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Monomial orderings

A monomial ordering < is a total ordering on
{X* =X X%m|d € NJ'} such that

> X 4 XB = X7 4 X+,

> Every subset has a unique smallest element.
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Monomial orderings

A monomial ordering < is a total ordering on
{X* =X X%m|d € NJ'} such that

> X 4 XB = X7 4 X+,

> Every subset has a unique smallest element.

EXampleSZ <Jex» ‘<glex- ‘<ng€)<: ‘<Wdeglex-

X2Y3 <gjex XY5 because 5 < 6.
X2Yys3 ~ glex X3Y? because 5 =5 and 2 < 3.
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Footprint

| C F[X] an ideal.

AL(l) = {X¥| X% is not leading monomial

of any polynomial in /}

Olav Geil, Aalborg University, Denmark One-point AG-codes from an affine-variety point of view



Footprint

| C F[X] an ideal.

AL(l) = {X¥| X% is not leading monomial

of any polynomial in /}

—

If 1 = (F(

)) then
AL(1) = (X7

| X% is not divisible with Im(F)}.
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Footprint

| C F[X] an ideal.

AL(l) = {X¥| X% is not leading monomial

of any polynomial in /}

—

If 1 = (F(X)
= {X

) then
A(l) = {x4

| X% is not divisible with Im(F)}.

More polynomials = analyzis more involved.
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The main tools

Theorem: .
{M+ 1| M e A<(I)} constitutes a basis for F[X]// as a
vectorspace.
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The main tools

Theorem: .
{M+ 1| M e A<(I)} constitutes a basis for F[X]// as a
vectorspace.

Definition:
Vr (/) means set of commen zeros of the polynomials in /.

Corollary:

[Ve(1)| < |A<(1)| (whenever latter is finite).

Proof: Consider {Py,..., Pr} C Vg(/) and define
ev:F[X]/I = F" by ev(F +1)=(F(P1),...,F(Pn)).
Lagrange-polynomial type of argument proves that surjective.
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An importan special case

Corollary: Let F(X) € Fg[X], Im(F) = X" .. X/». Then F has at
most ¢ — [[oL,(q — is) zeros.

Proof:

number of zeros

IN

BL((FO) + O = X, X = X))
{XH0 < a1 <q,...,0 < am < q, X" JXT}.

IN
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One-point algebraic geometric codes

P1,..., Py, Q rational places of function field over Fg.

To construct Cz(D = Py + -+ + Pp, vQ) we need basis for:
U0 L(sQ) € Uz £(sQ).
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One-point algebraic geometric codes

P1,..., Py, Q rational places of function field over Fg.

To construct Cz(D = Py + -+ + Pp, vQ) we need basis for:
U0 L(sQ) € Uz £(sQ).

Everything, can be translated into affine variety description:

U?ioﬁ(SQ) = ]Fq[Xl, ce ,Xm]/l {Pl, ceey P,,} - VFq(I).
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Weights versus valuation

Weierstrass semigroup'

H(Q):—VQ( (SQ)) = (Wi, ..., Wn).
Definition: Given weights w, ..., wy, define .
w(X%) =@a- (wi,...,wn). Define <, by X% <, X7 if
> w(X%) < w(XP)
> or w(X%) = w(XP) but X& < X8
(<1 can be anything, for instance <)
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Weights versus valuation

Weierstrass semigroup'

H(Q) = —vq(UXo L(sQ)) = (wi, ..., Wm).

Definition: Given weights w, ..., wy, define .
w(X%) =@a- (wi,...,wn). Define <, by X% <, X7 if
> w(X%) < w(XP)
> or w(X%) = w(XP) but X& < X8
(<1 can be anything, for instance <)
Example: w(X) = q,w(Y) =g+ 1, <p==ex With X <) Y.

F(X,Y) =Xt - Y9 -V, w(X9*) = w(Y9) =q(qg+1) and
Im(F) = Y9.
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Order domain conditions

I = (Fi(X),...,Fs(X)) CF[X] and w1, ..., wp, satisfy ODC if:
1. {F1,...,Fs} is a Grobner basis w.r.t. <.
2. F;, i=1,...,s contains exactly two monomials of highest
weight.
3. No two monomials in A, ((F1,..., Fs)) are of the same
weight.
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Order domain conditions

I = (Fi(X),...,Fs(X)) CF[X] and wi, ..., w, satisfy ODC if:
1. {F1,...,Fs} is a Grobner basis w.r.t. <.

2. F;, i=1,...,s contains exactly two monomials of highest
weight.

3. No two monomials in A, ((F1,..., Fs)) are of the same
weight.

Example: | = (X9t — Y9 —Y) CF.[X,Y]
1. OK
2. OK
3. AL (1) ={XYi|0<j<q,0<i}OK
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Presentation Theorem

Theorem (Miura, Pellikaan):

U2 oL(sQ) = F[X]/! where I and corresponding weights satisfy
order domain conditions.
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Presentation Theorem

Theorem (Miura, Pellikaan):

U2 oL(sQ) = F[X]/! where I and corresponding weights satisfy
order domain conditions.

Corollary:

Ce(PL+ -+ Pp,vQ)
= Spang {(M(P1),...,M(Pp)) | M € AL, (1), w(M) < v}
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Dimension and generator matrix

Remember in general {M + J | M € A<(J)} is a basis for F[X].
Define g = | + (X7 — Xy, ..., X — Xpn).

ev : Fq[)?](/q — Iy given by ev(F + 1) = (F(P1),...,F(Py)) is a
bijection.

Ce(PL+ -+ Pn,vQ)
= Span]Fq{(M(Pl), L M(PR)) | Me AL, (lg), w(M) < v

Dimension can be read off directly. So can generator matrix.
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Hermitian function field

lg = (X*—Y3-VY, X=X, Y°-Y) CFy[X,Y].

11 14 17 20 23 26 29 32 35 38
7 10 13 16 19 22 25 28 31 34
0 3 6 9 12 15 18 21 24 27 30

&~ o0

HY(Q) = w(A_ (k) € w(Ax, (1) = H(Q).

What about minimum distance?
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Applying the footprint bound

Let | = (Fi(X),...,Fs(X)) and wi, ..., wp, satisfy ODC.
Code word ¢ = ev(F + I;) where Supp(F) C AL, (Ig)-

Hamming weight equals

—

n— A<, ((F(X)) + Ig)l.
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Applying the footprint bound

Let | = (Fi(X),...,Fs(X)) and wi, ..., wp, satisfy ODC.
Code word ¢ = ev(F + I;) where Supp(F) C AL, (Ig)-

Hamming weight equals

—

n—[A, ((F(X)) + )l

For every monomial M

Im(MF(X) rem {Fi(X),...,Fs(X)})

DOES NOT BELONG TO A, ((F(X)) + /).

We can easily detect the above leading monomial!
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The weights tell it all...

tV)V(lm(/w_Fp?)):W(lm(/\/nro?) rem {Fi(X),...,Fs(X)}))

—

» No two monomials in F(X) are of the same weight (as no two
monomials in A (/) are of the same weight).

—

» Every F;(X) has exactly two monomials of highest weight.
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Hamming weight of ¢

In conclusion we can estimate

wi(@
= =B (FR) + 1))
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Hamming weight of ¢

In conclusion we can estimate

—

wi(E) )
= - AR + o)
= Az, (I\A<, ((F(X)) + 1g)]
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Hamming weight of ¢

In conclusion we can estimate

—

wH(C)
= n— AL, ((FX) + 1)l
A, (I\A, ((F(X) + 1)
w(A<, (Ig)) N {w(M - Im(F))|M a monomial}|

v

(1)
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Hamming weight of ¢

In conclusion we can estimate

—

wi(C)
= 0= AL, (FX) + 1)l
A<, (A<, ((F(X)) + 1)
w(A<, (Ig)) N {w(M - Im(F))|M a monomial}|
[H*(Q) N (w(Im(F)) + H(Q)) (1)

v
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Hamming weight of ¢

In conclusion we can estimate

—

wH(C)
= n— AL, ((FX) + 1)l
A, (I\A, ((F(X) + 1)
lw(Ax, (! ))ﬂ{w(l\/l Im( ))|M a monomial}|
|H*(Q) N (w(Im(F)) Q)) (1)
n—H(Q)\ (w(Im(F )) (Q))I

AV I AV

Olav Geil, Aalborg University, Denmark One-point AG-codes from an affine-variety point of view



Hamming weight of ¢

In conclusion we can estimate

v

\Y]

—

wH(C)
n =182, ((F(X) + lg)]

A, (I\A, ((F(X) + 1)

lw(Ax, (! ))ﬂ{w(l\/l Im(F))|M a monomial}|
|H*(Q) N (w(Im(F)) + H(Q)) (1)
n—H(Q)\ (w(Im(F )) H(Q))|

— w(Im(F)).

Last line corresponds to Goppa bound. Last equality comes from
semigroup theory.
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Minimum distance of Hermitian codes

lo=(X*—Y3— VY, X%—X,Y%—Y) CFq[X, VY]

19 16 13 10 7 4 3 2 1
23 20 17 14 11 8 6 4 2
27 24 21 18 15 12 9 6 3

Green=Goppa bound, Blue=Equation 1.
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Minimum distance of Hermitian codes

lo=(X*—Y3— VY, X%—X,Y%—Y) CFq[X, VY]

19 16 13 10 7 4 3 2 1
23 20 17 14 11 8 6 4 2
27 24 21 18 15 12 9 6 3

Green=Goppa bound, Blue=Equation 1.

Improved code construction straight forward.
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Minimum distance of Hermitian codes

lo=(X*—Y3— VY, X%—X,Y%—Y) CFq[X, VY]

19 16 13 10 7 4 3 2 1
23 20 17 14 11 8 6 4 2
27 24 21 18 15 12 9 6 3

Green=Goppa bound, Blue=Equation 1.
Improved code construction straight forward.

Everything works for general one-point algebraic geometric code.
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» Improved bound and improved code construction translates
immediately to the general case of one-point AG codes where
affine description is not known but H*(Q) is known.
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» Improved bound and improved code construction translates
immediately to the general case of one-point AG codes where
affine description is not known but H*(Q) is known.

» Generalization of one-point construction to higher

transcendence degree. We have trdg = r < w(X;) € N.
Improved bound works (but Goppa bound does not).
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» Improved bound and improved code construction translates
immediately to the general case of one-point AG codes where
affine description is not known but H*(Q) is known.

» Generalization of one-point construction to higher
transcendence degree. We have trdg = r < w(X;) € N.
Improved bound works (but Goppa bound does not).

> Let F/F, be a function field that possesses a Weierstrass
semigroup A = (\1,..., Am). The number of rational places is

at most
#(AN\ Uy (ghi +N)) + 1.
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