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PART 1: THE TOOLS

ILLUSTRATED WITH EXAMPLES OF POLYNOMIAL
CODES
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The tool

�X = (X1, . . . ,Xm)
F1(�X ), . . . ,Fs(�X ) ∈ F[�X ]

� Question: How many zeros do F1, . . . ,Fs have in common?

� Question: I = 〈F1(�X ), . . . ,Fs(�X )〉. How large is VF(I )?

Tools:

� Footprint bound.

� Schwartz-Zippel bound (Ore-bound).
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Monomial orderings

A monomial ordering ≺ is a total ordering on {�X �α|�α ∈ N
m
0 } such

that

� �X �α ≺ �X
�β ⇒ �X �α+�γ ≺ �X

�β+�γ .

� Every subset has a unique smallest element.

Examples: ≺lex , ≺glex , ≺grlex , ≺wdeglex .

X 2Y 3 ≺glex XY 5 because 5 < 6.
X 2Y 3 ≺glex X 3Y 2 because 5 = 5 and 2 < 3.
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Footprint

I ⊆ F[�X ].

Δ≺(I ) = {�X �α | �X �α is not leading monomial

of any polynomial in I}

If I = 〈F (�X )〉 then
Δ≺(I ) = {�X �α | �X �α does not divide lm(F )}.

More polynomials = analyzis more involved.
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The main tools

Theorem:
{M + I | M ∈ Δ≺(I )} constitutes a basis for F[�X ]/I as a
vectorspace.

Corollary:
|VF(I )| ≤ |Δ≺(I )| (whenever latter is finite).

Proof: Consider {P1, . . . ,Pn} ⊆ VF(I ) and define
ev : F[�X ]/I → F

n by ev(F + I ) = (F (P1), . . . ,F (Pn)).
Lagrange-polynomial type of argument proves that surjective.
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An importan special case

Corollary: Let F (�X ) ∈ Fq[�X ], lm(F ) = X i1
1 · · ·X im

m . Then F has at
most qm −∏m

s=1(q − is) zeros.

Proof:

number of zeros ≤ |Δ≺(〈F (�X )〉+ 〈X q
1 − X1, . . . ,X

q
m − Xm〉)|

≤ |{�X �α|0 ≤ α1 < q, . . . , 0 ≤ αm < q, �X
�i � |�X �α}|.

Generalizes in a straightforward manner to any finite point
ensemble S1 × · · · × Sm.
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RM codes and Massey-Costello-Justesen codes

8 7 6 5 4 3 2 1
16 14 12 10 8 6 4 2
24 21 18 15 12 9 6 3
32 28 24 20 16 12 8 4
40 35 30 25 20 15 10 5
48 42 36 30 24 18 12 6
56 49 42 35 28 21 14 7
64 56 48 40 32 24 16 8

RM8(5, 2) = {ev(F ) | deg F ≤ 5} is [64, 21, 24]

SpanF8

(
{ev(�X �α) | deg �X �α ≤ 5} ∪ {X 4Y 2,X 2Y 4}

)
is [64, 23, 24]

RM8(9, 2) = {ev(F ) | deg F ≤ 9} is [64, 49, 6]

SpanF8

(
{ev(�X �α) | deg �X �α ≤ 9}

∪{X 4Y 6,X 5Y 5,X 5Y 6,X 6Y 4,X 6Y 5}
)

is [64, 54, 6]
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Weighted Reed-Muller codes

Point set S1 × · · · × Sm, Si ⊆ Fq.

F1(�X ) =
∏

x∈S1(X1 − x), . . . ,Fm(�X ) =
∏

x∈Sm(Xm − x).

Iq = 〈F1(�X ), . . . ,Fm(�X )〉.

Δ(Iq) = {X i1
1 · · ·X im

m | 0 ≤ i1 < |S1|, . . . , 0 ≤ im < |Sm|}.

RM(S1, . . . ,Sm, u,w1, . . .wm)

= SpanFq
{ev(X i1

1 · · ·X im
m ) | i1w1 + · · ·+ imwm ≤ u,

0 ≤ i1 < |S1|, . . . , 0 ≤ im < |Sm|}
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Optimal choice of weights

The case |S1| = 18, |S2| = 6:

s2 − 1

s1 − s1
s2 s1 − 1

Region I, region II, region III.
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Optimally weighted Reed-Muller codes

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

k

n

d

n

32 × 32
64 × 16
128 × 8
256 × 4
512 × 2

Some improvement in region I.
Substantial improvement in region II. Region II increases.
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A combinatorial result

Proposition: Consider S × · · · × S (finite) and F (�X ) ∈ F[�X ]. Let

lm(F ) = �X �α with respect to LEXICOGRAPHIC ordering. The
number of zeros is at most

|S |m −
m∏
t=1

(|S | − αt).

Proof: (by induction after m).
Reformulate result as “number of non-zeros is at least...”
Clearly true for m = 1.
Induction step: Write

F (�X ) = F0(X1, . . . ,Xm−1) + F1(X1, . . . ,Xm−1)Xm +

· · · + Fαm(X1, . . . ,Xm−1)X
αm
m .
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Schwartz-Zippel bound (Ore bound)

Corollary:

Consider finite point ensemble S × · · · × S and F (�X ) of degree
t < |S |. Then F has at most t|S |m−1 zeros.
Proof:

max{|S |m −
m∏
s=1

(|S | − αs) |
m∑
s=1

αs ≤ t}

= |S |m − |S |m−1(|S | − t)

= t|S |m−1.

(worst case is on the border).
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Second smallest weight of RM codes

Theorem:
If I is radical and F is algebraically closed then |VF(I )| = |Δ≺(I )|
(whenever latter is finite).

Fact: Iq = 〈F1(�X , . . . ,Fs(�X ),X q
1 − X1, . . . ,X

q
m − Xm〉 is radical.

To calculate exact footprint requires Buchberger’s algorithm.

Gives closed formula descriptions of second smallest weight of any
RMq(s, 2).
Translates into closed formula descriptions for any RMq(s,m).
Establishing the weights in general is a very hard problem.
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PART 2: ONE-POINT ALGEBRAIC GEOMETRIC
CODES
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One-point algebraic geometric codes

P1, . . . ,Pn,Q rational places of function field over Fq.

To construct CL(D = P1 + · · ·+ Pn, vQ) we need basis for:
∪v
s=0L(sQ) ⊆ ⋃∞

s=0 L(sQ).

Everything, can be translated into affine variety description:

∪∞
s=0L(sQ) = Fq[X1, . . . ,Xm]/I {P1, . . . ,Pn} ⊆ VFq(I ).

Affine variety description includes determination of minimum
distance via footprint bound.
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Weights versus valuation

Weierstrass semigroup:
H(Q) = −νQ

( ∪∞
s=0 L(sQ)

)
= 〈w1, . . . ,wm〉.

Definition: Given weights w1, . . . ,wm define

w(�X �α) = �α · (w1, . . . ,wm). Define ≺w by �X �α ≺w
�X

�β if

� w(�X �α) < w(�X
�β)

� or w(�X �α) = w(�X
�β) but �X �α ≺M �X

�β

(≺M can be anything, for instance ≺lex)

Example: w(X ) = q,w(Y ) = q + 1, ≺M=≺lex with X ≺lex Y .
F (X ,Y ) = X q+1 − Y q − Y , w(X q+1) = w(Y q) = q(q + 1) and
lm(F ) = Y q .
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Order domain conditions

I = 〈F1(�X ), . . . ,Fs(�X )〉 ⊆ F[�X ] and w1, . . . ,wm satisfy ODC if:

1. {F1, . . . ,Fs} is a Gröbner basis w.r.t. ≺w .

2. Fi , i = 1, . . . , s contains exactly two monomials of highest
weight.

3. No two monomials in Δ≺w (〈F1, . . . ,Fs〉) are of the same
weight.

Example: I = 〈X q+1 − Y q − Y 〉 ⊆ Fq2[X ,Y ]

1. OK

2. OK

3. Δ≺w (I ) = {X iY j | 0 ≤ j < q, 0 ≤ i} OK
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Presentation Theorem

Theorem (Miura, Pellikaan):

∪∞
s=0L(sQ) = F[�X ]/I where I and corresponding weights satisfy

order domain conditions.

Corollary:

CL(P1 + · · · + Pn, vQ)

= SpanFq
{(M(P1), . . . ,M(Pn)) | M ∈ Δ≺w (I ),w(M) ≤ v}.
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Dimension and generator matrix

Remember in general {M + J | M ∈ Δ≺(J)} is a basis for F[�X ].

Define Iq = I + 〈X q
1 − X1, . . . ,X

q
m − Xm〉.

ev : Fq[�X ](Iq → F
n
q given by ev(F + Iq) = (F (P1), . . . ,F (Pn)) is a

bijection.

CL(P1 + · · ·+ Pn, vQ)

= SpanFq
{(M(P1), . . . ,M(Pn)) | M ∈ Δ≺w (Iq),w(M) ≤ v}.

Dimension can be read off directly. So can generator matrix.
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Hermitian function field

I9 = 〈X 4 − Y 3 − Y ,X 9 − X ,Y 9 − Y 〉 ⊆ F9[X ,Y ].

8 11 14 17 20 23 26 29 32 35 38 · · ·
4 7 10 13 16 19 22 25 28 31 34 · · ·
0 3 6 9 12 15 18 21 24 27 30 · · ·

H∗(Q) = w(Δ≺w (I9)) ⊆ w(Δ≺w (I )) = H(Q).

What about minimum distance?
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Applying the footprint bound

Let I = 〈F1(�X ), . . . ,Fs(�X )〉 and w1, . . . ,wm satisfy ODC.

Code word �c = ev(F + Iq) where Supp(F ) ⊆ Δ≺w (Iq).

Hamming weight equals
n − |Δ≺w (〈F (�X )〉+ Iq)|.

For every monomial M

lm
(
MF (�X ) rem {F1(�X ), . . . ,Fs(�X )})

DOES NOT BELONG TO Δ≺w (〈F (�X )〉+ Iq).

We can easily detect the above leading monomial!

Olav Geil, Aalborg University, Denmark n applications of the footprint bound (n ≥ 3)



Applying the footprint bound

Let I = 〈F1(�X ), . . . ,Fs(�X )〉 and w1, . . . ,wm satisfy ODC.

Code word �c = ev(F + Iq) where Supp(F ) ⊆ Δ≺w (Iq).

Hamming weight equals
n − |Δ≺w (〈F (�X )〉+ Iq)|.

For every monomial M

lm
(
MF (�X ) rem {F1(�X ), . . . ,Fs(�X )})

DOES NOT BELONG TO Δ≺w (〈F (�X )〉+ Iq).

We can easily detect the above leading monomial!
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The weights tell it all...

w(lm(MF (�X )) = w(lm
(
MF (�X ) rem {F1(�X ), . . . ,Fs(�X )}))

because:

� No two monomials in F (�X ) are of the same weight (as no two
monomials in Δ≺w (I ) are of the same weight).

� Every Fi(�X ) has exactly two monomials of highest weight.
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Hamming weight of �c

In conclusion we can estimate

wH(�c)

= n − |Δ≺w (〈F (�X )〉+ Iq)|
= |Δ≺w (Iq)\Δ≺w (〈F (�X )〉+ Iq)|
≥ |w(Δ≺w (Iq)) ∩ {w(M · lm(F ))|M a monomial}| (1)

≥ n − |H(Q)\(w(lm(F )) + H(Q)
)|

= n − w(lm(F )).

Last line corresponds to Goppa bound. Last equality comes from
semigroup theory.
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Minimum distance of Hermitian codes

I9 = 〈X 4 − Y 3 − Y ,X 9 − X ,Y 9 − Y 〉 ⊆ F9[X ,Y ].

19 16 13 10 7 4 3 2 1
23 20 17 14 11 8 6 4 2
27 24 21 18 15 12 9 6 3

Green=Goppa bound, Blue=Equation 1.

Improved code construction straight forward.

Everything works for general one-poing algebraic geometric code.
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PART 3: SMALL-BIAS SPACES
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Small-bias space

For program verification etc. we need a probability space

1. Random binary vector of length k .

2. Statistical property close to F
k
2 with uniform distribution.

3. Size of X much smaller than |Fk
2 |.
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Small-bias space - definition

Definition: A multiset X ⊆ F
k
2 is called an ε-bias space if

1

|X |

∣∣∣∣∣
∑
�x∈X

(−1)
∑

i∈T xi

∣∣∣∣∣ ≤ ε

for every T ⊆ {1, . . . , k}.

Interpretation: If �x appears i(�x) times in X then

Pr(�X = �x) =
i(�x)

|X | .
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Example

Generator matrix for Walsh-Hadamard code

⎡
⎢⎢⎣

0 1 0 0 0 1 1 1 0 0 0 1 1 1 0 1
0 0 1 0 0 1 0 0 1 1 0 1 1 0 1 1
0 0 0 1 0 0 1 0 1 0 1 1 0 1 1 1
0 0 0 0 1 0 0 1 0 1 1 0 1 1 1 1

⎤
⎥⎥⎦

Columns constitute an 0-bias space (actually X = F
4
2)
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From code to small-bias space

⎡
⎢⎢⎣

0 1 0 0 0 1 1 1 0 0 0 1 1 1 0 1
0 0 1 0 0 1 0 0 1 1 0 1 1 0 1 1
0 0 0 1 0 0 1 0 1 0 1 1 0 1 1 1
0 0 0 0 1 0 0 1 0 1 1 0 1 1 1 1

⎤
⎥⎥⎦

A code is ε-balanced if for �c �= �0: 1−ε
2 ≤ wH (�c)

n ≤ 1+ε
2 .

ε− bias set
X = {�x1, . . . , �xn} ⇔ ε− balanced code

G = [�x1, . . . , �xn]
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A standard construction

Construction:
Outer code: [N,K ,D]2s .
Inner code: Walsh-Hadamard.
Concatenated code: ε = N−D

N , n = N2s , k = Ks.

� Reed-Solomon codes: X ⊆ F
Ω(k)
2 and |X | = O

(
k2

ε2 log2(k/ε)

)
.

� AG-codes with degG > g (Drinfeld-Vladut)...

� Hermitian codes with degG < g (Ben-Aroy and Ta-Shma)...

� Norm-Trace codes with degG < g ...

� Product of Hermitian codes with degG > g ...

� Gilbert-Varhamov bound...

� LP-bound...
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Asymptotic behaviour

Let ε = k−α, k → ∞ and consider logk(|X |) = f (α)

For α < 0.5 AG-construction requires Garcia-Stichtenoth towers.
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Comparison with Norm-Trace codes
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Product of Hermitian codes

� q-ary Reed-Muller codes are products of Reed-Solomon codes.

� Remember improvement to RM-construction
(Massey-Costello-Justesen).

� We consider similar construction with product of Hermitian
codes.
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Product of Hermitian order domains

I (2) = 〈X q+1
1 − Y q

1 − Y1,X
q+1
2 − Y q

2 − Y2〉

I
(2)
q2

= 〈X q+1
1 − Y q

1 − Y1,X
q+1
2 − Y q

2 − Y2,X
q2

1 − X1,

Y q2

1 − Y1,Y
q2

2 − Y2,X
q2

2 − X2〉

VFq2
(I

(2)
q2

) = VFq2
(Iq2)× VFq2

(Iq2) = {Q1, . . . ,Qq6}

Olav Geil, Aalborg University, Denmark n applications of the footprint bound (n ≥ 3)



Monomial ordering ≺w

w (2)(X1) = (q, 0), w (2)(Y1) = (q + 1, 0),w (2)(X2) = (0, q),
w (2)(Y2) = (0, q + 1).

≺
N2
0
any monomial ordering on N

2
0.

X
α
(1)
1

1 Y
β
(1)
1

1 X
α
(2)
1

2 Y
β
(2)
1

2 ≺(2)
w X

α
(1)
2

1 Y
β
(1)
2

1 X
α
(2)
2

2 Y
β
(2)
2

2

if one of the following two conditions holds:

1. w (2)(X
α
(1)
1

1 Y
β
(1)
1

1 X
α
(2)
1

2 Y
β
(2)
1

2 ) ≺
N2
0
w (2)(X

α
(1)
2

1 Y
β
(1)
2

1 X
α
(2)
2

2 Y
β
(2)
2

2 )

2. w (2)(X
α
(1)
1

1 Y
β
(1)
1

1 X
α
(2)
1

2 Y
β
(2)
1

2 ) = w (2)(X
α
(1)
2

1 Y
β
(1)
2

1 X
α
(2)
2

2 Y
β
(2)
2

2 )
but

X
α
(1)
1

1 Y
β
(1)
1

1 X
α
(2)
1

2 Y
β
(2)
1

2 ≺lex X
α
(1)
2

1 Y
β
(1)
2

1 X
α
(2)
2

2 Y
β
(2)
2

2 .

Here, X1 ≺lex Y1 ≺lex X2 ≺lex Y2 is assumed.
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{X q+1
1 − Y q

1 − Y1,X
q+1
2 − Y q

2 − Y2,X
q2

1 − X1,X
q2

2 − X2} is a

Gröbner basis for I
(2)
q2

with respect to ≺w (2)

{X i1
1 Y

j1
1 X i2

2 Y
j2
2 + Iq2 | 0 ≤ i1, i2 < q2, 0 ≤ j1, j2 < q}

a basis for Fq2[X1,Y1,X2,Y2]/I
(2)
q2

.

EV : Fq2[X1,Y1,X2,Y2]/I
(2) → F

q6

q2
is given by

EV(F (X1,Y1,X2,Y2) + I
(2)
q2

) = (F (Q1, ), . . . ,F (Qq6)).
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Value semigroup

Recall, H(Q) Weierstrass semigroup for Q in Hermitian function
field.

Recall, H(Q) = w(Δ≺w (I )) and H∗(Q) = w(Δ≺w (Iq2)).

Define H(2) = H(Q)× H(Q) and
(
H(2)

)∗
= H∗(Q)× H∗(Q). We

have (
H(2)

)∗
= w (2)(Δ≺

w(2)
(I

(2)
q2

))

where no two monomials in Δ≺
w(2)

(I
(2)
q2

) have the same weight.
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Hamming weight

�c = EV(F (X1,Y1,X2,Y2) + I
(2)
q2

) with

Supp(F (X1,Y1,X2,Y2)) ⊆ Δ≺
w(2)

(I
(2)
q2

).

Write λ(2) = (λ1, λ2) = w (2)(lm(F )). We can estimate

|Δ≺
w(2)

(〈F (X1,Y1,X2,Y2)〉+ I
(2)
q2

)| ≤ |H(2) − (λ(2) + H(2))|
≤ q6 − (q3 − λ1)(q

3 − λ2).

Hence, wH(�c) ≥ (q3 − λ1)(q
3 − λ2).
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Code construction

Ẽ (δ) :=

SpanFq2

{
EV(X i1

1 Y
j1
1 X i2

2 Y
j2
2 + I

(2)
q2

) | 0 ≤ i1, i2 < q2, 0 ≤ j1, j2 < q,

(q3 − w(X i1
1 Y

j1
1 ))(q3 − w(X i2

2 Y
j2
2 )) ≥ δ

}
.

d(Ẽ (δ)) ≥ δ.

To estimate dimension use ONLY genus and conductor = 2g .

Translates into calculation of volume.
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Small-bias space from Ẽ (δ)

Theorem:
For any ε, 0 < ε < 1 using codes Ẽ (δ) as outer code one can
construct ε-bias spaces with

X ⊆ F
Ω(k)
2 , |X | = O

((
k

ε+ (1− ε) ln(1− ε)

) 4
3
)
. (2)
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PART 4: LINEAR NETWORK CODING
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Simplest possible network coding problem

s

v1 v3

v2

v4

r1 r2

1 2

3

5

4

76

8 9

Sender s wants to send two messages
a, b ∈ F2 to both receivers r1 and r2
simultaneously.
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Two partial solutions

s s s

v1 v3 v1 v3 v1 v3

v2 v2 v2

v4 v4 v4

r1 r2 r1 r2 r1 r2

1 2

3

5

4

76

8 9

a b

a

b

b

b

b

b

a

a

a

a

The network Flow F1 Flow F2

The flow system is F = {F1,F2}
F1 = {(1, 5), (2, 4, 6, 8)},F2 = {(1, 3, 6, 9), (2, 7)}
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A solution

Routing is insufficient, but problem is solvable

s

v1 v3

v2

v4

r1 r2

a b

a

a

b

ba + b

a + b a + b

Receiver r1 can reconstruct b as a + (a + b)
Receiver r2 can reconstruct a as (a + b) + b
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Linear network coding

·

s

v1 v3

v2

v4

r1 r2

· ·

X1 X2

Y (1) Y (2)

Y (3)

Y (5)

Y (4)

Y (7)Y (6)

Y (8) Y (9)

Z
(1)
1 Z

(1)
2 Z

(2)
1 Z

(2)
2

Alphabet is Fq and coefficients below be-
long to Fq.

Y (j) =
∑

i∈in(j)
fi ,jY (i) +

∑
K(Xi )=tail(j)

ai ,jXi

Z
(rl )
j =

∑
i∈in(rl )

b
(rl )
i ,j Y (i)
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Matrices

A is h × |E |
Ai ,j = ai ,j if K (Xi) = tail(j)
Ai ,j = 0 else

F is |E | × |E |
Fi ,j = fi ,j if i ∈ in(j)
Fi ,j = 0 else

For l = 1, . . . , |R |

B (rl ) is |E | × h

B
(rl )
i ,j = b

(rl )
i ,j if i ∈ in(rl )

B
(rl )
i ,j = 0 else
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Topological meaning of F s

The Fi ,j “holds” information on all paths of length 2 starting in
edge i and ending in edge j .

The (i , j)th entry of F n “holds” information on all paths of length
n + 1 starting in edge i and ending in edge j .

(
F n

)
i ,j

=
∑

(i = j0, j1, . . . , jn = j)
a path
in G

fi=j0,j1fj1,j2 · · · fjn−1,jn=j

G being cycle free FN = 0 for some big enough N.

I + F + · · ·+ FN−1 holds information on all paths of any length.
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s ′

s1 s2 s1 s2

· · · · · · · · · ·

· · · · · · · ·

rl rl

r
(l)
1 r

(l)
2 r

(l)
3

Modification of network. In original network two sources at s1 and
one source at s2.

In modified network the ai ,j ’s and the b
(rl )
i ,j ’s from the original

network plays the same role as the fi ,j ’s
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Transfer matrix

Lemma:
M(rl ) = A(I + F + · · · + FN−1)B (rl )

holds information on all paths from s ′ to {r (l)1 , . . . , r
(l)
h }

From this we derive:

Theorem: (X1, . . . ,Xh)M
(rl ) = (Z

(rl )
1 , . . . Z

(rl )
h )

M(rl ) is called the transfer matrix for rl
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Transfer polynomial

For successful encoding/decoding we require
M(r1) = · · · = M(r|R|) = I

Relaxed requirement:
det(M(rl )) �= 0 for l = 1, . . . , |R |.

Success iff∏
l=1,...,|R| det(M

(rl )) �= 0

Considered as a polynomial in the ai ,j ’s, fi ,j ’s and b
(rl )
i ,j ’s this

product is called the transfer polynomial.
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Topological meaning of detM rl

Theorem: The permanent per(M(rl )) is the sum of all monomial

expressions in the ai ,j ’s, fi ,j ’s and b
(rl )
i ,j ’s which correspond to a flow

of size h from s ′ to {r (l)1 , . . . , r
(l)
h } in the modified graph.

Proof: Apply the lemma carefully.

As a consequence det(M(rl )) is a linear combination of the
expressions corresponding to flows. The coefficients being 1 or −1.

In the transfer polynomial
∏

l=1,...,|R| det(M
(rl )) every monomial

corresponds to a flow system.

Coefficients are integers
which in Fq becomes elements in Fp, p being the characteristic.
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Main theorem on linear network coding

Terms MAY cancel out when taking the product of the
det(M(rl ))’s.

If all det(M(rl ))’s are different from 0 then so is the transfer
polynomial.

Theorem: A multicast problem is solvable iff the graph contains a
flow system of size h. If solvable then solvable with linear network
coding whenever q ≥ |R |.

Proof (almost): Necessity follows from unicast considerations.
Assume a flow system exists. The transfer polynomial is non-zero
and no indeterminate appears in power exceeding |R |. Therefore if
q > |R | then over Fq a non-zero solution exists according to the
Schwarts-Zippel bound).
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Global coding vectors

In linear network coding we always have
Y (i) = c1X1 + · · ·+ chXh for some c1, . . . , ch ∈ Fq.

We shall call (c1, . . . , ch) the global coding vector for edge i .

A receiver that does not know how encoding was done can learn
how to decode (if possible) as follows.

Senders inject into the system h message vectors
(1, 0, · · · , 0), (0, 1, 0 . . . , 0), . . . , (0, . . . , 0, 1).

These generate the global coding vectors at each edge including
the in edges of rl .

If the received global coding vectors span Fh
q then proper b

(rl )
i ,j ’s

can be found.
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Jaggi-Sanders algorithm

Jaggi-Sanders algorithm takes as input a solvable multicast
problem.
It add a new source s ′ and moves all processes to this point and
add edges e1, . . . , eh from s ′ to S .
In the extended graph a flow system is found.

The algorithm for every receiver keeps a list of edges corresponding
to a cut.

Also it updates along the way encoding coefficients in such a way
that the global coding vectors corresponding to any of the |R | cuts
at any time span the whole of Fh

q.

Edges in the flow system are visited according to an ancestral
ordering.

In every update at most one edge is replaced in a given cut.
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The Jaggi-Sanders algorithm cont.

Lemma 1.1: Given a basis {�b1, . . . ,�bh} for Fh
q

and �c ∈ Fh
q,

there is exactly one choice of a ∈ Fq such that

�c + a�bh ∈ spanFq
{�b1, . . . ,�bh−1}.

From the Jaggi-Sanders algoritm we get q ≥ |R | is enough!!!
(the zero-solution does not work for any receiver)
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Random network coding

In random network coding a (possible empty) subset of the
ai ,j

′s, fi ,j ′s are chosen a priori in such a way that the resulting
network coding problem is still solvable.

Remaining encoding coefficients are chosen in a distributed
manner.
They are chosen independently by uniform distribution.

The transfer polynomial with the a priori chosen coefficients
plugged in considered as a polynomial with coefficients in

Fq(b
(r)
i ,j

′
s), is called the a priori transfer polynomial.
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Success probability

Assume the a priori transfer polynomial F is non-zero.

Let X i1
1 · · ·X im

m be its leading monomial with respect to ≺.
The number of combinations of ai ,j

′s, fi ,j ′s that plugged into F

give a non-zero element in Fq(b
(r)
i ,j

′
s) is at least (q− i1) · · · (q− im)

If q is big enough this is a possitive number.

Recall, b
(rl )
i ,j appears in power at most 1.

For each of the above solutions:
b
(rl )
i ,j can be chosen such that F evaluates to non-zero in Fq.

In conclussion: Psucc ≥ (q − i1) · · · (q − im) = PFP2
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Success probability - cont.

Any monomial in transfer polynomial corresponds to a flow system

Psucc ≥ min{(q − i1) · · · (q − im) | X i1
1 · · ·X im

m corresponds

to a flow system in G}
= PFP1

Note

� not all flow systems need to appear in transfer polynomial

� not all monomials can be chosen as leading
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Success probability - cont.

Lemma 1.2: Let F ∈ k[X1, . . . ,Xm]\{0} where k is a field
containing Fq. Assume all monomials X i1

1 · · ·X im
m in the support of

F satisfies

1. j1, . . . , jm ≤ d , where d is some fixed number d ≤ q.

2. j1 + · · ·+ jm ≤ dN for some fixed integer N with N ≤ m

The probability that F evaluates to a non-zero value when
(X1, . . . ,Xm) ∈ Fm

q is chosen by random (uniformly) and is plugged
into F is at least

(
q − d

q

)N

Proof 1: A lot of technical lemmas and the Schwartz-Zippel bound.

Proof 2: The footprint bound plus one simple observation.
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Success probability - cont.

Every monomial in transfer polynomial comes from a flow system
F = (F1, . . . ,F|R|). Consider all possibe flows (not systems).

Let η′ be the maximal number of encoding coefficients not chosen
a priori. Then for all monomials we have cond. 1 and cond. 2 with

d = |R | and N = η′

We get

Psucc ≥
(
q − |R |

q

)η′

= PHo2

Clearly η′ ≤ |E | which gives

Psucc ≥
(
q − |R |

q

)|E |
= PHo1
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Success probability - cont.

PHo1 ≤ PHo2 ≤ PFP1 ≤ PFP2

Applying the Jaggi-Sanders point of view one get “flow-bounds”.
These are always better than PHo2.

Combinatorial approach:

� Jaggi-Sanders visit edges in flowsystem one by one.

� Alternative approach by Balli, Yan and Zhang: Visit vertices in
flowsystem one by one. Gives bound in terms of number of
vertices.
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Some general remarks
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The use of algebra in Mathematics for Communication

� Algebra useful when constructing new objects.

� Algebra maybe cannot always compete with combinatorial
methods when analyzing given combinatorial objects.

� Zeros over Fq of a polynomial, counted with multiplicity. Best
strategy at the moment = combinatorial.
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