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Abstract

In two recent papers the first by Feng, Rao, Berg and Zhu and the second by Feng, Zhu, Shi
and Rao, the authors use a generalization of Bezout’s theorem to estimate the minimum distance
and generalized Hamming weights for a class of error correcting codes obtained by evaluation of
polynomials in points of an algebraic curve. The main aim of this note is to show that instead of
using this rather complex method the same results and some improvements can be obtained by
using the so-called footprint from Grobner basis theory. We also develop the theory further such
that the minimum distance and the generalized Hamming weights can not only be estimated but
can actually be determined.
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I1.16.1 Introduction

In this paper we study the generalized Hamming weights for linear codes and
for duals of evaluation codes in particular. The material is a natural continuation
of the material presented in [2], [3] and [4].

The idea of generalized Hamming weights for a linear code is to generalize the
concept of the minimum distance. We have the following definition. Given

U={u1=(vi1,...,u1n)y ., us = (us1,...,usn)} CFy
define the support of U to be
Supp(U) := {i|Ju; € U with uj; # 0}.

Consider a linear code C of dimension k. For h = 1,. .., k, the h.th generalized
Hamming weight is defined to be

dp, := min{#Supp(U) | U is a linear subcode of C of dimension h}.

The set {dy,...,dx} is called the weight hierarchy for C.

In this paper we first state a method to determine/estimate the generalized Ham-
ming weights of any linear code with known parity check matrix. In the case
of a dual code to an evaluation code this method involves the estimation of the
size of certain varieties. The so-called footprint bound that is a very suitable
tool for this kind of estimations is used in various cases. Finally we estimate the
generalized Hamming weights for the codes presented in [2], comment on the
codes presented in [3], and discuss the relation between the method presented
in [6] and the method presented in this paper.



I1.16.2. Basic results 165

I1.16.2 Basic results

Let a parity check matrix H := [hy,..., hy]T be given. Define

i—1
[hi] :={hi + ) _ ajhj| oy € F,},
Jj=1
forz = s, 7.
D{[hil],m[his]} := max {n — #Supp(h;,,...,h;)]
h'lit € [hi],t = 1,...,8}
forl1 <i;<-+-<ig<r.And
D, := max {D{[hh]w-,[his]} | 1< << < 7“}

for s = 1,...,r. There is a strong relation between the numbers D, and the
generalized Hamming weights for the code with parity check matrix H. To
prove this relation we will need the following fact originally noted in [8].

Proposition I1.16.1
Let C' be a code with parity check matrix H. Then dj, = d* if and only if d* is
the largest number such that any d* — 1 columns of H constitutes a matrix of
rank at least d* — h.

The above mentioned relation is.

Theorem 11.16.2

Let C be a code of length n with parity check matrix H = [hq,...,h,]T (not
necessarily of full rank). For any d* < r 4+ h, h < k, d* < n the following
biimplications hold

(1) dp>d" & Dr_grypp1 <d¥ =2

(i) dy <d* & Dr_geyn > d".

Proof:
(i): From [2] we have the following proof of the <= part. Assume d;, < d*. By
proposition I1.16.1 there exists an r x (d* — 1) submatrix M = [my,...,m,]"

of H of rank at most d* — h — 1. Now there are at least r — (d* — h — 1)
rows 1, such that m; is linearly dependent on {my,...,m;_1}. But then
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D,_g+4n4+1 = d* —1. We next prove the = part. Assume D, _g«yp 41 > d*—1.
But then there exists an r x (d* — 1) submatrix M of rank at most

r—(r—-d*'+h+1)=d"-h-1,

and by proposition 11.16.1 we must have d;, < d*. (ii): To show the = part
assume Dy_g+yp < d*. Then D,_ (g« 11)4h41 < (d* + 1) — 2 and from (i) we
conclude that d, > d* + 1. To show the < part assume d;, > d* + 1. By (i) we
must have D;._(g+41)4h41 < d* — 1. O

The by far most important part of theorem II.16.2, namely the <= part of (i) was
originally stated in [2] in the special case of duals of evaluation codes.

I1.16.3 Duals of evaluation codes
LetV = {Py,..., P,} C F bea variety, say V = Vy, (I) where

I = (Gi(X1,..., Xm),...,Gg(X1,..., Xm))
€ BylXisvo s Xm)s

For F € Fy[X1,...,Xm] we denote f := (F(Py),...,F(P,)). Consider the
code with parity check matrix H := [f1,..., fT]T. We define

i—1

[F]:={Fi+)_ajFj|a; € Fg}
i=1

fori=1,...,r. And
Dy(F,),.oipiyy = max{#{P; € V|F () == F,(F)=0}|
Fe[F,) t= I |
= max{#{Q €I} |F,(Q) = =F,(Q) =
G1(Q) =+ =Gy(Q) =0} |

F elf) t=1,...,9}
forl <4; < --- < 1g < r. Now the crucial observation is that
Digittfily = Pitsdatrilpy
and in particular that

D; = maX{D{[Fil],»-,[Fis]} |1 <ip<---<is <}
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By theorem II.16.2 the problem of estimating the generalized Hamming weights
is translated to the problem of estimating the number of common solutions to
certain sets of polynomial equations. Or in other words to the problem of esti-
mating the size of certain varieties.

One might get the idea that equality in Dy_g++p+1 < d* — 2 implies dj, = d*.
The following example shows that this is certainly not the case.

Example 11.16.3
Let V := 3 and consider the code over F, with parity check matrix H :=

[l,m,y]T. Clearly D3 = 0, Dy = 1, D; = 2. Now equality holds in both
D3<2—-2,Dy<3—-2andinD; <4 —2.

I1.16.4 The footprint bound

Given an ideal I C k[X7,. .., Xy,] then the size of the variety Vi (I) (k denotes
the algebraic closure of k) is bounded by the footprint bound. To state this bound
we will need some definitions. Let a monomial ordering < on k[X7, ..., Xy)
be given (see [1, p. 53] for a definition of monomial orderings). The footprint of
I with respect to < is

AL(I) := {M amonomial in k[X1,...,Xpm]| M is not

a leading monomial of any polynomial in I'}.

When the monomial ordering is clear from the context we will use the abbre-
viated notation A(I). Varying the monomial ordering will in general change
the related footprint. However whenever the size (of one of them) is finite this
will be independent of the choice of <. Given a finite set of generators of I
then we can use Buchberger’s algorithm to determine the footprint A(I) exact.
In this paper however the generators will not be completely specified, implying
that we can only use some parts of Buchberger’s algorithm. The following theo-
rem known as the footprint bound can be found in various textbooks on Grobner
basis theory, e.g. in [1, §5.3]. See also [5].

Theorem I11.16.4
LetI C k[X1,...,Xy,] be anideal. If A (I) is finite then # Vi (I) < #A<(1).
Equality holds whenever I is a radical ideal.
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Recall that we want to estimate the number of common solutions in Fi* to an
equation set

Fl(Xla"'aXm) = 0
E: ; (IL16.1)
Fy(X1,.. s Xm) = 0.

Now we are not interested in the ideal I := (Fy,...,Fy) C Fy[X1,..., Xn)
but in the corresponding variety. So we can replace I by any other ideal with the
same variety. In particular we can replace I with

(Fi,...,Fy, X9 = X1,..., X% — Xp).

In this way we are sure always to get finite footprints.

This adding new defining polynomials of course corresponds to adding new
equations to the equation set 2. Now let E be any equation set of the form (I1.16.1).
Given a monomial ordering < on Fy[X7, ..., Xy, we define the ideal Ijeoq :=
(Im(Fy),...,lm(Fs)). It is clear that A (I) C A<(Ijeqq) giving us the im-
mediate bound that the number of solutions to (I.16.1) is at most #A < ([jead)-
Note that Ij.,4 depends on the choice of representation of I and on the choice of
monomial ordering as well. One of the most important tools in the calculations
in the remaining part of this paper will be to add more equations to (I.16.1) to
lower the value #A ({jeqq)-

Note that an important advantage of theorem I1.16.4 in comparison with the gen-
eralized Bezout’s theorem for more than two polynomials is that we do not need
to check whether these have components in common.

I1.16.5 Estimating the number of common zeros - examples

All the propositions in this section but the last one are more or less generalized
versions of results stated in [3] and [4]. To demonstrate the strength of the
footprint theory we include new proofs that are in general more simple than
the original ones that are based on the generalized Bezout’s theorem. Also the
footprint theory suggests some generalizations and two important corollaries.

Proposition I1.16.5
Let natural numbers is and j; be given where i1 > i > -+ > ip, = 0 and
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0=171 <Jo <--+ < jpn. Consider

Gi(X,Y) = Fio(V)X" + Fuu(Y) X" 1 4o 4 Fiy (V)
G2(X,Y) = F(Y)X™ + Fn (V) X2 .. 4 Fyp, (V)

Gn(XaY) = FnO(Y)in 'i'Fnl(S/))(i"w1 o m v +Fm'n(Y)

where F;(Y), i = 1,...,n is a polynomial of degree j;. The equation set
Gi(X,Y) = G2(X,Y) = -+ = Gup(X,Y) = 0 has at most j3(i; — i2) +
Jalio —i3) 4+« -+ + Jnin—1 solutions.

Proof:
Consider the pure lexicographic ordering < e, on k[ X, Y] where X Yh =<plex
XY B2 whenever either oy < as or @ = g and B1 < Ba. The leading mono-
mial of G5, s = 1,...,nisIm(G;) = XtsYJs, In particular Im(G;) = X* and
Im(G,,) = Y7». Define
I:=(G1(X,Y),...,Gn(X,Y)) Ck[X,Y]
and let [;.,q be given as in the previous section. We have
A(Tieqa) = {X'Y7|notbothi > izandj > js, forany s =1,...,n}
The number of monomials in A([jeqq) is
7;1‘7'71 - (il - Z?)(Jn - .72) - (i2 - 7'3)(.7n - .73)
- (in—2 - Z‘n—l)(]’n - jn—l)
= Ja(i1 —d2) + j3(i2 — i3) + -+ + Jnin_1.

The footprint technique suggests a sharpening of [4, Th. 3.2].

Proposition 11.16.6
Consider
G1(X,Y,Z) = XU+ (Y, 2) X0 4.+ Fy (Y, 2)
Go(X,Y,Z) = Y2+ Fu(Z)Y2 1 4. + Ry, (2)
G3(X,Y,Z) = ZM+FuzM 1+ + Fy,
Hy(X,)Y,Z) = Fyp(Y,2)X"+Fu(Y,2)X" ™1+ + Fy, (Y, 2).
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Let YJ4Y*4 be the leading monomial of Fy(Y, Z) with respect to the pure lex-
icographic ordering where Z <pjeq Y <piez X. The number of solutions to the
equation set

GI(X7Y7 Z) = G?(X7Y’ Z)
— G3(X,Y,Z) = Hy(X,Y,Z) =0 (I1.16.2)

is at most i1joks — (41 — 14)(j2 — ja)(k3 — k4) whenever iy > i4, jo > j4,
ks > k4 and is at most equal to i1 joks when not.

Proof:

Let I be the ideal generated by G1(X,Y, Z),..., H4(X,Y, Z). Define j; =
k1 = ig = ko = 13 = 73 = 0. Using the monomial ordering from the proposi-
tion we get

A(Tjeaq) = {XYIZF |notall i > ig, 5 > js, k > ks
forany s =1,...,4}.

Remark I1.16.7
Let a monomial ordering be specified on the polynomial ring k[X]. Let two

equation sets E(V) with corresponding ideals I, I l(el ) 4 C k[X] and E® with

a
corresponding ideals I\?), T l(e2 3 4 C k[X] be given. It is clear that the number of
elements that are a solution to the equation set E : E(V)| E®) is bounded above
by
#(a(18)) na(18,) (I.16.3)
in the case of this being finite. Actually the argument of (II.16.3) is the ideal
I}eqq corresponding to E.

From remark 11.16.7 it is clear how one should handle the situation where an
extra equation

Fso(Y,Z)X% + F5 (Y, Z2) X% '+ ... + F5, (Y, Z) =0

is added to (I1.16.2). This is preciously the case in [4, Th. 3.3] meaning that we
have an easy proof of this theorem also.

In [4] it is implicit assumed that 5 < b in the following proposition. We do not
need this assumption.
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Proposition 11.16.8
Define a weighted degree function on k[X,Y] by weights w(X) = b and

w(Y) = a. Consider

F(X,Y) = X°+aY’+F'(X,Y)

G(X,Y) = X'VI+G'(X,Y)
where « is nonzero and a,b > 0, w(F') < ab and w(G') < bi + aj. The
equation set F(X,Y) = G(X,Y) = 0 has at most bi + aj solutions.

Proof:
Consider the weighted degree lexicographic ordering on k[X, Y] given by the
weighted degree function from the proposition in combination with the lexi-
cographic ordering X <o Y. Now Im(F) = Y? and Im(G) = X*YJ. If
4 > b then we replace X*Y7 in G(X,Y) by a1 X*YI~0(- X2 — PIX, Y}
The leading monomial of the polynomial derived in this way is X itayi=b We
continue the process un till we finally get a polynomial G(X, Y) with leading
monomial X'Y7 such that j < b. Note that w(X'Y’) = w(X*Y7) and note
that G(X,Y) lies in the ideal I := (F(X,Y),G(X,Y)). Another polynomial
in I is the S-polynomial

S(F,G) = X'F(X,Y) - aY"IG(X,Y)
with leading monomial X%+, Now

A(I) C{X*YP|a <a+1,8 <b, notboth @ >7and B8 > j}.
The last being of size equal to
(a+3)b—(a+i—1)(b—7)
= w(XVY) = w(XY?) = bi + aj.

The following two corollaries are new.

Corollary I1.16.9
Define a weighted degree function by w(X) = ¢, w(Y') = a + b. Consider

F(X,Y) = XY+ aX®+F'(X,Y)
G(X,Y) = X"YI48Y°+G'(X,Y)
where «, 3 are nonzero and where c¢i + (a + b)j > ac > wdeg(F') and

wdeg(G') < ac + be. The equation set F(X,Y) = G(X,Y) = 0 has at
most (a + b)j + ci solutions.
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Proof:
Consider the S-polynomial

H(X,Y) X°F(X,Y) - G(X,Y)
aX%h . gye + HY(X,Y)
where wdeg(H') < w(X?t?) = w(Y®). By proposition I1.16.8 we get at most
(a+b)j+ci
solutions to F(X,Y) = H(X,Y) = 0. O
The generality of the following corollary is seen from the proof of proposi-
tion I1.16.8.
Corollary I1.16.10
Define a weighted degree function as in proposition I1.16.8. Consider
F(X,)Y) = X°4aY’+F'(X,Y)
G(X,Y) = XV +G(X,Y)

where « is nonzero a,b > 0, j < b, w(G") < b + aj, w(F') < ab and any
monomial in F' of weight ab is neither X, Y° nor X°Y* where t < j. The
equation set F(X,Y) = G(X,Y) = 0 has at most bi + aj solutions.

Proof:
The last assumption ensures that S (F, G) can be reduced modulo G to a poly-
nomial with leading monomial X%t*, 0

From remark II1.16.7 and the proof of proposition II1.16.8 it is clear how one
should handle the equation set

X+ oY+ F(X,)Y) =
X1yh 4+ Gi(X,Y)
X2Y? + Gy(X,Y) =

Xty +GL(X,Y) = 0.

This observation replace a rather long proof from [4] of their theorem 4.2.
Finally the footprint technique suggest a sharpening of [4, Th. 4.3].
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Proposition I1.16.11
Define a weighted degree function on k[X,Y, Z] by w(X) = b2, w(Y) = ab
and w(Z) = a?. Consider

Gi1(X,Y,Z) = X°+aY’+G|(X,Y,2)
G2(X,Y,Z) = Y°+B82Z°+Gy(X,Y,2)
Gs(X,Y,8) = XVIZF+G4(X,Y, 2)
where «, 3 are nonzero and where wdeg(G) < ab?, wdeg(G%) < a?b, wdeg(G%) <

ib®+jab+ka®. The equation set G1(X,Y, Z) = G2(X,Y, Z) = G3(X,Y, Z) =
0 has at most wdeg(G3) = ib? + jab + ka? solutions.

Proof:

Wlog. we assume « = = 1. Consider the weighted degree lexicographic
ordering on k[ X, Y, Z] given by the weighted degree function from the proposi-
tion in combination with the lexicographic ordering Z <jec; Y <jex X. We
will wlog. assume that ¢ > b. Now G3 can be reduced modulo {G1, G2}
to a polynomial with leading monomial X “YIZk where 1,7 < a. Clearly
w(X?YIZ*) = w(G3). To ease the notation we assume in the following wlog.
that G5 is of this form from the beginning. There are two cases to consider.
Casel a<b+7j:

The S-polynomial S(G1,G3) = Y*+7Z* + ... is reduced modulo G to

Gy = Yoi—egbtk ..
Further let
Gs = S(Ga,Gq) = Z0FF ...
Gs = S(Go,G3) =X1Z0F ...,

All together we can detect the following leading monomials from (G1, G, G3),
namely
{Xa ve Z2b+k X’Ly]zk: Yb+j—azb+k Xizb-l—k}

and the bound follows.
Casell a > b+ 7:
We get the following S-polynomials

Gy = S(G1,G3) =YIitbzE ...

Gs := 5(G,G4) = Z°TF ...

and the bound follows. O

Inspired by some examples in [2] we state the following proposition.
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Proposition 11.16.12
Consider

F(X,Y) = Y+aX+8
G(X,Y) = GI(X7Y)+G2(XaY)

where G is irreducible and homogeneous of multidegree m > 1, and where G2
is of multidegree less than m. The equation set F(X,Y) = G(X,Y) = 0 has
at most m solutions.

Proof:

Substitute Y + aX + S in G(X,Y) to get a polynomial H(X) of degree at
most m. If H(X) is not the zero polynomial then the proposition follows at
once. It remains to show that H(X') can not be the zero polynomial. The coeffi-
cientto X™ in H(X) is G1(1, @). Now G1(1, @) = 0 would imply G1(1,T) =
(T — &) L(T) giving us G1(X,Y) = X"G1(1,Y/X) = (Y — &)L/(X,Y), a
contradiction to our assumptions. ]

I1.16.6 The weight hierarchies

In the following we will estimate and in one case find the weight hierarchy for
the codes treated in [2]. The minimum distances of these codes were estimated
in [2] by use of the generalized Bezout’s theorem. We will estimate the general-
ized Hamming weights using the footprint technique and the classical Bezout’s
theorem. We will often specify a weighted degree lexicographic ordering <,
with respect to which we will estimate the footprint A([jeqq). We will choose
linearly dependent weights but in a way such that the choice of lexicographic
part of <,, is insignificant to our purpose. Therefore we will only specify the
values w(X) and w(Y').

11.16.6.1 Improved Klein codes

Let V be the 22 points on the Klein curve X3Y +Y3+ X = 0 over Fg . Consider
the code over Fg with parity check matrix

H:= [11 z,Y, w2a Yy, w3, y2]T-

We will find the values D1, D9 and estimate the value Dsg.
We first determine Dy. D{[1]} = 0 is obvious. Dy[x}} < 3 is seen as follows.
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We want to estimate the maximal number of solutions in F2 to the equation set

X+a = 0
XY 4+vYi4+ X

whenever a € Fg. We insert X = a in X3Y + Y3 + X to get a nonzero

polynomial in ¥ of degree at most 3. D[y} < 4 is seen as follows. We want to
solve

Y4+aX+b = 0
XY +Y34+X = 0.

If a = 0 then we proceed as above and get a most 3 solutions. If a # 0 then
we use proposition I1.16.8 and get at most 4 solutions. Dy(x2)y < 6is seen as
follows. We want to solve

X24+aY +bX +¢ =
XY +Y3+X = 0.

By choosing w(X) =1 and w(Y) = 1.6 we get
A(Lieaq) = {1, X,Y, Y2, XY, XY?}.
Dy(xy}y <7 is seen in the following way. We study the equation set

XY +aX?+bY +cX+d = 0
XPY4¥34 X

If @ # 0 then by corollary I1.16.9 we get at most 7 solutions. If a = 0 then the
resultant with respect to X is

c+Y bY +d 0 0
0 c+Y bY +d 0
0 0 c+Y bY +d
Y 0 i yH

that is a polynomial in Y of degree 6. So by Bezout’s theorem there are at most
6 solutions when @ = 0. Dyjxs)y < 9 is seen by choosing w(X) = 1,w(Y) =
1.6. Dyry2)y <9 is seen in the following way. We study the equation set

Y24+ aX34+0XY +cX?+dY +eX+f = 0
Y+ 4X
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If a # 0 then by proposition I1.16.8 we have at most 9 solutions. If a = 0
but ¢ # 0 then by corollary I1.16.10 there is at most 8 solutions. Assume now
a = ¢ = 0. The resultant with respect to X is

bY +e Y2+dY + f 0 0
0 bY +e Y24dY + f 0
0 0 bY +e Y24+dY + f
Y 0 1 Y3

that is a polynomial of degree 7. So by Bezout’s theorem we have at most 7
solutions. All together D; < 9. By inspection the equation set
X+ XY+ X +Y+X+1 = 0
XY +Y3*+X = o

has the 9 solutions (1, a), (1, a2), (1,a?), (o, &%), (a?, @), (&, a?), (a?, ?),
(a®, ) and (o, o*) where ais aroot in T3 + T + 1. So Dyjxap; > 9 and we
conclude D; = 9.
Next we determine Ds. D{[l],*} =0, D{[X],*} <3, D{[y],*} < 4 and D{[X2L*} <
6 follows from above. Dy xy) x3)} < 5 is seen in the following way. We study
the equation set

XY +aX?+bY +cX+d = 0

X3 4+eX?+fY+gX+h = 0

XY +Y*+X = 0.
If f # 0 then we use proposition II.16.8 on the first two equations to give
at most 4 solutions. If f = 0 then we solve the second equation to get at
most 3 solutions. The ones that are different from b are inserted in the first
equation to give unique corresponding Y values. If eventually b is a solution to
the second equation, then we insert X = b in the third equation to get at most 3
corresponding Y values. All together we get at most 5 solutions. Dy(xy][y2)} <
5 is seen as follows. We study the equation set
XY +aX?>+bY +cX +d = 0
Y24eX3+fX24+gY +hX+i = 0
XY +Y*+X = 0.
If e # 0 then by proposition I1.16.8 we get at most 5 solutions. If e = 0 but
a # 0 then we consider
S(F17 FZ)
= X} (XY +aX?4+bY +cX +d)+ XY +Y3+ X
aX*+Y? +bX?%Y +cX? +dX* + X.
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Choose w(X) = 1L,w(Y) = 1.1 to get A(Lieqq) = {1,Y, X, X2, X3}, If
e = a = 0 and not both f = 0 and h = 0 then we use proposition II.16.8
on the first two equations to get at most 4 respectively 3 solutions. Finally
ife =a = f = h = 0 then we solve the second equation and insert the
solutions into the first respectively the third equation to get at most 5 solutions.

Dyx3),y2)y < 6 is obvious. All together Dy < 6. By inspection the equation
set

X2+Y+1 = 0
XFP+XY +X4+Y 4+ X+1 =
XY +Y34+X =0

has the solutions (o, af), (@2, ®), (a3, a?), (at, a3), (¢, ) and (a®, o*). So
D{[Xz],[Xa]} > 6 and we conclude DQ = 6.

Next we estimate Dj. D{[l],*,*} = 0, D{[X],*,*} < 3, D{[y]’*’*} < 4 follows
from above. Dyx2)4y2)} < 4 follows by choosing w(X) = 1,w(Y) = L.6.
Dyxy)xayey < 4 and Dyxepixvyixs)y < 4 follows in exactly the same
way. All together D3 < 4.

Now to the parameters of the code. Obviously n = 22. We next determine
the weight hierarchy. We get d; = 6 as D7_¢4+141 = D3 < 4 but Dy > 6.
We get dy = 8 as Dy_g4241 = Do < 6but Dy > 8. And we getd3 = 9 as
D7_10+3+1 = D1 £10—2 = 8. Nowon theonehand d; > i+7fori =4,...,k
as Dy7_(i47)4i+1} = D1 < 9. And on the other hand the Singleton type bound
implies d; < i+ (n—k) for any ¢ < k. Now n — k can not exceed the number of
rows in H. So we conclude n — k = 7and k = 15. And we conclude d; = 1+ 7
for i = 4,...,15. Note that the consideration concerning the weight hierarchy
gave us a proof that the row vectors in H are linearly independent.

Now let V' be unchanged but consider the code with parity check matrix
H:=[1,z,y,2% zy,z* + y?".

From [2] we know that D3 < 3. We now estimate the values D and Dy. We
first consider Dy. Dypyjy = 0 is obvious. Dy(xyy < 3 respectively Dyy)y <3 is
found by inserting X = a respectively Y = aX +bin XY + Y3 + X to geta
nonzero polynomial in Y of degree at most 3. Dy x2); < 6 follows by choosing
w(X) = 1,w(Y) = 1.6. Dyxyp} < 7 is seen in the following way. We study
the equation set

XY +aX?24+bY +cX +d =
XY +Y3+X = 0.
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If a # 0 then by corollary I1.16.9 there are at most 7 solutions. If ¢ = 0 then
Bezout’s theorem gives at most 6 solutions. Dyix34y2)) < 8 is seen in the
following way. We study the equation set

XY 4 oXY + X2+ ¥ +dX +e = 0
XY +Y3+X = 0.

Consider aXY2+bX2Y +cY?+dXY +eY+X = 0. Ifa # 0 or b # 0 then we
use proposition I1.16.8 on the first and third equation to give at most 8 solutions.
If a = b = 0 but ¢ # 0 then we choose w(X) = 1, w(Y) = 1.1 to give at most 6
solutions. If a = b = ¢ = 0 but d # 0 then we use proposition 11.16.8 to give at
most 5 solutions. And finally when a = b = ¢ = d = 0 we substitute X = eY
in X3Y 4+ Y3 + X = 0 to give at most 3 solutions. All together D; < 8.

We next consider Ds. D{[X2],[XY]} < 4 and D{[Xz],[X3+Y2]} < 4 follows
by choosing w(X) = 1,w(Y) = 1.6. Dyxyxs+y2)y < 5 follows from
proposition I1.16.8. We conclude Dy < 5.

Now to the parameters of the code. Again obviously n = 22. And d; > 5,
do > 7,d3>8,d; >1i+6fori=4,...,k follows from D3 < 3, Dy < 5 and
D, < 8. The Singleton type bound states that d; < i + (n — k) for any i < k.
Using the fact that n — k can not exceed the number of rows in H we get k = 16
andd; =t + 6 fori =4,...,16.

[1.16.6.2 Improved Hermitian code

Let V be the 64 points on the Hermitian curve X5 + Y4 + Y = 0 over Fig.
Consider the code over Fg with parity check matrix

H:= [17mayam27my>y27m3,y3 + $4]T.

D4 < 4is shown in [2]. In the following we estimate D1, Dy and Ds.

We first consider D;. D{[l]} = 0 is obvious. D{[X]} < 4 and D{[y]} <5
are seen as in the previous section. Dyxz2j3 < 8 follows when w(X ;=
L,w(Y) = 1.3 is chosen. Dy[xy}y <9 is a consequence of proposition II.16.8.
Dyiy2)y < 10 follows by choosing w(X) = 1,w(Y) = 1.1. Dyxsy < 12
follows by choosing w(X) = 1,w(Y) = 1.3. Dyys x4y < 16 follows by
choosing w(X) = 1,w(Y) = 1.3. We conclude D; < 16.

We next consider Dy. Dyj1j4} = 0, Dyx)} < 4, Dy[y)+} < 5and Dyix2)4y <
8 follows from above. Dy xy],[y2)}; < 6 by choosing w(X) = 1,w(Y) = 1.1.

D{[XY],[X3]} < 6 follows by choosing ’U)(X) = 1,w(Y) =1.3. D{[XY],[Y3+X4]} <

7 follows from proposition I1.16.8. D fy2)x3); < 6 and Dyjy2) ys; x4y < 8
follows by choosing w(X) = 1, w(Y) = 1.1. We conclude D, < 8.
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We next consider D3. Dy(1]«+} = 0, D{[x]5+} < 4 and Dy, 4y < 5 follows
from above. Dy(x2]y2)s} < 4 follows by choosing w(X) = 1,w(Y) = 1.1.
D{[Xz],[XY],*} < 5 by choosing w(X) = l,w(Y) =1.3. D{[Xy]’[yz],[xs]} < 4
follows by choosing w(X) = 1,w(Y) = L1. Dyxyyy2)ys+x4} < 5 fol-
lows by choosing w(X) = 1,w(Y) = 1.1. Dyixy),x3),[vs+x4) < 6 follows
by choosing w(X) = Lw(Y) = 1.4. Dyx2)[x3),[ys+x4) < 6 follows by
choosing w(X) = 1,w(Y) = 1.4. All together D3 < 6. From [2] we get
as mentioned Dy < 4. We note that to show Dy < 4 we need only use the
Hermitian equation in one case, namely when we consider D((x] s+ We
conclude that we could replace the Hermitian polynomial with any polynomial
F(X,Y) for which F'(a,Y) is a nonzero polynomial of degree at most 4 for any
a € Fyg. Forinstance F(X,Y) = Y4+ Y +1 has 64 zeros also and would give
a [64, 56, > 6] code.

Now to the parameters of the code from the Hermitian curve. Clearly n = 64.
Furtherd; > 6,dy > 8,d; > i+7fori =3,...,9,d; > i+8fori =10,...,k
follows from Dy < 16, Dy < 8, D3 < 6 and D4 < 4. Similar to the previous
considered codes we investigate the Singleton type bound and the number of
rows in H. We conclude k£ = 56 and d; = ¢ + 8 for ¢ = 10,...,56.

Finally we compare the above code with the conventional Hermitian codes.
The Weierstrass semigroup related to the point @ at infinity is (4,5). Denote
by C(m) the image of the usual evaluation map ev : £(mQ) — FS;. The
dual code with dimension & = 56 is C(13)1. From [10] we get C(m)+ =
C(n — 2g — 2 — m) where g is the genus. So C(13)+ = C(61). By [10, Th.
6.2] the first six generalized Hamming weights of C(61) are dy = 4, dy = 7,
ds = 8,dy = 11, ds = 12, dg = 13. We conclude that not only the minimum
distance is improved for the Hermitian code.

11.16.6.3 A family of codes

Let V be Ff], where ¢ > 2. Let F(X,Y) be any homogeneous irreducible

polynomial of degree 7, 2 < ¢ < g. Define
S := {M amonomial in F[X,Y] | deg),; < i} U{F(X,Y)}.

Let < be the graded lexicographic ordering on k[ X, Y] where X <je; ¥ (w(X) =
w(Y) in this case). Define

(i +1)i
2

r=#S=1+) j=

j=1

4= 114
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and enumerate the elements in S by S = {Hy,..., H,} such that H; < H;y;
fori =1,...,r — 1. Consider the code C with parity check matrix

H = [hy,...,h]T.
Clearly n = ¢2. It is well known that
{m| M amonomial in F,[X,Y] and degy M,degy M < ¢}

is a basis for F(ZI. So H is of full rank and the dimension of C'is k = n — r. We
next estimate the value of Dy—;. Dy[1}4,..«} = 0 asusual. Dy[x)x,..«} <7 as
at least one of the x’s will be equal to [Y] for some a or be equal to [F'(X,Y)]
(note that F(X,Y’) contains the monomial Y*). D{y)x,...»y < tisseen in the
following way. If [F'(X,Y")] is one of the ’s then by proposition I1.16.12 we
have at most 4 solutions. If [F'(X,Y)] is not one of the *’s then is at least one
of the [X]’s. Dy, .} < i whenever no of the #’s are [1], [X], [Y] is seen as
follows. First note that this situation of course only occurs when ¢ > 2. Then
note that at least one of the ’s is of the form [X¢] and also at least one is
either [F(X,Y)] or an element of the form [Y?]. Now assume that {,...,*}
is chosen such that Dy, ,; is maximal. We observe that if [X*Y?] is not one
of the #’s then will neither [X*'Y?] where X*'Y*|X*Y* be one of the *’s.
Combining this with the above observation that there exist a < 4 and b < 4
such that X Y® € A(Ijeqq) shows Dy, 3 < i. We conclude that C'is a
(4%, ¢* — (%1)—’ — 1, + 2] code.

The family of codes presented above is a generalization of the following two
codes from [2]. Namely the code over Fom with parity check matrix

H:=[1,z,y,2° + fzy + y*|7

where £ is any element with ¢r(87!) = 1. And the code over Fym with parity
check matrix

H:=[1,2,y,2° oy,4°,2° + 1’y + oy’ +°1"
where X° + vX?Y + BXY? + Y3 is irreducible.

11.16.6.4 Codes from k[X,Y, Z]

In [3] two examples of codes are given. In the first example a code over [y is
constructed by

Vi=Vr (X3+Y2+Y, Y3+ 2%+ 2))
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and
H = [1,2,y,2% 2,2y,82 + yz]T.
It is claimed that the minimum distance is at least 5. However the following

observation shows that this is not the case. Consider D{[y],[ X2, [XY)[XZ+Y Z]}-
The equation set

Y+ X+1=X2+X+1=XY+1=XZ+YZ+2Z
=X 4+Y2+Y=Y34+224+2=0
has the solutions (, o, ), (a, a2, &?), (2, @, @) and (o?, o, a?) where « is
a zero of T2 4+ T + 1. It follows that D4 > 4 and in particular that d < 5. One

can very easily show that D5 < 2. So the true value of the minimum distance is
d=4.

11.16.6.5 Codes constructed from footprints
Consider an affine variety V = {Py,...,P,} C Fy'. Let {G1,..-,Gs} €

Fq[X1,...,Xm] be a Grobner basis for I := Z(V) wrt. some monomial or-
dering < on the set of monomials in X1,...,Xm,. Let A(I) = {F,...,Ep},
where F; < Fji1,4 = 1,...,n — 1, be the corresponding footprint (note that

#V = #A(I) follows from the last part of theorem I1.16.4 as I = Z(V) is
a radical ideal). Consider the IF,-linear code C’TL (C respectively) with parity
check matrix (generator matrix respectively)

H =[hy,..., hs]T (11.16.6)

where h; = (F;(Py),..., Fi(P,)). It is well-known that whenever I C k[X]
is an ideal and A(I) is a footprint, then {M + I | M € A(I)} constitutes a
basis for k[ X]/I as a vector space over k (see [1]). In the present case therefore
{R1,...,hp} constitutes a basis for Fg. And in particular hq,. .., hy are lin-
early independent, giving C;- the dimension k := n —r and C, the dimension r.

In the following we will show how one
can derive lower bounds on the generalized Hamming weights of C;- ina
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direct way.
We start by investigating D;. For a fixed F; the number of solutions P to

i—1
Fy(P)+ Y a;Fj(P) =G1(P) =+ = G4(P) =0
7=1

is bounded by the size of

i—1
A(<Fl + Z a’ija Gla o 7GS>)‘
j=1
However
i—1
A((F;+ ) a;F;,Gh,...,Gs)) € Alliead)
j=1
where
Ieag = (m(F; 4> --),Im(Gy),...,Im(Gy))
= (Ealm(Gl)a,lm(Gé‘»
{X* e A(I) | F; does not divide X*}.
Define now
Ay = {X@|F, divides X%}
S = mln{#(A{z} NA(I)) R ECD T ,’)"}.

And D, is bounded by D; < n — 5.
To estimate D for arbitrary j, 1 < j < r, we generalize the above terminology.
Define

Mgy, iy = nglA{it}
S; = min{#(Ag,,.) NAI)) |1 <dp <dg < <4 <)

We get that D; is bounded by D; < n — ;.

Theorem 11.16.13
Consider the code C+ over IF, with parity check matrix given by (11.16.6). Let
h,i beintegers withl <h<n-r,1<i<r.Ifr+h—-1—14i>n—_5; then
dh Z n— SZ + 2.
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Proof:
Given h,i wherel1 < h<n-r,1 <i<r,defined* :=r+h+1—1. Assume
r+h—1-1i>n— S;thatis assume d* > n — S; + 2. We have

Dr_gtht1=D; <n—8; <d* -2,

which by theorem I1.16.2 implies dj, > d*. But d* > n— S;+ 2 and the theorem
follows. O

1I.16.7 Conclusion

We have demonstrated that working with the footprint instead of the generalized
Bezout’s theorem is easier and also allows one to give more general results. It

seems fair to mention that probably Feng et. al are also aware of this fact now.
See [9].

Bibliography of part I1

[1] David Cox, John Little and Donal O’Shea. Ideals, Varieties, and Algo-
rithms. Second Edition. Springer, 1997.

[2] Gui-Liang Feng, T.R.N. Rao, Gene A. Berg, J. Zhu. Generalized Bezout’s
Theorem in Its Applications in Coding Theory. IEEE Trans. Inf. Theory,
vol. 43, pp. 1799-1810, nov.1997.

[3] Gui-Liang Feng, Junmei Zhu. Xiaofa Shi and T,R,N. Rao. The Applications
of Generalized Bezout’s Theorem to the Codes from the Curves in High Di-
mensional Spaces. Proceedings of the 35th Allerton Conference on Com-
munication, Control and Computing, pp.205-214 , 1997.

[4] Gui-Liang Feng, Junmei Zhu, Xinwen Wu and T.R.N. Rao. High Dimen-
sional Generalized Bezout’s Theorem. Preprint University of Southwestern
Lousiana april 1998.



184 Bibliography of part 11 Ch.1I.16

[5] Tom Hgholdt. On (or in) Dick Blahut’s “footprint”. In Codes, Curves and
Signals ( A. Vardy ed.), pp. 3-9 , Kluwer 1998.

[6] Tomoharu Shibuya, Jiro Mizutani and Kohichi Sakaniwa. On Generalized
Hamming Weights of Codes Constructed on Affine Algebraic Sets. AAECC-
12, Lect. Notes Comp. Sc., vol.1255, pp. 311-320, 1997.

[7] Michael A. Tsfasman and Serge G. Vladut. Geometric Approach to Higher
Weights. IEEE Trans. Inf. Theory, vol.41, pp. 1564-1588, nov.1995.

[8] V. K. Wei. Generalized Hamming weights for linear codes. 1EEE Trans.
Inf. Theory, vol.37, pp. 1412-1418, sept.1991.

[9] Xin-Wen Wu, Gui-Liang Feng, T.R.N. Rao. Designing a class of Efficient
Codes Via Estimating the Number of Zeros of Polynomials. Preprint Univer-
sity of Southwestern Lousiana april 1999.

[10] A.L. Barbero, C. Munuera. The weight hierarchy of Hermitian codes.
Preprint University of Valladolid, june 1998.



