Feng-Rao decoding of primary codes

Olav Geil, Diego Ruano
Aalborg University
Ryutaroh Matsumoto
Tokyo Institute of Technology

DTU, August 2012

In this talk...

- Decoding of primary order domain codes up to half the designed distance given by Andersen-Geil's bound. Procedure: Given basis $\left\{\vec{g}_{1}, \ldots, \vec{g}_{n}\right\}$ for \mathbb{F}_{q}^{n}. Write $G=\left[\vec{g}_{1}, \ldots, \vec{g}_{n}\right]^{T}$ and let $\vec{h}_{n}, \ldots, \vec{h}_{1}$ be the columns of $H=G^{-1}$. For any linear span of \vec{g}_{i} 's apply Feng-Rao decoding to the couple (G, H).
- The description and analyzis of primary code may be given in any (abstract) language, but decoding involves translation to linear algebra.
- The Feng-Rao bound and the bound by Andersen-Geil are consequences of each other (requires TWO bases).
- Strong connection to work by Matsumoto-Miura (2000) and Beelen-Høholdt (2008).

General code formulation

- Bases $\mathcal{B}=\left\{\vec{b}_{1}, \ldots, \vec{b}_{n}\right\}$ and $\mathcal{U}=\left\{\vec{u}_{1}, \ldots, \vec{u}_{n}\right\}$.
- $C(\mathcal{B}, I)=\operatorname{span}_{\mathbb{F}_{q}}\left\{\vec{b}_{i} \mid i \in I\right\}$.
- $L_{-1}=\emptyset, L_{0}=\{\overrightarrow{0}\}, L_{s}=\operatorname{span}_{\mathbb{F}_{q}}\left\{\vec{b}_{1}, \ldots, \vec{b}_{s}\right\}$.
- $\bar{\rho}_{\mathcal{B}}(\vec{v})=s$ if $\vec{v} \in L_{s} \backslash L_{s-1}$.
- (i, j) is WB with respect to $(\mathcal{B}, \mathcal{U})$ if

$$
\bar{\rho}_{\mathcal{B}}\left(\vec{b}_{u} * \vec{u}_{v}\right)<\bar{\rho}_{\mathcal{B}}\left(\vec{b}_{i} * \vec{u}_{j}\right)
$$

holds for all u and v with $1 \leq u \leq i, 1 \leq v \leq j$ and $(u, v) \neq(i, j)$.

- (i, j) is OWB with respect to $(\mathcal{B}, \mathcal{U})$ if

$$
\bar{\rho}_{\mathcal{B}}\left(\vec{b}_{u} * \vec{u}_{j}\right)<\bar{\rho}_{\mathcal{B}}\left(\vec{b}_{i} * \vec{u}_{j}\right)
$$

holds for $u<i$.

Minimum distance

Bases $\mathcal{B}=\left\{\vec{b}_{1}, \ldots, \vec{b}_{n}\right\}$ and $\mathcal{U}=\left\{\vec{u}_{1}, \ldots, \vec{u}_{n}\right\}$.

$$
\begin{array}{r}
\bar{\mu}_{\mathcal{B}}^{\mathrm{WB}}(s)=\#\left\{i \in\{1,2, \ldots, n\} \mid \bar{\rho}\left(\vec{b}_{i} * \vec{u}_{j}\right)=s \text { for some } \vec{u}_{j} \in \mathcal{U}\right. \\
\quad \text { with }(i, j) \text { WB }\} \\
\bar{\sigma}_{\mathcal{B}}^{\mathrm{WB}}(i)=\#\left\{s \in\{1,2, \ldots, n\} \mid \bar{\rho}\left(\vec{b}_{i} * \vec{u}_{j}\right)=s \text { for some } \vec{u}_{j} \in \mathcal{U}\right. \\
\text { with }(i, j) \text { WB }\}
\end{array}
$$

Feng-Rao:
$d\left(C(B, I)^{\perp}\right) \geq \min \left\{\bar{\mu}_{\mathcal{B}}^{\mathrm{WB}}(s) \mid s \in\{1,2, \ldots, n\} \backslash /\right\}$.
Andersen-Geil:
$d(C(B, I)) \geq \min \left\{\bar{\sigma}_{\mathcal{B}}^{\mathrm{WB}}(s) \mid s \in I\right\}$.

Two choices of \mathcal{B}

- $\mathcal{G}=\left\{\vec{g}_{1}, \ldots, \vec{g}_{n}\right\}$ and $\mathcal{H}=\left\{\vec{h}_{1}, \ldots, \vec{h}_{n}\right\}$.
- Assume $\vec{g}_{i} \cdot \vec{h}_{j}=\delta_{i, n-j+1}$.
- $\bar{l}=\{1, \ldots, n\} \backslash\{n-i+1 \mid i \in I\}$.

Keep \mathcal{U} fixed.
Replace \mathcal{B} with \mathcal{G} and consider $C(\mathcal{G}, I)$.
Replace \mathcal{B} with \mathcal{H} and consider $C^{\perp}(\mathcal{H}, \bar{l})$.
We get,

$$
C(\mathcal{G}, I)=C^{\perp}(\mathcal{H}, \bar{l}) .
$$

The bonds are consequences of each other

Lemma: The following statements are equivalent

$$
\begin{aligned}
& \text { 1. } \bar{\rho}_{\mathcal{G}}\left(\vec{g}_{i} * \vec{u}_{j}\right)=k \\
& \text { and }(i, j) \text { is WB with respect to }(\mathcal{G}, \mathcal{U}) . \\
& \text { 2. } \bar{\rho}_{\mathcal{H}}\left(\vec{h}_{n-k+1} * \vec{u}_{j}\right)=n-i+1 \\
& \text { and }(n-k+1, j) \text { is WB with respect to }(\mathcal{H}, \mathcal{U}) .
\end{aligned}
$$

Proposition:

$$
\begin{aligned}
& \text { 1. } \bar{\mu}_{\mathcal{H}}^{\mathrm{WB}}(n-i+1)=\bar{\sigma}_{\mathcal{B}}^{\mathrm{WB}}(i) \\
& \text { 2. } \bar{\mu}_{\mathcal{H}}^{\mathrm{OWB}}(n-i+1)=\bar{\sigma}_{\mathcal{B}}^{\mathrm{OWB}}(i)
\end{aligned}
$$

Above holds also for OWB, but not for WWB.
We do need \mathcal{U}.

Decoding of primary code

- A primary code is often described as $C(\mathcal{B}, I)$ where $\mathcal{B}=\mathcal{U}=\mathcal{G}$.
- If algebraically defined then we often have information on $\bar{\sigma}^{W B}$.
- Determine $H=G^{-1}$.
- Apply Matsumoto-Miura's generalization of the majority voting algorithm from Høholdt, van Lint, and Pellikaan's chapter in the handbook.
- The generalization is needed because WB-properties of $\mathcal{C}^{\perp}(\mathcal{H}, \bar{l})$ use two bases.

Previous work on Algebraic geometric codes

- One-point codes: Matsumoto-Miura (2000)
- More-point codes: Beelen-Høholdt (2008)

In their work:

- Use $\left(C_{\Omega}(D, G)\right)^{\perp}=C_{\mathcal{L}}(D, G)$.
- $G H$ is triangular (rather than equal to I).
- Connection to Andersen-Geil's bound not easy to see.
- Not obvious how to generalize to higher transcendence degree or general linear code.
- Improved codes might be different from Andersen-Geil's, but parameters the same.

Example: Higher transcendence degree

Point-ensemble $\{1,2,3\} \times\{1,2,3\} \subseteq \mathbb{F}_{5}^{2}$.

$$
\begin{array}{r}
\vec{g}_{1}=\operatorname{ev}(1), \vec{g}_{2}=\operatorname{ev}(X), \vec{g}_{3}=\operatorname{ev}(Y), \vec{g}_{4}=\mathrm{ev}\left(X^{2}\right), \vec{g}_{5}=\operatorname{ev}(X Y) \\
\vec{g}_{6}=\operatorname{ev}\left(Y^{2}\right), \vec{g}_{7}=\operatorname{ev}\left(X^{2} Y\right), \vec{g}_{8}=\operatorname{ev}\left(X Y^{2}\right), \vec{g}_{9}=\operatorname{ev}\left(X^{2} Y^{2}\right)
\end{array}
$$

$\vec{h}_{1}=\operatorname{ev}\left(X^{2} Y^{2}+X Y^{2}+X^{2} Y+X Y\right)$
$\vec{h}_{2}=\mathrm{ev}\left(X^{2} Y^{2}+3 X Y^{2}+X^{2} Y+Y^{2}+3 X Y+Y\right)$
$\vec{h}_{3}=\operatorname{ev}\left(X^{2} Y^{2}+X Y^{2}+3 X^{2} Y+3 X Y+X^{2}+X\right)$
$\vec{h}_{4}=\operatorname{ev}\left(X Y^{2}+Y^{2}+X Y+Y\right)$
$\vec{h}_{5}=\mathrm{ev}\left(X^{2} Y^{2}+3 X Y^{2}+3 X^{2} Y+Y^{2}+4 X Y+X^{2}+3 Y+3 X+1\right)$
$\vec{h}_{6}=\operatorname{ev}\left(X^{2} Y+X Y+X^{2}+X\right)$
$\vec{h}_{7}=\operatorname{ev}\left(X Y^{2}+Y^{2}+3 X Y+3 Y+X+1\right)$
$\vec{h}_{8}=\operatorname{ev}\left(X^{2} Y+3 X Y+X^{2}+Y+3 X+1\right)$
$\vec{h}_{9}=\operatorname{ev}(X Y+Y+X+1)$.

A more predictible example

Point-ensemble \mathbb{F}_{3}^{2}.

$$
\begin{gathered}
\mathcal{G}=\left\{\vec{g}_{1}=\operatorname{ev}(1), \vec{g}_{2}=\operatorname{ev}(X), \vec{g}_{3}=\operatorname{ev}(Y), \vec{g}_{4}=\operatorname{ev}\left(X^{2}\right), \vec{g}_{5}=\operatorname{ev}(X Y),\right. \\
\left.\vec{g}_{6}=\operatorname{ev}\left(Y^{2}\right), \vec{g}_{7}=\operatorname{ev}\left(X^{2} Y\right), \vec{g}_{8}=\operatorname{ev}\left(X Y^{2}\right), \vec{g}_{9}=\operatorname{ev}\left(X^{2} Y^{2}\right)\right\}
\end{gathered}
$$

$$
\begin{aligned}
& \mathcal{H}=\left\{\vec{h}_{1}=\operatorname{ev}(1), \vec{h}_{2}=\operatorname{ev}(X), \vec{h}_{3}=\operatorname{ev}(Y), \vec{h}_{4}=\operatorname{ev}\left(X^{2}+2\right)\right. \\
& \vec{h}_{5}=\operatorname{ev}(X Y), \vec{h}_{6}=\operatorname{ev}\left(Y^{2}+2\right), \vec{h}_{7}=\operatorname{ev}\left(X^{2} Y+2 Y\right) \\
&\left.\vec{h}_{8}=\operatorname{ev}\left(X Y^{2}+2 X\right), \vec{h}_{9}=\operatorname{ev}\left(X^{2} Y^{2}+2 X^{2}+2 Y^{2}+1\right)\right\}
\end{aligned}
$$

Conlusion

We propose the following names:

- The Feng-Rao bound for dual codes.
- The Feng-Rao bound for primary codes.
- The order bound for dual codes.
- The order bound for primary codes.

