# Algebraic Geometry Codes In a Pure Gröbner Basis Theoretical Setting 

O. Geil

Aalborg University

KIAS-RIMS joint workshop on Computer Algebra,
Kyoto July 31-August 4-2006

## Outline

Basic coding theory
The Reed-Solomon codes
Strategies for generalizing Reed-Solomon codes
Some results from Gröbner basis theory
Generalized Reed-Muller codes and hyperbolic codes
Codes from the Hermitian curve
Order domains
Evaluation codes from order domains
Computer experiments
Invitation

## Model

| $\vec{m}$ |  | $\vec{c}$ | $\vec{r}=\vec{c}+\vec{e}$ |  | $\vec{m}^{\prime}$ |
| :--- | :--- | :--- | :--- | :--- | :--- |
| $\rightarrow$ | Encoder | $\rightarrow$ | Channel | $\rightarrow$ | Decoder |

$\vec{m}=\left(m_{1}, \ldots, m_{k}\right) \in \mathbb{F}_{q}^{k}, k<n, \vec{c}=\left(c_{1}, \ldots, c_{n}\right) \in \mathbb{F}_{q}^{n}$ $\vec{e}=\left(e_{1}, \ldots, e_{n}\right) \in \mathbb{F}_{q}^{n}, \vec{m}^{\prime} \in \mathbb{F}_{q}^{k}$
$P_{i}\left(e_{i}=0\right)=p$ is large, $P_{i}\left(e_{i}=\alpha\right)=(1-P) /(1-q)$ for $\alpha \neq 0$ and $P_{i}, P_{j}$ are independent

## Linear code

A (linear) code $C$ is a subspace $C \subseteq \mathbb{F}_{q}^{n}$
$k=\operatorname{dim}(C), C \simeq \mathbb{F}_{q}^{k}$.
Encoding:
Choose basis $\left\{\vec{g}_{1}, \ldots, \vec{g}_{k}\right\}$ for $C$. The generator matrix is

$$
G=\left[\begin{array}{c}
\vec{g}_{1} \\
\vdots \\
\vec{g}_{k}
\end{array}\right]
$$

Encode by $\vec{c}=\vec{m} G$.

## Minimum distance

$w_{H}\left(\left(w_{1}, \ldots, w_{n}\right)\right)=\#\left\{i \mid w_{i} \neq 0\right\}$
$\operatorname{dist}_{H}\left(\vec{w}_{1}, \vec{w}_{2}\right)=w_{H}\left(\vec{w}_{1}-\vec{w}_{2}\right)$
$d=\min \left\{\operatorname{dist}_{H}\left(\vec{c}_{1}, \vec{c}_{2}\right) \mid \vec{c}_{1}, \vec{c}_{2} \in C, \vec{c}_{1} \neq \vec{c}_{2}\right\}$
Within the distance $\left\lfloor\frac{d-1}{2}\right\rfloor$ of a word $\vec{w}$ there can be at most one codeword.
$d=\min \left\{w_{H}(\vec{c}) \mid \vec{c} \in C, \vec{c} \neq \overrightarrow{0}\right\}$.

## Minimum distance decoding

## Decoding procedure:

When we receive $\vec{r}$ we investigate if there exist a code word $\vec{c}$ with

$$
\operatorname{dist}_{H}(\vec{c}, \vec{r}) \leq\left\lfloor\frac{d-1}{2}\right\rfloor
$$

If positive we decode to $\vec{c}$.
Minimum distance decoding corrects errors with high probability.

## The three parameters

The length $n$, the dimension $k$ and the minimum distance $d$.
[ $n, k, d$ ]
If $\frac{k}{n}$ is high then fast transmission.
If $\frac{d}{n}$ is high then good protection against noise.
The challenge is to get $\frac{k}{n}$ as well as $\frac{d}{n}$ high simultaneously.

## Reed-Solomon Codes

$$
\begin{aligned}
& R=F_{q}[X], \quad R_{s}=\left\{F \in \mathbb{F}_{q}[X] \mid \operatorname{deg}(F) \leq s\right\} \\
& \left\{P_{1}, \ldots, P_{n}\right\}=\mathbb{F}_{q} \\
& \varphi:\left\{\begin{array}{l}
R \rightarrow \mathbb{F}_{q}^{n} \\
F \mapsto\left(F\left(P_{1}\right), \ldots, F\left(P_{n}\right)\right)
\end{array}\right. \\
& C(s)=\varphi\left(R_{s}\right)=\left\{\left(F\left(P_{1}\right), \ldots, F\left(P_{n}\right)\right) \mid \operatorname{deg} F \leq s\right\}, \quad s \in \\
& \{0, \ldots, n-1\}
\end{aligned}
$$

One possible generator matrix is $G=\left[\begin{array}{c}\varphi(1) \\ \varphi(X) \\ \vdots \\ \varphi\left(X^{s}\right)\end{array}\right]$

## The parameters of RS codes

A polynomial of degree less than $s+1$ can have at most $s$ zeros. Hence, $d \geq n-s$ (Singleton bound gives equality).

$$
[n, k, d]=[q, s+1, n-s] .
$$

## The parameters of RS codes

A polynomial of degree less than $s+1$ can have at most $s$ zeros. Hence, $d \geq n-s$ (Singleton bound gives equality).
$[n, k, d]=[q, s+1, n-s]$.

+ Large minimum distance
+ Well-structured
+ Simple description


## The parameters of RS codes

A polynomial of degree less than $s+1$ can have at most $s$ zeros. Hence, $d \geq n-s$ (Singleton bound gives equality).
$[n, k, d]=[q, s+1, n-s]$.

+ Large minimum distance
+ Well-structured
+ Simple description
- Short


## Dual description

$C^{\perp}$ the dual space of $C$ (may often have more elements in common).

A parity check matrix $H$ for $C$ is a generator matrix for $C^{\perp}$.
$C=\{\vec{c} \mid H \vec{c}=\overrightarrow{0}\}$.
For Reed-Solomon codes simple correspondence:
$C(s)=(C(n-s-2))^{\perp}$.

## Generalizing Reed-Solomon Codes

Some nice algebraic structure $R$ and map $\varphi$.
$C=\varphi\left(R^{\prime}\right)$ or $C=\left(\varphi\left(R^{\prime}\right)\right)^{\perp}$ for some $R^{\prime} \subseteq R$.
If being set up cleverly, information on $R$ reveals information on $C$.

## Strategies

- Well-established theory
- (Generalized) Reed-Muller codes (G or H)
- Geometric Goppa codes through algebraic geometry or/and function field theory ( G or H )
- More recent approaches
- Codes from order domains (G or H).
- (Generalized) Reed-Muller codes
- One-point geometric Goppa codes and their duals
- Codes from surfaces
- Improved constructions of all the above codes

This talk: Order domain codes (G) from nure Gröhr basis theoretical point of view

## Strategies

- Well-established theory
- (Generalized) Reed-Muller codes (G or H)
- Geometric Goppa codes through algebraic geometry or/and function field theory ( G or H )
- More recent approaches
- Codes from order domains (G or H).
- (Generalized) Reed-Muller codes
- One-point geometric Goppa codes and their duals
- Codes from surfaces
- Improved constructions of all the above codes

This talk: Order domain codes ( $G$ ) from pure Gröbner basis theoretical point of view

## Gröbner basis tools

Footprint ( $\Delta$-set):
$\Delta_{\prec}(J)=\left\{M \in \mathcal{M}\left(X_{1}, \ldots, X_{m}\right) \mid\right.$
$M$ is not a leading monomial of any polynomial in $J$ \}
$\# \mathbb{V}_{\overline{\mathbb{F}}}(J) \leq \# \Delta_{\prec}(J)$.
$\left\{M+J \mid M \in \Delta_{\prec}(J)\right\}$ a basis for $\mathbb{F}\left[X_{1}, \ldots, X_{m}\right] / J$.

## The map $\varphi$

Assume $\mathbb{V}_{\overline{\mathbb{F}_{q}}}(J)$ is finite and write $\left\{P_{1}, \ldots, P_{n}\right\}=\# \Delta_{\prec}(J)$
$\varphi:\left\{\begin{array}{ccc}\mathbb{F}\left[X_{1}, \ldots, X_{m}\right] / J & \rightarrow & \mathbb{F}^{n} \\ F+J & \mapsto & \left(F\left(P_{1}\right), \ldots, F\left(P_{n}\right)\right)\end{array}\right.$
$\varphi$ is surjective homomorphism of vectorspaces.
Assume further that $J$ is radical.
Then $\# \mathbb{V}_{\overline{\mathbb{F}}}(J)=\# \Delta_{\prec}(J)$.
Hence, $\varphi$ is injective as well. $\varphi$ is a vectorspace isomorphism.

## Main observations

## Main observation 1:

$w_{H}(\varphi(F+J)) \geq n-\# \Delta_{\prec}(\langle F\rangle+J)$
Main observation 2: (assuming $J$ is radical and $\Delta_{\prec}(J)$ is finite) If $R^{\prime} \subseteq \mathbb{F}\left[X_{1}, \ldots, X_{m}\right] / J$ is of dimension $k$ then $\varphi\left(R^{\prime}\right)$ is of dimension $k$.

If $\mathbb{F}=\mathbb{F}_{q}$ we can "make" $J$ radical by assuming
$X_{1}^{q}-X_{1}, \ldots, X_{m}^{q}-X_{m} \in J$.

## To be explored in this talk...

## Question:

How do we estimate $\# \Delta_{\prec}(\langle F\rangle+J)$ ?

## Answer:

By choosing clever $J$ and proper $\prec$ accordingly. This is the core of order domain theory.

## Reed-Solomon codes revisited

$$
\begin{aligned}
& J=\left\langle X^{q}-X\right\rangle .\left\{P_{1}, \ldots, P_{q}\right\}=\mathbb{F}_{q}(J) \\
& \Delta_{<}(J)=\left\{1, X, \ldots, X^{q-1}\right\} . \\
& \left.\qquad\left\{M\left(P_{1}\right), M\left(P_{2}\right), \ldots, M\left(P_{q}\right)\right) \mid M \in\left\{1, X, \ldots, X^{q-1}\right\}\right\}
\end{aligned}
$$

is a basis for $\mathbb{F}_{q}^{q}$.
For $F$ with $\operatorname{Im}(F)=X^{i}$ we have

$$
\Delta_{<}\left(\left\langle F, X^{q}-X\right\rangle\right) \subseteq \Delta_{<}\left(\left\langle X^{i}, X^{q}\right\rangle\right)
$$

Hence,

$$
w_{H}\left(\left(F\left(P_{1}\right), F\left(P_{2}\right), \ldots, F\left(P_{q}\right)\right)\right) \geq q-i .
$$

\[

\]

$\operatorname{dim}(C(s))=s+1$ and $d(C(s)) \geq q-s$ follows.

Generalized Reed-Muller codes and hyperbolic codes
$J=\left\langle X^{5}-X, Y^{5}-Y\right\rangle . \mathbb{V}_{\mathbb{F}_{5}}(J)=\left\{P_{1}, \ldots, P_{25}\right\}$.
$\varphi(F+J)=\left(F\left(P_{1}\right) \ldots, F\left(P_{25}\right)\right)$.
Let $\prec$ ANY monomial ordering.

$$
\begin{aligned}
& w_{H}(\varphi(F+J))=25-\# \Delta_{\prec}(\langle F\rangle+J) \\
& \geq 25-\# \Delta_{\prec}(\langle\operatorname{lm}(F)\rangle+J)=25-\# \Delta_{\prec}\left(\left\langle\operatorname{lm}(F), X^{5}, Y^{5}\right\rangle\right) \\
& \Delta_{\prec}\left(\left\langle X^{5}-X, Y^{5}-Y\right\rangle\right) \quad \# \Delta_{\prec}\left(\left\langle X^{i} Y^{j}, X^{5}, Y^{5}\right\rangle\right) \\
& \begin{array}{lllllllllll}
Y^{4} & X Y^{4} & X^{2} Y^{4} & X^{3} Y^{4} & X^{4} Y^{4} & 20 & 21 & 22 & 23 & 24
\end{array} \\
& \begin{array}{lllllllllll}
Y^{3} & X Y^{3} & X^{2} Y^{3} & X^{3} Y^{3} & X^{4} Y^{3} & 15 & 17 & 19 & 21 & 23
\end{array} \\
& \begin{array}{lllllllllll}
Y^{2} & X Y^{2} & X^{2} Y^{2} & X^{3} Y^{2} & X^{4} Y^{2} & 10 & 13 & 16 & 19 & 22
\end{array} \\
& \begin{array}{llllllllll}
Y & X Y & X^{2} Y & X^{3} Y & X^{4} Y & 5 & 9 & 13 & 17 & 21
\end{array} \\
& 1 \begin{array}{lllllllll} 
& X & X^{2} & X^{3} & X^{4} & 0 & 5 & 10 & 15
\end{array} 20
\end{aligned}
$$

$F(X, Y)=X Y+a X^{2}+b Y+c X+d$. Choose $\prec$ with $X^{2} \prec X Y$.
$w_{H}(\varphi(F+J)) \geq 16$

## Generalized Reed-Muller codes

$\operatorname{RM}_{5}(4,2)=\operatorname{Span}_{\mathbb{F}_{5}}\left\{\varphi\left(X^{i} Y^{j}+J\right) \mid i+j \leq 4\right\}$

$$
\Delta_{\prec}\left(\left\langle X^{5}-X, Y^{5}-Y\right\rangle\right) \quad \# \Delta_{\prec}\left(\left\langle X^{5}, Y^{5}, X^{i} Y^{j}\right\rangle\right)
$$

$$
\begin{array}{cccccccccc}
Y^{4} & * & * & * & * & 20 & * & * & * & * \\
Y^{4} & X Y^{3} & * & * & * & 15 & 17 & * & * & * \\
Y^{2} & X Y^{2} & X^{2} Y^{2} & * & * & 10 & 13 & 16 & * & * \\
Y & X Y & X^{2} Y & X^{3} Y & * & 5 & 9 & 13 & 17 & * \\
1 & X & X^{2} & X^{3} & X^{4} & 0 & 5 & 10 & 15 & 20
\end{array}
$$

Worstcase code word: $\operatorname{Im}=Y^{4}$ or $\operatorname{Im}=X^{4}$
$w_{H}\left(\varphi\left(\left(Y^{4}+\cdots\right)+J\right)\right) \geq 25-20=5$
$[n, k, d]=[25,15,5]$

## Hyperbolic codes

Choose $X^{i} Y^{j}$ 's with $\# \Delta\left(\left\langle X^{5}, Y^{5}, X^{i} Y^{j}\right\rangle\right)$ small.

| $[25,17,5]$ |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
| 20 | $*$ | $*$ | $*$ | $*$ |
| 15 | 17 | 19 | $*$ | $*$ |
| 10 | 13 | 16 | 19 | $*$ |
| 5 | 9 | 13 | 17 | $*$ |
| 0 | 5 | 10 | 15 | 20 |

[25, 15, 6]

*     *         *             *                 * 

$\begin{array}{llll}15 & 17 & 19 & *\end{array}$
$\begin{array}{lllll}10 & 13 & 16 & 19 & *\end{array}$
$\begin{array}{lllll}5 & 9 & 13 & 17 & *\end{array}$
$0 \quad 5 \quad 10 \quad 15$ *

$$
J=\left\langle X^{8}-X, Y^{8}-Y\right\rangle, \mathbb{V}_{\mathbb{F}_{8}}(I)=\left\{P_{1}, \ldots, P_{64}\right\}
$$

| 56 | 57 | 58 | 59 | 60 | 61 | 62 | 63 |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| 48 | 50 | 52 | 54 | 56 | 58 | 60 | 62 |
| 40 | 43 | 46 | 49 | 52 | 55 | 58 | 61 |
| 32 | 36 | 40 | 44 | 48 | 52 | 56 | 60 |
| 24 | 29 | 34 | 39 | 44 | 49 | 54 | 59 |
| 16 | 22 | 28 | 34 | 40 | 46 | 52 | 58 |
| 8 | 15 | 22 | 29 | 36 | 43 | 50 | 57 |
| 0 | 8 | 16 | 24 | 32 | 40 | 48 | 56 |

$\mathrm{RM}_{8}(7,2)$ is $[64,36,8]$
Hyperbolic codes with [64, 48, $8=64-56]$ and $[64,37,14=64-50]$

## Generalized Reed-Muller codes and Hyperbolic codes

$$
\begin{aligned}
& J=\left\langle X_{1}^{q}-X_{1}, \ldots, X_{m}^{q}-X_{m}\right\rangle \subseteq \mathbb{F}_{q}\left[X_{1}, \ldots, X_{m}\right] . \\
& \mathbb{V}_{\mathbb{F}_{q}}(J)=\left\{P_{1}, \ldots, P_{q^{m}}\right\} .
\end{aligned}
$$

For $X_{1}^{i_{1}} \cdots X_{m}^{i_{m}} \in \operatorname{Span}_{\mathbb{F}_{q}}\left\{M \in \Delta_{\prec}(J)\right\}$ define

$$
\begin{aligned}
D\left(X_{1}^{i_{1}} \cdots X_{m}^{i_{m}}\right) & =\# \Delta_{\prec}\left(\left\langle X_{1}^{i_{1}} \cdots X_{m}^{i_{m}}, X_{1}^{q}, \ldots, X_{m}^{q}\right\rangle\right) \\
& =\#\left(\Delta _ { \prec } \left(\left\langle X_{1}^{i_{1}} \cdots X_{m}^{\left.\left.i_{m}\right\rangle\right)} \cap \Delta_{\prec}(I)\right)\right.\right. \\
& =q^{m}-\prod_{s=1}^{m}\left(q-i_{s}\right)
\end{aligned}
$$

If $\operatorname{Im}\left(F\left(X_{1}, \ldots, X_{m}\right)\right)=X_{1}^{i_{1}} \cdots X_{m}^{i_{m}}$ then

$$
w_{H}(\varphi(F)) \geq q^{m}-D\left(X_{1}^{i_{1}} \cdots X_{m}^{i_{m}}\right)=\prod_{s=1}^{m}\left(q-i_{s}\right)
$$

The polynomial $\prod_{t=1}^{m} \prod_{s=1}^{i_{t}}\left(X_{t}-P_{s}\right)$ has leading monomial equal to $X_{1}^{i_{1}} \ldots X_{m}^{i_{m}}$ (for ANY ordering) and has $D\left(X_{1}^{i_{1}} \ldots X_{m}^{i_{m}}\right.$ ) zeros.

## Generalized Reed-Muller codes and hyperbolic codes

For any $s, 0 \leq s \leq(q-1) m$ we have

$$
\begin{array}{r}
\operatorname{RM}_{q}(s, m)=\operatorname{Span}_{\mathbb{F}_{q}\left\{\varphi\left(X^{i_{1}} \ldots X^{i_{m}}+J\right) \mid i_{1}, \ldots, i_{m}<q\right.} \begin{array}{c}
\text { and } \left.i_{1}+\cdots+i_{m} \leq s\right\} \\
d\left(\operatorname{RM}_{q}(s, m)\right)=\min \left\{q^{m}-D\left(X_{1}^{i_{1}} \cdots X_{m}^{i_{m}}\right) \mid i_{1}, \ldots, i_{m}<q\right. \\
\text { and } \left.i_{1}+\cdots+i_{m} \leq s\right\}
\end{array}
\end{array}
$$

And for any $s \in D\left(\Delta_{\prec}(J)\right)$ we have

$$
\begin{gathered}
\operatorname{Hyp}_{q}(s, m)=\operatorname{Span}_{\mathbb{F}_{q}\left\{\varphi\left(X^{i_{1}} \ldots X^{i_{m}}+J\right) \mid i_{1}, \ldots, i_{m}<q\right.} \begin{array}{c}
\text { and } \left.D\left(X_{1}^{i_{1}} \cdots X_{m}^{i_{m}}\right) \leq s\right\} . \\
\\
d\left(\operatorname{Hyp}_{q}(s, m)\right)=n-s
\end{array} .
\end{gathered}
$$

Corresponding dimensions easily found by simple counting.

## Codes from Hermitian curve

$$
\begin{aligned}
& J=\left\langle X^{q+1}-Y^{q}-Y, X{ }^{q^{2}}-X, Y Y^{q^{2}}-Y\right\rangle . \\
& \mathbb{V}_{\mathbb{F}_{q^{2}}}(J)=\left\{P_{1}, \ldots, P_{q^{3}}\right\} .
\end{aligned}
$$

Let $w\left(X^{i} Y^{j}\right)=i q+j(q+1)$ and define $\prec_{w}$ by: $X^{\alpha} Y^{\beta} \prec_{w} X^{\gamma} Y^{\delta}$ if (1) or (2) holds

$$
\begin{aligned}
& \text { (1) } w\left(X^{\alpha} Y^{\beta}\right)<w\left(X^{\gamma} Y^{\beta}\right) \\
& \text { (2) } w\left(X^{\alpha} Y^{\beta}\right)=w\left(X^{\gamma} Y^{\beta}\right) \text { and } \beta<\delta
\end{aligned}
$$

To estimate $w_{H}(\varphi(F+J))$ we consider

$$
\begin{aligned}
& \#\left(\Delta_{\prec_{w}}(\langle F(X, Y)\rangle+J)\right) \\
\leq & \#\left(\Delta_{\prec_{w}}\left(\left\langle X^{q+1}-Y^{q}-Y, F(X, Y)\right\rangle\right) \cap \Delta_{\prec_{w}}(J)\right)
\end{aligned}
$$

We next show that last expression is at most equal to

$$
\#\left(\Delta_{\prec_{w}}\left(\left\langle X^{q+1}-Y^{q}, \operatorname{Im}(F(X, Y))\right\rangle\right) \cap \Delta_{\prec_{w}}(J)\right)
$$

## Run 1:

Apply Buchberger's algorithm to $\left\{X^{q+1}-Y^{q}, \operatorname{Im}(F)\right\}$ with respect to $\prec_{w}$.
By induction any polynomial produced in any step of the algorithm is either 0 or is a monomial.

## Run 2:

Apply simultaneously and in a similar manner Buchberger's algorithm to $\left\{X^{q+1}-Y^{q}-Y, F(X, Y)\right\}$.
Every time a monomial $N$ is produced in "Run 1" a polynomial having $N$ as unique monomial of highest weight is produced in "Run 2".
This is due to the fact that $F$ has a unique monomial of highest weight and that $X^{q+1}-Y^{q}-Y$ has exactly two monomials of highest weight.
"Run 2" may continue after termination of "Run 1 ".

## $D\left(X^{i} Y^{j}\right)$

For $X^{i} Y^{j} \in \Delta_{\prec_{w}}(J)$ define $D\left(X_{1}^{i_{1}} \cdots X_{m}^{i_{m}}\right)=\#\left(\Delta_{\prec_{w}}\left(\left\langle X^{q+1}-Y^{q}, \operatorname{Im}(F(X, Y))\right\rangle\right) \cap \Delta_{\prec_{w}}(J)\right)$

We have shown $w_{H}(\varphi(F)) \geq n-D(\operatorname{lm}(F))$.

$$
J=\left\langle X^{3}-Y^{2}-Y, X^{4}-X, Y^{4}-Y\right\rangle
$$

$\mathbb{V}_{\mathbb{F}_{4}}(J)=\left\{P_{1}, \ldots, P_{8}\right\}$.


Let $F(X, Y)=Y+a X+b$ then $w_{H}(\varphi(F+J)) \geq 8-3=5$.


$$
\begin{aligned}
E(s) & =\operatorname{Span}_{\mathbb{F}_{4}\left\{\varphi\left(X^{i} Y^{j}+J\right) \mid w\left(X^{i} Y^{j}\right) \leq s, X^{i} Y^{j} \in \Delta_{\prec_{w}}(J)\right\}} \\
& =\operatorname{Span}_{\mathbb{F}_{4}}\left\{\varphi\left(X^{i} Y^{j}+J\right) \mid w\left(X^{i} Y^{j}\right) \leq s\right\}
\end{aligned}
$$

$\tilde{E}(s)=\operatorname{Span}_{\mathbb{F}_{4}}\left\{\varphi\left(X^{i} Y^{j}+J\right) \mid n-D\left(X^{i} Y^{j}\right) \geq s, X^{i} Y^{j} \in \Delta_{\left\langle_{w}\right.}(J)\right\}$
$E(0)$ is $[8,1,8], E(2)$ is $[8,2,6], \ldots, E(6)$ is $[8,6,2], E(7)$ is [ $8,7,2$ ] and $E(9]$ is $[8,8,1]$
$\ldots, \tilde{E}(5)$ is $[8,5,3], \tilde{E}(6)$ is $[8,7,2], \ldots$

## Some observations on $D\left(X^{i} Y^{j}\right)$

## Observation 1:

$$
4
$$

$w\left(X^{i} Y^{j}\right) \geq D\left(X^{i} Y^{j}\right)$
Observation 2:

\[

\]

$n-D\left(X^{i} Y^{j}\right)$ counts what $w\left(X^{i} Y^{j}\right)$ can hit. Meaning that:
$8-D(Y)=5$ as $3+0=3,3+2=5,3+3=6,3+4=7$ and $3+6=9$
$8-D(X Y)=3$ as $5+0=0,5+2=7$ and $5+4=9$

## Some observations on $D\left(X^{i} Y^{j}\right)$ - continued

Observation 1:
$w\left(X^{i} Y^{j}\right) \geq D\left(X^{i} Y^{j}\right)$
Observation 2:
$n-D\left(X^{i} Y^{j}\right)$ counts what $w\left(X^{i} Y^{j}\right)$ can hit.
These observations can be shown to hold for general $I=\left\langle X^{q+1}-Y^{q}-Y, X^{q^{2}}-X, Y^{q^{2}}-Y\right\rangle$ as a consequence of the following facts:

## Fact 1:

The polynomial $\left\{X^{q+1}-Y^{q}-Y\right\}$ has precisely two monomials of highest weight.

Fact 2: In $\Delta_{\prec_{w}}\left(\left\langle X^{q+1}-Y^{q}-Y, X^{q^{2}}-X, Y{ }^{q^{2}}-Y\right\rangle\right)$ there are no two monomials of the same weight.

$$
\begin{aligned}
& J=\left\langle X^{9}-X, Y^{9}-Y, X^{4}-Y^{3}-Y\right\rangle \text { has } 27 \text { common points. } \\
& w(X)=3, w(Y)=4
\end{aligned}
$$

$\begin{array}{lllllllllllllllllll}Y^{2} & X Y^{2} & X^{2} Y^{2} & X^{3} Y^{2} & X^{4} y^{2} & X^{5} Y^{2} & X^{6} Y^{2} & X^{7} Y^{2} & X^{8} Y^{2}\end{array}$ $\begin{array}{llllllll}Y & X Y & X^{2} Y & X^{3} Y & X^{4} Y & X^{5} Y & X^{6} Y & X^{7} Y\end{array} X^{8} Y$

| 1 | $X$ | $X^{2}$ | $X^{3}$ | $X^{4}$ | $X^{5}$ | $X^{6}$ | $X^{7}$ | $X^{8}$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |


| 8 | 11 | 14 | 17 | 20 | 23 | 26 | 29 | 32 |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 4 | 7 | 10 | 13 | 16 | 19 | 22 | 25 | 28 |
| 0 | 3 | 6 | 9 | 12 | 15 | 18 | 21 | 24 |


| 19 | 16 | 13 | 10 | 7 | 4 | 3 | 2 | 1 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 23 | 20 | 17 | 14 | 11 | 8 | 6 | 4 | 2 |
| 27 | 24 | 21 | 18 | 15 | 12 | 9 | 6 | 3 |

$$
\begin{aligned}
& n-D\left(X^{4} Y^{2}\right)= \\
& \#\{20+0,20+3,20+4,20+6,20+8,20+9,20+12\}=7
\end{aligned}
$$

| 8 | 11 | 14 | 17 | 20 | 23 | 24 | 25 | 26 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 4 | 7 | 10 | 13 | 16 | 19 | 21 | 23 | 25 |
| 0 | 3 | 6 | 9 | 12 | 15 | 18 | 21 | 24 |

$\begin{array}{lllllllll}19 & 16 & 13 & 10 & 7 & 4 & 3 & 2 & 1\end{array}$
$\begin{array}{lllllllll}23 & 20 & 17 & 14 & 11 & 8 & 6 & 4 & 2\end{array}$
$\begin{array}{lllllllll}27 & 24 & 21 & 18 & 15 & 12 & 9 & 6 & 3\end{array}$
$E(23)$ is $[27,21,4]$
but
$\tilde{E}(4)$ is $[27,22,4]$

## Hermitian codes

Our method gives true minimum distance for all codes $E(s)$ and all codes $\tilde{E}(s)$ coming from the Hermitian curve.

The estimations are even tight in general case of norm-trace curves.

## Generalized RM codes and hyperbolic codes revisited

 $w\left(X^{i} Y^{j}\right)=(i, j) \in \mathbb{N}_{0}^{2}$. Choose some monomial ordering $\prec_{\mathbb{N}_{0}^{2}}$ on $\mathbb{N}_{0}^{2}$. Choose some monomial ordering $\prec_{\mathcal{M}}$ on $\mathcal{M}(X, Y)$ and define $\prec_{w}$ by: $X^{\alpha} Y^{\beta} \prec_{w} X^{\gamma} Y^{\delta}$ if (1) or (2) holds(1) $w\left(X^{\alpha} Y^{\beta}\right) \prec_{\mathbb{N}_{0}^{2}} w\left(X^{\gamma} Y^{\beta}\right)$
(2) $w\left(X^{\alpha} Y^{\beta}\right)=w\left(X^{\gamma} Y^{\beta}\right)$ and $X^{\alpha} Y^{\beta} \prec_{\mathcal{M}} X^{\gamma} Y^{\delta}$

$$
w\left(X^{i}, Y^{j}\right)
$$

| $(0,4)$ | $(1,4)$ | $(2,4)$ | $(3,4)$ | $(4,4)$ |
| :--- | :--- | :--- | :--- | :--- |
| $(0,3)$ | $(1,3)$ | $(2,3)$ | $(3,3)$ | $(4,3)$ |
| $(0,2)$ | $(1,2)$ | $(2,2)$ | $(3,2)$ | $(4,2)$ |
| $(0,1)$ | $(1,1)$ | $(2,1)$ | $(3,1)$ | $(4,1)$ |
| $(0,0)$ | $(1,0)$ | $(2,0)$ | $(3,0)$ | $(4,0)$ |

## Generalized RM codes and hyperbolic codes revisited

$w\left(X^{i} Y^{j}\right)=(i, j) \in \mathbb{N}_{0}^{2}$. Choose some monomial ordering $\prec_{\mathbb{N}_{0}^{2}}$ on $\mathbb{N}_{0}^{2}$. Choose some monomial ordering $\prec_{\mathcal{M}}$ on $\mathcal{M}(X, Y)$ and define $\prec_{w}$ by: $X^{\alpha} Y^{\beta} \prec_{w} X^{\gamma} Y^{\delta}$ if (1) or (2) holds

$$
\begin{aligned}
& \text { (1) } w\left(X^{\alpha} Y^{\beta}\right) \prec_{\mathbb{N}_{0}^{2}} w\left(X^{\gamma} Y^{\beta}\right) \\
& \text { (2) } w\left(X^{\alpha} Y^{\beta}\right)=w\left(X^{\gamma} Y^{\beta}\right) \text { and } X^{\alpha} Y^{\beta} \prec_{\mathcal{M}} X^{\gamma} Y^{\delta} \\
& \text { } w\left(X^{i}, Y^{j}\right)
\end{aligned}
$$

Forgetting about the $X^{q}-X, Y^{q}-Y$-part. $J=\left\langle X^{q}-X, Y^{q}-Y\right\rangle$ and $I=\langle \rangle$

| $\vdots$ | $\vdots$ | $\vdots$ | $\vdots$ | $\vdots$ |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $Y^{4}$ | $X Y^{4}$ | $X^{2} Y^{4}$ | $X^{3} Y^{4}$ | $X^{4} Y^{4}$ | $\cdots$ |
| $Y^{3}$ | $X Y^{3}$ | $X^{2} Y^{3}$ | $X^{3} Y^{3}$ | $X^{4} Y^{3}$ | $\cdots$ |
| $Y^{2}$ | $X Y^{2}$ | $X^{2} Y^{2}$ | $X^{3} Y^{2}$ | $X^{4} Y^{2}$ | $\cdots$ |
| $Y$ | $X Y$ | $X^{2} Y$ | $X^{3} Y$ | $X^{4} Y$ | $\cdots$ |
| 1 | $X$ | $X^{2}$ | $X^{3}$ | $X^{4}$ | $\cdots$ |


| $(0,4)$ | $(1,4)$ | $(2,4)$ | $(3,4)$ | $(4,4)$ | $\cdots$ |
| :--- | :--- | :--- | :--- | :--- | :--- |
| $(0,3)$ | $(1,3)$ | $(2,3)$ | $(3,3)$ | $(4,3)$ | $\cdots$ |
| $(0,2)$ | $(1,2)$ | $(2,2)$ | $(3,2)$ | $(4,2)$ | $\cdots$ |
| $(0,1)$ | $(1,1)$ | $(2,1)$ | $(3,1)$ | $(4,1)$ | $\cdots$ |
| $(0,0)$ | $(1,0)$ | $(2,0)$ | $(3,0)$ | $(4,0)$ | $\cdots$ |

Forgetting about the $X^{q}-X, Y^{q}-Y$-part.
$J=\left\langle X^{3}-Y^{2}-Y, X^{q}-X, Y^{q}-Y\right\rangle$ and $I=\left\langle X^{3}-Y^{2}-Y\right\rangle$

$$
\begin{array}{cccccc}
Y & X Y & X^{2} Y & X^{3} Y & X^{4} Y & \cdots \\
1 & X & X^{2} & X^{3} & X^{4} & \cdots \\
& & & & & \\
3 & 5 & 7 & 9 & 11 & \cdots \\
0 & 2 & 4 & 6 & 8 & \cdots
\end{array}
$$

## Forgetting about the $X_{1}^{q}-X_{1}, \ldots, X_{m}^{q}-X_{m}$

- $\emptyset$ is a Gröbner basis for $\langle 0\rangle$ and $\left\{X^{q+1}-Y^{q}-Y\right\}$ is a Gröbner basis for $\left\langle X^{q+1}-Y^{q}-Y\right\rangle$. Both with respect to some weighted degree monomial ordering.
- In examples so far the set of defining polynomials are $\emptyset$ respectively $\left\{X^{q+1}-Y^{q}-Y\right\}$. "All" defining polynomials have exactly two monomials of the same highest weight.
- Monomials in the big footprint are of different weights implying that so are the monomials in the small footprint.
- $\mathbb{F}_{q}[X, Y]$ and $\mathbb{F}_{q^{2}}[X, Y] /\left\langle X^{q+1}-Y^{q}-Y\right\rangle$ are examples of order domains.


## Definition:

$w\left(X_{1}\right), \ldots, w\left(X_{m}\right) \in \mathbb{N}_{0}^{r} \backslash\{\overrightarrow{0}\}, \prec_{\mathbb{N}_{0}^{r}}$ a monomial ordering on $\mathbb{N}_{0}^{r}$, $\prec_{\mathcal{M}}$ a monomial ordering on $\mathcal{M}\left(X_{1}, \ldots, X_{m}\right)$. The generalized weighted degree ordering $\prec_{w}$ is given by: $M_{1} \prec_{w} M_{2}$ if and only if one of the following two conditions holds:

$$
\text { (1) } w\left(M_{1}\right) \prec_{\mathbb{N}_{0}^{r}} w\left(M_{2}\right) \quad \text { (2) } w\left(M_{1}\right)=w\left(M_{2}\right) \text { and } M_{1} \prec_{\mathcal{M}} M_{2} .
$$

$\operatorname{wdeg}(F)=\max _{\prec_{\mathbb{N}_{0}^{r}}}\{w(M) \mid M \in \operatorname{Sup}(F)\}$

## Order domain assumptions:

Given $\prec_{w}, I \subset \mathbb{F}\left[X_{1}, X_{2}, \ldots, X_{m}\right]$ and corresponding Gröbner basis $\mathcal{G}$. Suppose that the elements of the footprint $\Delta_{\prec_{w}}(I)$ have mutually distinct weights and that every element of $\mathcal{G}$ has exactly two monomials of highest weight in its support.

## More defining polynomials

Let $I=\left\langle X^{5}+Y^{4}+Y, Y^{5}+Z^{4}+Z\right\rangle \subseteq \mathbb{F}_{16}[X, Y, Z]$.
Definition of $\prec_{w}: w(X)=16, w(Y)=20, w(Z)=25 \in \mathbb{N}_{0}$. $\prec_{\mathbb{N}_{0}}=<$ (the usual (and unique) monomial ordering on $\mathbb{N}_{0}$ ). $\prec_{\mathcal{M}}$ the lexicographic ordering with $X \prec_{\mathcal{M}} Y \prec_{\mathcal{M}} Z$.
$\left\{X^{5}+Y^{4}+Y, Y^{5}+Z^{4}+Z\right\}$ is a Gröbner basis w.r.t. $\prec_{w}$. Every defining monomial has precisely two monomials of highest weight.
Monomials in footprint $\Delta_{\prec}(I)=\left\{X^{i} Y^{j} Z^{\prime} \mid j<4, I<4\right\}$ is of different weights.

The order domain assumption is satisfied.

## Weights in $\mathbb{N}_{0}^{2}$

$H_{1}=X^{q}+Y Z^{q}-Y^{q} Z-X, H_{2}=U^{q}-Z^{q+1}+a X^{q}-a Y^{q} Z+b Y^{q+1}+U$ where $a, b \in \mathbb{F}_{q} . \quad I=\left\langle H_{1}, H_{2}\right\rangle \subseteq \mathbb{F}_{q^{2}}[X, Y, Z, U]$.

Definition of $\prec_{w}$ :
$w(X)=(q, 1), w(Y)=(0, q), w(Z)=(q, 0), w(U)=$ $(q+1,0) \in \mathbb{N}_{0}^{2}$
$\prec_{\mathbb{N}_{0}^{2}}$ any fixed monomial ordering on $\mathbb{N}_{0}^{2}$ with
$\left(q^{2}+q, 0\right) \succ_{\mathbb{N}_{0}^{2}}\left(q^{2}, q\right),\left(q, q^{2}\right),\left(0, q^{2}+q\right)$.
$\prec_{\mathcal{M}}$ any fixed monomial ordering on $\mathcal{M}(X, Y, Z, U)$ with $X^{q} \succ_{\mathcal{M}} Y Z^{q}$ and $U^{q} \succ_{\mathcal{M}} Z^{q+1}$.
$H_{1}: w\left(X^{q}\right)=\left(q^{2}, q\right), w\left(Y Z^{q}\right)=\left(q^{2}, q\right), w\left(Y^{q} Z\right)=\left(q, q^{2}\right)$,
$w(X)=(q, 1)$
$H_{2}: w\left(U^{q}\right)=\left(q^{2}+q, 0\right), w\left(Z^{q+1}\right)=\left(q^{2}+q, 0\right)$,
$w\left(X^{q}\right)=\left(q^{2}, q\right), w\left(Y^{q} Z\right)=\left(q, q^{2}\right), w\left(Y^{q+1}\right)=\left(0, q^{2}+q\right)$,
$w(U)=(q+1,0)$.

## Weights in $\mathbb{N}_{0}^{2}$ - continued

$\operatorname{Im}\left(H_{1}\right)=X^{q}$ and $\operatorname{Im}\left(H_{2}\right)=U^{q}$ are relatively prime. Hence, $\left\{H_{1}(X, Y, Z, U), H_{2}(X, Y, Z, U)\right\}$ is a Gröbner basis. $H_{1}$ and $H_{2}$ have exactly two polynomials of highest weight. No two monomials in footprint are of same weight.

The order domain assumption is satisfied.

## Putting $X_{1}^{q}-X_{1}, \ldots, X_{m}^{q}-X_{m}$ back in place

Assume $I \subseteq \mathbb{F}_{q}\left[X_{1}, \ldots, X_{m}\right]$ satisfy the order domain assumption.

$$
\text { Let } J=I+\left\langle X_{1}^{q}-X_{1}, \ldots, X_{m}^{q}-X_{m}\right\rangle
$$

$$
\mathbb{V}_{\mathbb{F}_{q}}(J)=\left\{P_{1}, \ldots, P_{n}\right\}
$$

$$
\varphi:\left\{\begin{array}{ccc}
\mathbb{F}_{q}\left[X_{1}, \ldots, X_{m}\right] / J & \rightarrow & \mathbb{F}_{q}^{n} \\
F+J & \mapsto & \left(F\left(P_{1}\right), \ldots, F\left(P_{n}\right)\right)
\end{array}\right.
$$

is an isomorphism
$D\left(X_{1}^{i_{1}} \cdots X_{m}^{i_{m}}\right)$
Assume

$$
I=\left\langle F_{1}, \ldots, F_{s}\right\rangle \subseteq \mathbb{F}_{q}\left[X_{1}, \ldots, X_{m}\right]
$$

satisfy the order domain assumption.
Let $B_{1}, \ldots, B_{s}$ be binomials, $B_{i}$ being the difference of the two monomials of highest weight in $F_{s}$

Given $F \in \operatorname{Span}\left\{M \mid M \in \Delta_{\prec_{w}}(J)\right\}$ with $\operatorname{Im}(F)=N$ we have

$$
\Delta_{\prec_{w}}\left(\left\langle N, B_{1}, \ldots, B_{s}\right\rangle\right) \supseteq \Delta_{\prec_{w}}\left(\left\langle F, F_{1}, \ldots, F_{s}\right\rangle\right)
$$

Define

$$
D(N)=\#\left(\Delta_{\prec_{w}}\left(\left\langle N, B_{1}, \ldots, B_{s}\right\rangle\right) \cap \Delta_{\prec_{w}}(J)\right) .
$$

We have

$$
w_{H}(\varphi(F+J)) \geq n-D(N) .
$$

## Some nice results

## Result 1:

$$
\begin{aligned}
& n-D\left(X_{1}^{i_{1}} \cdots X_{m}^{i_{m}}\right)=\#\left\{s \in w\left(\Delta_{\prec_{w}}(J)\right) \mid\right. \\
&\left.s-w\left(X_{1}^{i_{1}} \cdots X_{m}^{i_{m}}\right) \in w\left(\Delta_{\prec_{w}}(J)\right)\right\}
\end{aligned}
$$

(we count what can be "hit")

## Result 2:

If weights are numerical, then

$$
D\left(X_{1}^{i_{1}} \cdots X_{m}^{i_{m}}\right) \leq w\left(X_{1}^{i_{1}} \cdots X_{m}^{i_{m}}\right)
$$

## Code constructions

For weights being numerical:
For any $s \in \mathbb{N}_{0}$ we have

$$
\begin{array}{r}
E(s)=\operatorname{Span}_{\mathbb{F}_{q}\{ }\left\{\varphi(M+J) \mid M \in \Delta_{\alpha_{w}}(J)\right. \\
\text { and } w(M) \leq s\} \\
d(E(s)) \geq \min \left\{n-D(M) \mid M \in \Delta_{\alpha_{w}}(J)\right. \\
\quad \text { and } w(M) \leq s\}
\end{array}
$$

For weights being numerical or not:
For any $s \in D\left(\Delta_{\prec}(J)\right)$ we have

$$
\begin{array}{r}
\tilde{E}(S)=\operatorname{Span}_{\mathbb{F}_{q}\{ }\left\{\varphi(m+J) \mid m \in \Delta_{\prec_{w}}(J)\right. \\
\text { and } n-D(M) \geq s\} .
\end{array}
$$

$$
d(E(s)) \geq s
$$

## Some features of the theory

- Works for any one-point geometric Goppa code
- Gives improved one-point geometric Goppa codes
- Generalizations of one-point geometric Goppa codes to surfaces
- Easily extended to deal with generalized Hamming weights
- Connects nicely to Shibuya and Sakaniwa's nice theory
- Theory can be reformulated directly in "code-domain". Doing this allows for even more codes to be treated.
- Strong connection to Feng-Rao theory


## Feng-Rao theory

Are concerned with $H$ instead of $G$.
Feng-Rao counts what can hit the weight under consideration.
We count what the weight under consideration can hit.
Feng-Rao investigate weights not used in code construction We investigate weights used in code construction

When $\Delta_{\alpha_{w}}(J)$ has the shape of a box (in some dimension) the two methods produce same estimates for the two classes of codes under consideration.

When not form of a box we get typically not similar estimates as Feng-Rao.

## Open question:

Are the two classes of codes the same when $\Delta_{\alpha_{w}}(J)$ has the shape of a box?

## $I=\left\langle X^{5}+Y^{4}+Y, Y^{5}+Z^{4}+Z\right.$ revisited

$J=\left\langle X^{5}+Y^{4}+Y, Y^{5}+Z^{4}+Z, X^{16}-X, Y^{16}-Y, Z^{16}-Z\right\rangle \subseteq$ $\mathbb{F}_{16}[X, Y, Z]$ has Gröbner basis
$\left\{X^{5}+Y^{4}+Y, Y^{5}+Z^{4}+Z, X^{16}-X, Y^{16}-Y, Z^{16}-Z\right\}$ with respect to $\prec_{w}$.

Footprint has the shape of box.
Codes will be of length $n=\# \Delta_{\prec_{w}}(J)=256$.

## $I=\left\langle H_{1}, H_{2}\right\rangle$ revisited

$J=\left\langle H_{1}, H_{2}, X^{q^{2}}-X, Y^{q^{2}}-Y, Z^{q^{2}}-Z, U^{q^{2}}-U\right\rangle \subseteq \mathbb{F}_{q^{2}}[X, Y, Z, U]$
has Gröbner basis

$$
\left\{H_{1}, H_{2}, X^{q^{2}}-X, Y^{q^{2}}-Y, Z^{q^{2}}-Z, U^{q^{2}}-U\right\}
$$

with respect to $\prec_{w}$.
Footprint is a box.
Codes will be of length $n=\# \Delta_{\prec_{w}}(J)=q^{6}$

$$
I=\left\langle X\left(q^{r}-1\right) /(q-1)-Y Y^{q^{r-1}}-Y^{q^{r-2}}-\cdots-Y\right\rangle \subseteq \mathbb{F}_{q^{r}}[X, Y]
$$



Alphabet $=\mathbb{F}_{q^{r}}=\mathbb{F}_{2^{7}}, n=2^{13}$ Improved versus non-improved.

$$
I=\left\langle X\left(q^{r}-1\right) /(q-1)-Y q^{q^{r-1}}-Y Y^{q^{r-2}}-\cdots-Y\right\rangle \subseteq \mathbb{F}_{q^{r}}[X, Y]
$$



Alphabet $=\mathbb{F}_{q^{r}}=\mathbb{F}_{4^{3}}, n=4^{5}$ Improved versus non-improved.

$$
I=\left\langle X\left(q^{r}-1\right) /(q-1)-Y q^{q^{r-1}}-Y Y^{q^{r-2}}-\cdots-Y\right\rangle \subseteq \mathbb{F}_{q^{r}}[X, Y]
$$



Alphabet $=\mathbb{F}_{64}$. From above: $64=8^{2}$ gives $n=2^{9}, 64=4^{3}$ gives $n=2^{10}, 64=2^{6}$ gives $n=2^{11}, \operatorname{Hyp}_{64}(s, 2)$ gives $n=2^{12}$

$$
\begin{aligned}
& I=\left\langle x^{5}-y^{4}-Y, Y^{5}-Z^{4}-Z\right\rangle \subseteq \mathbb{F}_{16}[x, y, Z] \\
& \omega(x)=16, \omega(y)=20, \omega(Z)=25
\end{aligned}
$$



Alphabet $=\mathbb{F}_{10}, \quad n=256$

$$
\begin{aligned}
& I=\left\langle x^{5}-Y^{4}-Y, Y^{5}-Z^{4}-Z, Z^{5}-U^{4}-U^{2}\right\rangle \subseteq \mathbb{F}_{16}[X, Y, Z, U] \\
& \omega(x)=64, \omega(Y)=80, \omega(Z)=100, \omega(U)=125
\end{aligned}
$$

Alphabet $=\Pi_{16}, n=512$


Tensor product of $m$ Hermitian order domains involves weights in $\mathbb{N}_{0}^{m}$.


Alphabet $=\mathbb{F}_{256}$. From above: $\operatorname{Hyp}_{256}(s, 2)$ of length $n=65536$, $\operatorname{Herm}_{256}(s, 2)$ of length $n=16777216, \operatorname{Hyp}_{256}(s, 3)$ of length $n=16777216, \operatorname{Herm}_{256}(s, 3)$ of length $n=68719476736$.

$$
\begin{aligned}
I & =\left\langle x^{q}+Y z^{q}-y^{q} z-x, U^{q}-z^{q+1}+a X^{q}-a Y^{q} z+b \varphi^{q+1}+U\right\rangle \\
& \subseteq F_{q_{2}}[x, y, z, u], \quad a, b \in F_{q} \\
\omega(X) & =(q, 1), \omega(Y)=(9,9), \omega(z)=(9,0), \omega(4)=(q+1,0)
\end{aligned}
$$



Alphabet $=\mathbb{F}_{64}, n=262144$

## Invitation

Code constructions related to some of the asymptotic good towers are one-point geometric Goppa codes.

That is, order domain codes.
Invitation 1: Is it possible to find defining equations for corresponding $/$ and corresponding $I_{q}$ ?

Invitation 2: Only a few have looked at surfaces. More examples would be desirable

## Invitation

Code constructions related to some of the asymptotic good towers are one-point geometric Goppa codes.

That is, order domain codes.
Invitation 1: Is it possible to find defining equations for corresponding $/$ and corresponding $I_{q}$ ?

Invitation 2: Only a few have looked at surfaces. More examples would be desirable

## Invitation

Code constructions related to some of the asymptotic good towers are one-point geometric Goppa codes.

That is, order domain codes.

Invitation 1: Is it possible to find defining equations for corresponding $/$ and corresponding $I_{q}$ ?

Invitation 2: Only a few have looked at surfaces. More examples would be desirable

## Invitation

Code constructions related to some of the asymptotic good towers are one-point geometric Goppa codes.

That is, order domain codes.
Invitation 1: Is it possible to find defining equations for corresponding I and corresponding $I_{q}$ ?

Invitation 2: Only a few have looked at surfaces. More examples would be desirable

## Invitation

Code constructions related to some of the asymptotic good towers are one-point geometric Goppa codes.

That is, order domain codes.

Invitation 1: Is it possible to find defining equations for corresponding I and corresponding $I_{q}$ ?

Invitation 2: Only a few have looked at surfaces. More examples would be desirable
H. E. Andersen, O. Geil, The Missing Evaluation Codes from Order Domain Theory, (2004), submitted.

圊 O. Geil, On Codes From Norm-Trace Curves, Finite Fields and their Applications, 9, (2003), 351-371.
( O. Geil and T. Høholdt, On Hyperbolic Codes, Proc. AAECC-14, Lecture Notes in Comput. Sci. 2227, (S. Bozta, I. Sphparlinski, Eds.), Springer, Berlin, 2001, 159-171.

R O. Geil and R. Pellikaan, On the Structure of Order Domains, Finite Fields and their Applications, 8, (2002), 369-396.
R T. Høholdt, J. van Lint and R. Pellikaan, Algebraic Geometry Codes, Chapter 10 in "Handbook of Coding Theory," (V.S. Pless and W.C. Huffman, Eds.), vol. 1, Elsevier, Amsterdam, 1998, 871-961.
S. Miura, Ph.D. thesis, Univ. Tokyo, May 1997.

图 S. Miura, Linear Codes on Affine Algebraic Varieties, Trans. IEICE, J81-A, no. 10 (1998), 1386-1397.

- S. Miura, Linear Codes on Affine Algebraic Curves, Trans. IEICE, J81-A, no. 10 (1998), 1398-1421.

目 T. Shibuya and K. Sakaniwa, A Dual of Well-Behaving Type Designed Minimum Distance, IEICE Trans. Fund., E84-A, (2001), 647-652.

