One-point AG-codes from an affine-variety point of view

Olav Geil Aalborg University Denmark

East China Normal University, Shanghai, 2012

(本間) (本語) (本語)

A monomial ordering \prec is a total ordering on $\{\vec{X}^{\vec{\alpha}} = X_1^{\alpha_1} \cdots X_m^{\alpha_m} | \vec{\alpha} \in \mathbb{N}_0^m\}$ such that $\blacktriangleright \vec{X}^{\vec{\alpha}} \prec \vec{X}^{\vec{\beta}} \Rightarrow \vec{X}^{\vec{\alpha}+\vec{\gamma}} \prec \vec{X}^{\vec{\beta}+\vec{\gamma}}.$

Every subset has a unique smallest element.

Examples: \prec_{lex} , \prec_{glex} , \prec_{grlex} , $\prec_{wdeglex}$.

 $X^2 Y^3 \prec_{glex} XY^5$ because 5 < 6. $X^2 Y^3 \prec_{glex} X^3 Y^2$ because 5 = 5 and 2 < 3.

소리가 소문가 소문가 소문가

A monomial ordering \prec is a total ordering on $\{\vec{X}^{\vec{\alpha}} = X_1^{\alpha_1} \cdots X_m^{\alpha_m} | \vec{\alpha} \in \mathbb{N}_0^m\}$ such that $\checkmark \vec{X}^{\vec{\alpha}} \prec \vec{X}^{\vec{\beta}} \Rightarrow \vec{X}^{\vec{\alpha}+\vec{\gamma}} \prec \vec{X}^{\vec{\beta}+\vec{\gamma}}.$

Every subset has a unique smallest element.

Examples: \prec_{lex} , \prec_{glex} , \prec_{grlex} , $\prec_{wdeglex}$.

 $X^2 Y^3 \prec_{glex} XY^5$ because 5 < 6. $X^2 Y^3 \prec_{glex} X^3 Y^2$ because 5 = 5 and 2 < 3.

・ 同 ト ・ ヨ ト ・ ヨ ト

 $I \subseteq \mathbb{F}[ec{X}]$ an ideal.

$\Delta_{\prec}(I) = \{ \vec{X}^{\vec{\alpha}} \mid \vec{X}^{\vec{\alpha}} \text{ is not leading monomial} \\ \text{of any polynomial in } I \}$

If $I = \langle F(\vec{X}) \rangle$ then $\Delta_{\prec}(I) = \{ \vec{X}^{\vec{\alpha}} \mid \vec{X}^{\vec{\alpha}} \text{ is not divisible with } \operatorname{Im}(F) \}.$

More polynomials = analyzis more involved.

・同下 ・ヨト ・ヨト

 $I \subseteq \mathbb{F}[ec{X}]$ an ideal.

$$\Delta_{\prec}(I) = \{ \vec{X}^{\vec{\alpha}} \mid \vec{X}^{\vec{\alpha}} \text{ is not leading monomial} \\ \text{of any polynomial in } I \}$$

If
$$I = \langle F(\vec{X})
angle$$
 then
 $\Delta_{\prec}(I) = \{ \vec{X}^{\vec{lpha}} \mid \vec{X}^{\vec{lpha}}$ is not divisible with $\mathsf{Im}(F) \}$.

More polynomials = analyzis more involved.

・ロン ・回と ・ヨン ・ヨン

æ

 $I\subseteq \mathbb{F}[ec{X}]$ an ideal.

$$\Delta_{\prec}(I) = \{ \vec{X}^{\vec{\alpha}} \mid \vec{X}^{\vec{\alpha}} \text{ is not leading monomial} \\ \text{of any polynomial in } I \}$$

If
$$I = \langle F(\vec{X}) \rangle$$
 then
 $\Delta_{\prec}(I) = \{ \vec{X}^{\vec{lpha}} \mid \vec{X}^{\vec{lpha}}$ is not divisible with $\mathsf{Im}(F) \}.$

More polynomials = analyzis more involved.

・ロン ・回と ・ヨン・

æ

<u>Theorem:</u> $\{M + I \mid M \in \Delta_{\prec}(I)\}$ constitutes a basis for $\mathbb{F}[\vec{X}]/I$ as a vectorspace.

Definition: $\mathbb{V}_{\mathbb{F}}(I)$ means set of commen zeros of the polynomials in *I*.

Corollary: $\overline{|\mathbb{V}_{\mathbb{F}}(I)|} \leq |\Delta_{\prec}(I)|$ (whenever latter is finite).

Proof: Consider $\{P_1, \ldots, P_n\} \subseteq \mathbb{V}_{\mathbb{F}}(I)$ and define ev : $\mathbb{F}[\vec{X}]/I \to \mathbb{F}^n$ by $ev(F + I) = (F(P_1), \ldots, F(P_n))$. Lagrange-polynomial type of argument proves that surjective.

<u>Theorem:</u> $\{M + I \mid M \in \Delta_{\prec}(I)\}$ constitutes a basis for $\mathbb{F}[\vec{X}]/I$ as a vectorspace.

Definition:

 $\mathbb{V}_{\mathbb{F}}(I)$ means set of commen zeros of the polynomials in I.

 $\frac{\text{Corollary:}}{|\mathbb{V}_{\mathbb{F}}(I)|} \leq |\Delta_{\prec}(I)| \text{ (whenever latter is finite).}$

Proof: Consider $\{P_1, \ldots, P_n\} \subseteq \mathbb{V}_{\mathbb{F}}(I)$ and define ev : $\mathbb{F}[\vec{X}]/I \to \mathbb{F}^n$ by ev $(F + I) = (F(P_1), \ldots, F(P_n))$. Lagrange-polynomial type of argument proves that surjective.

Corollary: Let
$$F(\vec{X}) \in \mathbb{F}_q[\vec{X}]$$
, $Im(F) = X_1^{i_1} \cdots X_m^{i_m}$. Then F has at most $q^m - \prod_{s=1}^m (q - i_s)$ zeros.

Proof:

number of zeros
$$\leq |\Delta_{\prec}(\langle F(\vec{X}) \rangle + \langle X_1^q - X_1, \dots, X_m^q - X_m \rangle)|$$

 $\leq |\{\vec{X}^{\vec{\alpha}} | 0 \leq \alpha_1 < q, \dots, 0 \leq \alpha_m < q, \vec{X}^{\vec{i}} \not| \vec{X}^{\vec{\alpha}} \}|.$

・ロト ・回ト ・ヨト ・ヨト

æ

 P_1, \ldots, P_n, Q rational places of function field over \mathbb{F}_q .

To construct $C_{\mathcal{L}}(D = P_1 + \cdots + P_n, vQ)$ we need basis for: $\bigcup_{s=0}^{v} \mathcal{L}(sQ) \subseteq \bigcup_{s=0}^{\infty} \mathcal{L}(sQ).$

Everything, can be translated into affine variety description:

 $\cup_{s=0}^{\infty} \mathcal{L}(sQ) = \mathbb{F}_q[X_1, \dots, X_m]/I \quad \{P_1, \dots, P_n\} \subseteq \mathbb{V}_{\mathbb{F}_q}(I).$

 P_1, \ldots, P_n, Q rational places of function field over \mathbb{F}_q .

To construct $C_{\mathcal{L}}(D = P_1 + \cdots + P_n, vQ)$ we need basis for: $\bigcup_{s=0}^{v} \mathcal{L}(sQ) \subseteq \bigcup_{s=0}^{\infty} \mathcal{L}(sQ).$

Everything, can be translated into affine variety description:

 $\cup_{s=0}^{\infty}\mathcal{L}(sQ) = \mathbb{F}_q[X_1,\ldots,X_m]/I \quad \{P_1,\ldots,P_n\} \subseteq \mathbb{V}_{\mathbb{F}_q}(I).$

Weierstrass semigroup:

$$H(Q) = -\nu_Q \left(\bigcup_{s=0}^{\infty} \mathcal{L}(sQ) \right) = \langle w_1, \dots, w_m \rangle.$$

$$\begin{array}{l} \underline{\text{Definition:}} \text{ Given weights } w_1, \ldots, w_m \text{ define} \\ w(\vec{X}^{\vec{\alpha}}) &= \vec{\alpha} \cdot (w_1, \ldots, w_m). \text{ Define } \prec_w \text{ by } \vec{X}^{\vec{\alpha}} \prec_w \vec{X}^{\vec{\beta}} \text{ if} \\ \bullet & w(\vec{X}^{\vec{\alpha}}) < w(\vec{X}^{\vec{\beta}}) \\ \bullet & \text{ or } w(\vec{X}^{\vec{\alpha}}) = w(\vec{X}^{\vec{\beta}}) \text{ but } \vec{X}^{\vec{\alpha}} \prec_{\mathcal{M}} \vec{X}^{\vec{\beta}} \\ (\prec_{\mathcal{M}} \text{ can be anything, for instance } \prec_{\mathit{lex}}) \end{array}$$

Example: $w(X) = q, w(Y) = q + 1, \prec_{\mathcal{M}} = \prec_{lex}$ with $X \prec_{lex} Y$. $\overline{F(X, Y)} = X^{q+1} - Y^q - Y, w(X^{q+1}) = w(Y^q) = q(q+1)$ and $Im(F) = Y^q$.

・ロン ・回 と ・ 回 と ・ 回 と

Weierstrass semigroup:

$$H(Q) = -\nu_Q \left(\bigcup_{s=0}^{\infty} \mathcal{L}(sQ) \right) = \langle w_1, \dots, w_m \rangle.$$

Definition: Given weights
$$w_1, \ldots, w_m$$
 define
 $w(\vec{X}^{\vec{\alpha}}) = \vec{\alpha} \cdot (w_1, \ldots, w_m)$. Define \prec_w by $\vec{X}^{\vec{\alpha}} \prec_w \vec{X}^{\vec{\beta}}$ if
 $w(\vec{X}^{\vec{\alpha}}) < w(\vec{X}^{\vec{\beta}})$
 $v(\vec{X}^{\vec{\alpha}}) = w(\vec{X}^{\vec{\beta}})$ but $\vec{X}^{\vec{\alpha}} \prec_{\mathcal{M}} \vec{X}^{\vec{\beta}}$
 $(\prec_{\mathcal{M}} \text{ can be anything, for instance } \prec_{lex})$

Example:
$$w(X) = q, w(Y) = q + 1, \prec_{\mathcal{M}} = \prec_{lex}$$
 with $X \prec_{lex} Y$.
 $\overline{F(X, Y)} = X^{q+1} - Y^q - Y, w(X^{q+1}) = w(Y^q) = q(q+1)$ and $Im(F) = Y^q$.

æ

Order domain conditions

$$I = \langle F_1(\vec{X}), \dots, F_s(\vec{X}) \rangle \subseteq \mathbb{F}[\vec{X}] \text{ and } w_1, \dots, w_m \text{ satisfy ODC if:}$$

1. { F_1, \dots, F_s } is a Gröbner basis w.r.t. \prec_w .

- F_i, i = 1,..., s contains exactly two monomials of highest weight.
- 3. No two monomials in $\Delta_{\prec_w}(\langle F_1, \ldots, F_s \rangle)$ are of the same weight.

Example: $I = \langle X^{q+1} - Y^q - Y \rangle \subseteq \mathbb{F}_{q^2}[X, Y]$

1. OK

- 2. OK
- 3. $\Delta_{\prec_w}(I) = \{X^i Y^j \mid 0 \leq j < q, 0 \leq i\}$ OK

イロト イポト イヨト イヨト 二日

Order domain conditions

$$I = \langle F_1(\vec{X}), \dots, F_s(\vec{X}) \rangle \subseteq \mathbb{F}[\vec{X}] \text{ and } w_1, \dots, w_m \text{ satisfy ODC if:}$$

1. { F_1, \dots, F_s } is a Gröbner basis w.r.t. \prec_w .

- F_i, i = 1,..., s contains exactly two monomials of highest weight.
- 3. No two monomials in $\Delta_{\prec_w}(\langle F_1, \ldots, F_s \rangle)$ are of the same weight.

Example:
$$I = \langle X^{q+1} - Y^q - Y \rangle \subseteq \mathbb{F}_{q^2}[X, Y]$$

1. OK
2. OK

3.
$$\Delta_{\prec_w}(I) = \{X^i Y^j \mid 0 \le j < q, 0 \le i\}$$
 OK

(日) (同) (E) (E) (E)

Theorem (Miura, Pellikaan):

 $\cup_{s=0}^{\infty} \mathcal{L}(sQ) = \mathbb{F}[\vec{X}]/I$ where *I* and corresponding weights satisfy order domain conditions.

Corollary:

 $C_{\mathcal{L}}(P_1 + \dots + P_n, vQ)$ Span_{$\mathbb{F}_a}{<math>(M(P_1), \dots, M(P_n)) \mid M \in \Delta_{\prec_w}(I), w(M) \leq v$ }.</sub>

イロト イポト イヨト イヨト

Theorem (Miura, Pellikaan):

 $\cup_{s=0}^{\infty} \mathcal{L}(sQ) = \mathbb{F}[\vec{X}]/I$ where *I* and corresponding weights satisfy order domain conditions.

Corollary:

$$C_{\mathcal{L}}(P_1 + \dots + P_n, vQ) = \operatorname{Span}_{\mathbb{F}_q}\{(M(P_1), \dots, M(P_n)) \mid M \in \Delta_{\prec_w}(I), w(M) \leq v\}.$$

(日) (日) (日)

Remember in general $\{M + J \mid M \in \Delta_{\prec}(J)\}$ is a basis for $\mathbb{F}[\vec{X}]$.

Define
$$I_q = I + \langle X_1^q - X_1, \dots, X_m^q - X_m \rangle$$
.

ev : $\mathbb{F}_q[\vec{X}](I_q \to \mathbb{F}_q^n \text{ given by ev}(F + I_q) = (F(P_1), \dots, F(P_n))$ is a bijection.

$$C_{\mathcal{L}}(P_1 + \dots + P_n, vQ) = \operatorname{Span}_{\mathbb{F}_q}\{(M(P_1), \dots, M(P_n)) \mid M \in \Delta_{\prec_w}(I_q), w(M) \leq v\}.$$

Dimension can be read off directly. So can generator matrix.

・ 同 ト ・ ヨ ト ・ ヨ ト

Hermitian function field

$$I_9 = \langle X^4 - Y^3 - Y, X^9 - X, Y^9 - Y \rangle \subseteq \mathbb{F}_9[X, Y].$$

$$H^*(Q) = w(\Delta_{\prec_w}(I_9)) \subseteq w(\Delta_{\prec_w}(I)) = H(Q).$$

What about minimum distance?

イロン イヨン イヨン イヨン

æ

Applying the footprint bound

Let
$$I = \langle F_1(\vec{X}), \dots, F_s(\vec{X}) \rangle$$
 and w_1, \dots, w_m satisfy ODC.

Code word $\vec{c} = ev(F + I_q)$ where $Supp(F) \subseteq \Delta_{\prec_w}(I_q)$.

Hamming weight equals $n - |\Delta_{\prec_w}(\langle F(\vec{X}) \rangle + I_q)|.$

For every monomial M

 $\operatorname{Im}(MF(\vec{X}) \operatorname{rem} \{F_1(\vec{X}), \dots, F_s(\vec{X})\})$

DOES NOT BELONG TO $\Delta_{\prec_w}(\langle F(\vec{X}) \rangle + I_q)$.

We can easily detect the above leading monomial!

- 4 同 6 4 日 6 4 日 6

Applying the footprint bound

Let
$$I = \langle F_1(\vec{X}), \dots, F_s(\vec{X}) \rangle$$
 and w_1, \dots, w_m satisfy ODC.

Code word $\vec{c} = \text{ev}(F + I_q)$ where $\text{Supp}(F) \subseteq \Delta_{\prec_w}(I_q)$.

Hamming weight equals $n - |\Delta_{\prec_w}(\langle F(\vec{X}) \rangle + I_q)|.$

For every monomial M

 $\operatorname{Im}(MF(\vec{X}) \operatorname{rem} \{F_1(\vec{X}), \dots, F_s(\vec{X})\})$

DOES NOT BELONG TO $\Delta_{\prec_w}(\langle F(\vec{X}) \rangle + I_q)$.

We can easily detect the above leading monomial!

・ 同 ト ・ ヨ ト ・ ヨ ト

 $w(\operatorname{Im}(MF(\vec{X})) = w(\operatorname{Im}(MF(\vec{X}) \operatorname{rem} \{F_1(\vec{X}), \dots, F_s(\vec{X})\}))$ because:

- No two monomials in F(X) are of the same weight (as no two monomials in Δ_{≺w}(I) are of the same weight).
- Every $F_i(\vec{X})$ has exactly two monomials of highest weight.

・ 同 ト ・ ヨ ト ・ ヨ ト

$$w_{H}(\vec{c})$$

$$= n - |\Delta_{\prec_{w}}(\langle F(\vec{X}) \rangle + I_{q})|$$

$$= |\Delta_{\prec_{w}}(I_{q}) \setminus \Delta_{\prec_{w}}(\langle F(\vec{X}) \rangle + I_{q})|$$

$$\geq |w(\Delta_{\prec_{w}}(I_{q})) \cap \{w(M \cdot \operatorname{Im}(F))|M \text{ a monomial}\}|$$

$$= |H^{*}(Q) \cap (w(\operatorname{Im}(F)) + H(Q)) \qquad (1)$$

$$\geq n - |H(Q) \setminus (w(\operatorname{Im}(F)) + H(Q))|$$

$$= n - w(\operatorname{Im}(F)).$$

Last line corresponds to Goppa bound. Last equality comes from semigroup theory.

(日) (同) (E) (E) (E)

$$w_{H}(\vec{c})$$

$$= n - |\Delta_{\prec_{w}}(\langle F(\vec{X}) \rangle + I_{q})|$$

$$= |\Delta_{\prec_{w}}(I_{q}) \setminus \Delta_{\prec_{w}}(\langle F(\vec{X}) \rangle + I_{q})|$$

$$\geq |w(\Delta_{\prec_{w}}(I_{q})) \cap \{w(M \cdot \operatorname{Im}(F))|M \text{ a monomial}\}|$$

$$= |H^{*}(Q) \cap (w(\operatorname{Im}(F)) + H(Q)) \qquad (1)$$

$$\geq n - |H(Q) \setminus (w(\operatorname{Im}(F)) + H(Q))|$$

$$= n - w(\operatorname{Im}(F)).$$

Last line corresponds to Goppa bound. Last equality comes from semigroup theory.

(ロ) (同) (E) (E) (E)

$$w_{H}(\vec{c})$$

$$= n - |\Delta_{\prec_{w}}(\langle F(\vec{X}) \rangle + I_{q})|$$

$$= |\Delta_{\prec_{w}}(I_{q}) \setminus \Delta_{\prec_{w}}(\langle F(\vec{X}) \rangle + I_{q})|$$

$$\geq |w(\Delta_{\prec_{w}}(I_{q})) \cap \{w(M \cdot \operatorname{Im}(F))|M \text{ a monomial}\}|$$

$$= |H^{*}(Q) \cap (w(\operatorname{Im}(F)) + H(Q))$$

$$\geq n - |H(Q) \setminus (w(\operatorname{Im}(F)) + H(Q))|$$

$$= n - w(\operatorname{Im}(F)).$$
(1)

Last line corresponds to Goppa bound. Last equality comes from semigroup theory.

(ロ) (同) (E) (E) (E)

$$w_{H}(\vec{c})$$

$$= n - |\Delta_{\prec_{w}}(\langle F(\vec{X}) \rangle + I_{q})|$$

$$= |\Delta_{\prec_{w}}(I_{q}) \setminus \Delta_{\prec_{w}}(\langle F(\vec{X}) \rangle + I_{q})|$$

$$\geq |w(\Delta_{\prec_{w}}(I_{q})) \cap \{w(M \cdot \operatorname{Im}(F))|M \text{ a monomial}\}|$$

$$= |H^{*}(Q) \cap (w(\operatorname{Im}(F)) + H(Q)) \qquad (1)$$

$$\geq n - |H(Q) \setminus (w(\operatorname{Im}(F)) + H(Q))|$$

$$= n - w(\operatorname{Im}(F)).$$

Last line corresponds to Goppa bound. Last equality comes from semigroup theory.

・ロン ・回 と ・ ヨ と ・ ヨ と

$$w_{H}(\vec{c})$$

$$= n - |\Delta_{\prec_{w}}(\langle F(\vec{X}) \rangle + I_{q})|$$

$$= |\Delta_{\prec_{w}}(I_{q}) \setminus \Delta_{\prec_{w}}(\langle F(\vec{X}) \rangle + I_{q})|$$

$$\geq |w(\Delta_{\prec_{w}}(I_{q})) \cap \{w(M \cdot \operatorname{Im}(F))|M \text{ a monomial}\}|$$

$$= |H^{*}(Q) \cap (w(\operatorname{Im}(F)) + H(Q))$$

$$\geq n - |H(Q) \setminus (w(\operatorname{Im}(F)) + H(Q))|$$

$$= n - w(\operatorname{Im}(F)).$$
(1)

Last line corresponds to Goppa bound. Last equality comes from semigroup theory.

(ロ) (同) (E) (E) (E)

$$w_{H}(\vec{c})$$

$$= n - |\Delta_{\prec_{w}}(\langle F(\vec{X}) \rangle + I_{q})|$$

$$= |\Delta_{\prec_{w}}(I_{q}) \setminus \Delta_{\prec_{w}}(\langle F(\vec{X}) \rangle + I_{q})|$$

$$\geq |w(\Delta_{\prec_{w}}(I_{q})) \cap \{w(M \cdot \operatorname{Im}(F))|M \text{ a monomial}\}|$$

$$= |H^{*}(Q) \cap (w(\operatorname{Im}(F)) + H(Q)) \qquad (1)$$

$$\geq n - |H(Q) \setminus (w(\operatorname{Im}(F)) + H(Q))|$$

$$= n - w(\operatorname{Im}(F)).$$

Last line corresponds to Goppa bound. Last equality comes from semigroup theory.

(1日) (日) (日)

$$I_9 = \langle X^4 - Y^3 - Y, X^9 - X, Y^9 - Y \rangle \subseteq \mathbb{F}_9[X, Y].$$

19	16	13	10	- 7	4	3	2	1
23	20	17	14	11	8	6	4	2
27	24	21	18	15	12	9	6	3

Green=Goppa bound, Blue=Equation 1.

Improved code construction straight forward.

Everything works for general one-point algebraic geometric code.

- 4 回 ト 4 ヨ ト 4 ヨ ト

$$I_9 = \langle X^4 - Y^3 - Y, X^9 - X, Y^9 - Y \rangle \subseteq \mathbb{F}_9[X, Y].$$

19	16	13	10	- 7	4	3	2	1
23	20	17	14	11	8	6	4	2
27	24	21	18	15	12	9	6	3

Green=Goppa bound, Blue=Equation 1.

Improved code construction straight forward.

Everything works for general one-point algebraic geometric code.

・ 同 ト ・ ヨ ト ・ ヨ ト

$$I_9 = \langle X^4 - Y^3 - Y, X^9 - X, Y^9 - Y \rangle \subseteq \mathbb{F}_9[X, Y].$$

19	16	13	10	- 7	4	3	2	1
23	20	17	14	11	8	6	4	2
27	24	21	18	15	12	9	6	3

Green=Goppa bound, Blue=Equation 1.

Improved code construction straight forward.

Everything works for general one-point algebraic geometric code.

向下 イヨト イヨト

- Improved bound and improved code construction translates immediately to the general case of one-point AG codes where affine description is not known but H*(Q) is known.
- Generalization of one-point construction to higher transcendence degree. We have trdg = r ⇔ w(X_i) ∈ N^r₀.
 Improved bound works (but Goppa bound does not).
- Let 𝔽/𝔽_q be a function field that possesses a Weierstrass semigroup Λ = ⟨λ₁,...,λ_m⟩. The number of rational places is at most

 $\#(\Lambda \setminus \bigcup_{i=1}^m (q\lambda_i + \Lambda)) + 1.$

- Improved bound and improved code construction translates immediately to the general case of one-point AG codes where affine description is not known but H*(Q) is known.
- Generalization of one-point construction to higher transcendence degree. We have trdg = r ⇔ w(X_i) ∈ N₀^r. Improved bound works (but Goppa bound does not).
- Let 𝔽/𝔽_q be a function field that possesses a Weierstrass semigroup Λ = ⟨λ₁,...,λ_m⟩. The number of rational places is at most

 $\#(\Lambda \setminus \bigcup_{i=1}^m (q\lambda_i + \Lambda)) + 1.$

- Improved bound and improved code construction translates immediately to the general case of one-point AG codes where affine description is not known but H*(Q) is known.
- Generalization of one-point construction to higher transcendence degree. We have trdg = r ⇔ w(X_i) ∈ N₀^r. Improved bound works (but Goppa bound does not).
- Let 𝔽/𝔽_q be a function field that possesses a Weierstrass semigroup Λ = ⟨λ₁,...,λ_m⟩. The number of rational places is at most

 $\#(\Lambda \setminus \bigcup_{i=1}^{m} (q\lambda_i + \Lambda)) + 1.$