm{Ho} 1} \leq P_{\mathrm{H} \circ 2} \leq P_{\mathrm{FP} 1} \leq P_{\mathrm{FP} 2}
$$

Applying the Jaggi-Sanders point of view one get "flow-bounds". These are always better than $P_{\mathrm{Ho} 2}$.

Combinatorial approach:

- Jaggi-Sanders visit edges in flowsystem one by one. - Alternative approach by Balli, Yan and Zhang: Visit vertices in flowsystem one by one. Gives bound in terms of number of vertices.

Success probability - cont.

$$
P_{\mathrm{Ho} 1} \leq P_{\mathrm{H} \circ 2} \leq P_{\mathrm{FP} 1} \leq P_{\mathrm{FP} 2}
$$

Applying the Jaggi-Sanders point of view one get "flow-bounds". These are always better than $P_{\mathrm{Ho} 2}$.

Combinatorial approach:

- Jaggi-Sanders visit edges in flowsystem one by one.
- Alternative approach by Balli, Yan and Zhang: Visit vertices in flowsystem one by one. Gives bound in terms of number of vertices.

Some general remarks

The use of algebra in Mathematics for Communication

- Algebra useful when constructing new objects.
- Algebra maybe cannot always compete with combinatorial methods when analyzing given combinatorial objects.
- Zeros over \mathbb{F}_{q} of a polynomial, counted with multiplicity. Best strategy at the moment = combinatorial.

