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Monomial orderings

A monomial ordering ≺ is a total ordering on
{~X ~α = Xα1

1 · · ·Xαm
m |~α ∈ Nm

0 } such that

I ~X ~α ≺ ~X
~β ⇒ ~X ~α+~γ ≺ ~X

~β+~γ .

I Every subset has a unique smallest element.

Examples: ≺lex , ≺glex , ≺grlex , ≺wdeglex .

X 2Y 3 ≺glex XY 5 because 5 < 6.
X 2Y 3 ≺glex X 3Y 2 because 5 = 5 and 2 < 3.
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Footprint

I ⊆ F[~X ] an ideal.

∆≺(I ) = {~X ~α | ~X ~α is not leading monomial

of any polynomial in I}

If I = 〈F (~X )〉 then
∆≺(I ) = {~X ~α | ~X ~α is not divisible with lm(F )}.

More polynomials = analyzis more involved.
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The main tools

Theorem:
{M + I | M ∈ ∆≺(I )} constitutes a basis for F[~X ]/I as a
vectorspace.

Definition:
VF(I ) means set of commen zeros of the polynomials in I .

Corollary:
|VF(I )| ≤ |∆≺(I )| (whenever latter is finite).

Proof: Consider {P1, . . . ,Pn} ⊆ VF(I ) and define
ev : F[~X ]/I → Fn by ev(F + I ) = (F (P1), . . . ,F (Pn)).
Lagrange-polynomial type of argument proves that surjective.
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An importan special case

Corollary: Let F (~X ) ∈ Fq[~X ], lm(F ) = X i1
1 · · ·X im

m . Then F has at
most qm −

∏m
s=1(q − is) zeros.

Proof:

number of zeros ≤ |∆≺(〈F (~X )〉+ 〈X q
1 − X1, . . . ,X

q
m − Xm〉)|

≤ |{~X ~α|0 ≤ α1 < q, . . . , 0 ≤ αm < q, ~X
~i 6 |~X ~α}|.
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One-point algebraic geometric codes

P1, . . . ,Pn,Q rational places of function field over Fq.

To construct CL(D = P1 + · · ·+ Pn, vQ) we need basis for:
∪vs=0L(sQ) ⊆

⋃∞
s=0 L(sQ).

Everything, can be translated into affine variety description:

∪∞s=0L(sQ) = Fq[X1, . . . ,Xm]/I {P1, . . . ,Pn} ⊆ VFq(I ).
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Weights versus valuation

Weierstrass semigroup:
H(Q) = −νQ

(
∪∞s=0 L(sQ)

)
= 〈w1, . . . ,wm〉.

Definition: Given weights w1, . . . ,wm define

w(~X ~α) = ~α · (w1, . . . ,wm). Define ≺w by ~X ~α ≺w
~X
~β if

I w(~X ~α) < w(~X
~β)

I or w(~X ~α) = w(~X
~β) but ~X ~α ≺M ~X

~β

(≺M can be anything, for instance ≺lex)

Example: w(X ) = q,w(Y ) = q + 1, ≺M=≺lex with X ≺lex Y .
F (X ,Y ) = X q+1 − Y q − Y , w(X q+1) = w(Y q) = q(q + 1) and
lm(F ) = Y q.
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Order domain conditions

I = 〈F1(~X ), . . . ,Fs(~X )〉 ⊆ F[~X ] and w1, . . . ,wm satisfy ODC if:

1. {F1, . . . ,Fs} is a Gröbner basis w.r.t. ≺w .

2. Fi , i = 1, . . . , s contains exactly two monomials of highest
weight.

3. No two monomials in ∆≺w (〈F1, . . . ,Fs〉) are of the same
weight.

Example: I = 〈X q+1 − Y q − Y 〉 ⊆ Fq2 [X ,Y ]

1. OK

2. OK

3. ∆≺w (I ) = {X iY j | 0 ≤ j < q, 0 ≤ i} OK
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Presentation Theorem

Theorem (Miura, Pellikaan):

∪∞s=0L(sQ) = F[~X ]/I where I and corresponding weights satisfy
order domain conditions.

Corollary:

CL(P1 + · · ·+ Pn, vQ)

= SpanFq
{(M(P1), . . . ,M(Pn)) | M ∈ ∆≺w (I ),w(M) ≤ v}.
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Dimension and generator matrix

Remember in general {M + J | M ∈ ∆≺(J)} is a basis for F[~X ].

Define Iq = I + 〈X q
1 − X1, . . . ,X

q
m − Xm〉.

ev : Fq[~X ](Iq → Fn
q given by ev(F + Iq) = (F (P1), . . . ,F (Pn)) is a

bijection.

CL(P1 + · · ·+ Pn, vQ)

= SpanFq
{(M(P1), . . . ,M(Pn)) | M ∈ ∆≺w (Iq),w(M) ≤ v}.

Dimension can be read off directly. So can generator matrix.
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Hermitian function field

I9 = 〈X 4 − Y 3 − Y ,X 9 − X ,Y 9 − Y 〉 ⊆ F9[X ,Y ].

8 11 14 17 20 23 26 29 32 35 38 · · ·
4 7 10 13 16 19 22 25 28 31 34 · · ·
0 3 6 9 12 15 18 21 24 27 30 · · ·

H∗(Q) = w(∆≺w (I9)) ⊆ w(∆≺w (I )) = H(Q).

What about minimum distance?
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Applying the footprint bound

Let I = 〈F1(~X ), . . . ,Fs(~X )〉 and w1, . . . ,wm satisfy ODC.

Code word ~c = ev(F + Iq) where Supp(F ) ⊆ ∆≺w (Iq).

Hamming weight equals
n − |∆≺w (〈F (~X )〉+ Iq)|.

For every monomial M

lm
(
MF (~X ) rem {F1(~X ), . . . ,Fs(~X )})

DOES NOT BELONG TO ∆≺w (〈F (~X )〉+ Iq).

We can easily detect the above leading monomial!
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The weights tell it all...

w(lm(MF (~X )) = w(lm
(
MF (~X ) rem {F1(~X ), . . . ,Fs(~X )}))

because:

I No two monomials in F (~X ) are of the same weight (as no two
monomials in ∆≺w (I ) are of the same weight).

I Every Fi (~X ) has exactly two monomials of highest weight.
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Hamming weight of ~c

In conclusion we can estimate

wH(~c)

= n − |∆≺w (〈F (~X )〉+ Iq)|
= |∆≺w (Iq)\∆≺w (〈F (~X )〉+ Iq)|
≥ |w(∆≺w (Iq)) ∩ {w(M · lm(F ))|M a monomial}|
= |H∗(Q) ∩

(
w(lm(F )) + H(Q)

)
(1)

≥ n − |H(Q)\
(
w(lm(F )) + H(Q)

)
|

= n − w(lm(F )).

Last line corresponds to Goppa bound. Last equality comes from
semigroup theory.
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Minimum distance of Hermitian codes

I9 = 〈X 4 − Y 3 − Y ,X 9 − X ,Y 9 − Y 〉 ⊆ F9[X ,Y ].

19 16 13 10 7 4 3 2 1
23 20 17 14 11 8 6 4 2
27 24 21 18 15 12 9 6 3

Green=Goppa bound, Blue=Equation 1.

Improved code construction straight forward.

Everything works for general one-point algebraic geometric code.
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I Improved bound and improved code construction translates
immediately to the general case of one-point AG codes where
affine description is not known but H∗(Q) is known.

I Generalization of one-point construction to higher
transcendence degree. We have trdg = r ⇔ w(Xi ) ∈ Nr

0.
Improved bound works (but Goppa bound does not).

I Let F/Fq be a function field that possesses a Weierstrass
semigroup Λ = 〈λ1, . . . , λm〉. The number of rational places is
at most

#
(
Λ\ ∪mi=1 (qλi + Λ)

)
+ 1.
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