Order domain codes and affine variety codes

Olav Geil

Aalborg University

International School and Conference on Coding Theory, CIMAT, 2008

The course

is about generalizing

- the Reed-Solomon Code construction
by use of
- Gröbner basis theory
- Simple linear and abstract algebra

We study

- The parameters $[n, k, d]$
- Generator and parity-check matrices
- Decoding

Gröbner basis theory is explained along the way.

Preliminaries

$$
\mathbf{F}_{q}^{n}=\left\{\left(a_{1}, a_{2}, \ldots, a_{n}\right) \mid a_{i} \in \mathbf{F}_{q}\right\} \text { a vector space over } \mathbf{F}_{q} .
$$

We consider linear codes. That is, subspaces $C \subseteq \mathbf{F}_{q}^{n}$.
Encoding of message $\vec{m} \in \mathbf{F}_{q}^{k}$: $\vec{c}=\vec{m} G$ where

$$
G=\left[\begin{array}{c}
\vec{g}_{1} \\
\vec{g}_{2} \\
\vdots \\
\vec{g}_{k}
\end{array}\right]
$$

and $\left\{\vec{g}_{1}, \vec{g}_{2}, \ldots, \vec{g}_{k}\right\}$ is a basis for C.
Minimum distance equals minimum weight

$$
d=\min \left\{w_{H}(\vec{c}) \mid \vec{c} \in C \backslash\{\overrightarrow{0}\}\right\}
$$

Finite Fields

Type 1: p a prime $\mathbf{F}_{p}=\{0,1, \ldots, p-1\}$

$$
a+b \bmod p, \quad a \cdot b \bmod p
$$

Example: $\mathbf{F}_{7}=\{0,1,2,3,4,5,6\}$

$$
4+4=1, \quad 4 \cdot 4=2
$$

Finite Fields

Type 2: $q=p^{m}, m \geq 2, p$ a prime.
$f(\alpha)$ an irreducible polynomial over \mathbf{F}_{p} of degree m.

$$
\mathbf{F}_{q}=\left\{a_{m-1} \alpha^{m-1}+\cdots+a_{1} \alpha a_{0} \mid a_{i} \in \mathbf{F}_{p}\right\}
$$

$\boldsymbol{a}(\alpha) \cdot \boldsymbol{b}(\alpha) \bmod f(\alpha) \quad$ (calculations taking place over \mathbf{F}_{p})
(Alternatively: $\mathbf{F}_{q}=\mathbf{F}_{p}[X] /\langle f(X)\rangle$)

Example

$$
p=2, f(\alpha)=\alpha^{2}+\alpha+1 \text { is irreducible over } \mathbf{F}_{2}
$$

$$
\mathbf{F}_{4}=\{0,1, \alpha, \alpha+1\}
$$

+	0	1	α	$\alpha+1$
0	0	1	α	$\alpha+1$
1	1	0	$\alpha+1$	α
α	α	$\alpha+1$	0	1
$\alpha+1$	$\alpha+1$	α	1	0

\cdot	0	1	α	$\alpha+1$
0	0	1	α	$\alpha+1$
1	0	1	α	$\alpha+1$
α	0	α	$\alpha+1$	1
$\alpha+1$	0	$\alpha+1$	1	α

Finite fields

$$
\mathbf{F}_{q}=\left\{P_{1}, \ldots, P_{q}\right\}
$$

$$
X^{q}-X=\prod_{i=1}^{q}\left(X-P_{i}\right)
$$

Hence, in \mathbf{F}_{7}

$$
X^{q}-x=(x-0)(x-1)(x-2)(x-3)(x-4)(x-5)(X-6)
$$ and in F_{4}

$$
X^{q}-X=(X-0)(X-1)(X-\alpha)(X-\alpha+1)
$$

Reed-Solomon Codes

$$
\mathbb{F}_{q}=\left\{P_{1}, P_{2}, \ldots, P_{q}\right\} .
$$

Consider $F(X)=F_{0}+F_{1} X+\cdots+F_{k-1} X^{k-1} \in \mathbb{F}_{q}[X]$.

$$
\left(F\left(P_{1}\right), F\left(P_{2}\right), \ldots, F\left(P_{q}\right)\right)
$$

is a vector of length $n=q$ over \mathbb{F}_{q}.
$\mathrm{RS}_{q}(k)=\left\{\left(F\left(P_{1}\right), F\left(P_{2}\right), \ldots, F\left(P_{q}\right)\right) \mid F(X) \in \mathbb{F}_{q}[X], \operatorname{deg}(F)<k\right\}$

$$
G=\left[\begin{array}{cccc}
1 & 1 & \cdots & 1 \\
P_{1} & P_{2} & \cdots & P_{q} \\
P_{1}^{2} & P_{2}^{2} & \cdots & P_{q}^{2} \\
\vdots & \vdots & \ddots & \dddot{ } \\
P_{1}^{k-1} & P_{2}^{k-1} & \cdots & P_{q}^{k-1}
\end{array}\right]
$$

Message $\vec{m}=\left(F_{0}, F_{1}, \ldots, F_{k-1}\right)$ is encoded to

$$
\left(F\left(P_{1}\right), F\left(P_{2}\right), \ldots, F\left(P_{q}\right)\right)=\vec{m} G .
$$

Reed-Solomon Codes - cont.

Theorem

Nonzero polynomial $F(X) \in \mathbf{F}_{q}[X]$ has at most $\operatorname{deg}(F)$ zeros.
Let $s \leq q$ then

$$
F(X)=\prod_{i=1}^{s}\left(X-P_{i}\right)
$$

has $s=\operatorname{deg}(F)$ zeros.
Consequence 1:
A nonzero codeword in $\mathrm{RS}_{q}(k)$ has at most $k-1$ zeros and a code word exists with exactly $k-1$ zeros.

$$
d=n-(k-1)=n-k+1
$$

Consequence 2:

Non-trivial linear combination of rows in G corresponds to non-zero polynomial of degree at most $k-1<q$. Hence, G is of full rank.

Polynomials in two variables

Definition:

Total degree lexicographic ordering on monomials in X and Y is given by $X^{i_{1}} Y^{j_{1}} \prec_{\text {tot }} X^{i_{2}} Y^{j_{2}}$ if (1) or (2) holds
(1) $i_{1}+j_{1}<i_{2}+j_{2}$
(2) $i_{1}+j_{1}=i_{2}+j_{2}$ and $i_{1}<i_{2}$
$\operatorname{lm}\left(X^{3} Y+Y^{3} X+X Y^{2}+2 X^{2}+2 X+1\right)=X^{3} Y$.

Theorem:

If $\operatorname{Im}(F)=X^{i} Y^{j}$ with $i, j<q$ then at most $q^{2}-(q-i)(q-j)$
zeros over \mathbf{F}_{q}^{2}. Let $\mathbf{F}_{q}=\left\{Q_{1}, \ldots, Q_{q}\right\}$. The polynomial

$$
\left(\prod_{s=1}^{i}\left(X-Q_{S}\right)\right)\left(\prod_{t=1}^{j}\left(Y-Q_{t}\right)\right)
$$

has $q^{2}-(q-i)(q-j)$ zeros.

Polynomials in two variables

$$
\mathbf{F}_{q}^{2}=\mathbf{F}_{q} \times \mathbf{F}_{q}=\left\{P_{1}, P_{2}, \ldots, P_{q^{2}}\right\} .
$$

Corollary:
If $\operatorname{Im}(F(X, Y))=X^{i} Y^{j}$ with $i, j<q$ then
$\left(F\left(P_{1}\right), F\left(P_{2}\right), \ldots, F\left(P_{q^{2}}\right)\right)$ is of weight at least $(q-i)(q-j)$.
Consider $F(X, Y) \in \mathbf{F}_{4}[X, Y]$. Let $\operatorname{lm}(F)=X^{2} Y$.

Y^{3}	\cdot	\cdot	$*$	$*$
Y^{2}	\cdot	\cdot	$*$	$*$
Y	\cdot	\cdot	\square	$*$
1	\cdot	\cdot	\cdot	\cdot
	1	X	X^{2}	X^{3}

At most 10 zeros. $\left(F\left(P_{1}\right), F\left(P_{2}\right), \ldots, F\left(P_{16}\right)\right)$ at least weight 6 .

Generalized Reed-Muller Codes

Y^{3}	12	13	14	15
Y^{2}	8	10	12	14
Y	4	7	10	13
1	0	4	8	12
	1	X	X^{2}	X^{3}

Consider polynomials $F(X, Y) \in \mathbf{F}_{4}[X, Y]$. If $\operatorname{Im}(F)=X Y^{3}$ then at most 13 zeros and so on.

$$
\mathrm{RM}_{4}(s, 2)=\left\{\left(F\left(P_{1}\right), \ldots, F\left(P_{16}\right)\right) \mid\right.
$$ the total degree of F is at most $s\}$

The evaluation map

$$
\begin{aligned}
& \mathbf{F}_{q}^{2}=\left\{P_{1}, P_{2}, \ldots, P_{q^{2}}\right\} \text { and } P_{j}=\left(P_{j}^{(X)}, P_{j}^{(Y)}\right) \\
& \qquad \begin{array}{c}
\left.\prod_{j=1, \ldots, q^{2}}\left(X-P_{j}^{(X)}\right)\right)\left(\prod_{j=1, \ldots, q^{2}}^{\substack{(X)} P_{i}^{(X)}} \sum_{\substack{(Y) \\
P_{j}^{(Y)}}}\left(Y-P_{j}^{(Y)}\right)\right)
\end{array}
\end{aligned}
$$

has exactly one nonzero, namely P_{i}.
The map ev: $\mathbf{F}_{q}[X, Y] \rightarrow F_{q^{2}}$ given by $\mathrm{ev}(F)=\left(F\left(P_{1}\right), F\left(P_{2}\right), \ldots, F\left(P_{q^{2}}\right)\right)$ is a surjective vector space homomorphism.

The evaluation map

$$
\operatorname{ev}(F(X, Y))=\operatorname{ev}(\tilde{F}(X, Y))
$$

where \tilde{F} is made from F by replacing one or more of the occurrences of X^{q} with X and by replacing one or more of the occurrences of Y^{q} with Y.

$$
\begin{gathered}
\#\left\{X^{i} Y^{j} \mid 0 \leq i<q, 0 \leq j<q\right\}=\# \mathbf{F}_{q^{2}} \\
\left\{\operatorname{ev}\left(X^{i} Y^{j}\right) \mid 0 \leq i<q, 0 \leq j<q\right\}
\end{gathered}
$$

is therefore a basis for $\mathbf{F}_{q^{2}}$ as a vector space over \mathbf{F}_{q}.

Y^{3}	12	13	14	15
Y^{2}	8	10	12	14
Y	4	7	10	13
1	0	4	8	12
	1	X	X^{2}	X^{3}

Codes	n	k	d
$\mathrm{RM}_{4}(0,2)$	16	1	16
$\mathrm{RM}_{4}(1,2)$	16	3	12
$\mathrm{RM}_{4}(2,2)$	16	6	8
$\mathrm{RM}_{4}(3,2)$	16	10	4
$\mathrm{RM}_{4}(4,2)$	16	13	3
$\mathrm{RM}_{4}(5,2)$	16	15	2
$\mathrm{RM}_{4}(6,2)$	16	16	1
Hyp	16	11	4

Generator matrices straight forward.

Codes over \mathbb{F}_{8}

Y^{7}	56	57	58	59	60	61	62	63
Y^{6}	48	50	52	54	56	58	60	62
Y^{5}	40	43	46	49	52	55	58	61
Y^{4}	32	36	40	44	48	52	56	60
Y^{3}	24	29	34	39	44	49	54	59
Y^{2}	16	22	28	34	40	46	52	58
Y	8	15	22	29	36	43	50	57
1	0	8	16	24	32	40	48	56
	1	X	X^{2}	X^{3}	X^{4}	X^{5}	X^{6}	X^{7}

$\mathrm{RM}_{8}(7,2)$ is $[64,36,8]$
Hyperbolic codes with [64, 48, $8=64-56$] and
[64,37, $14=64-50]$

Monomial orderings

$\mathcal{M}\left(X_{1}, \ldots, X_{m}\right)$ set of monomials in X_{1}, \ldots, X_{m}.
$\vec{X}^{\vec{\alpha}}=X_{1}^{\alpha_{1}} \ldots X_{m}^{\alpha_{m}}$, where $\vec{\alpha}=\left(\alpha_{1}, \ldots, \alpha_{m}\right)$.

Definition:

A monomial ordering \prec is a total ordering on $\mathcal{M}\left(X_{1}, \ldots, X_{m}\right)$ satisfying

- If $\vec{X}^{\vec{\alpha}} \prec \vec{X}^{\vec{\beta}}$ then $\vec{X}^{\vec{\alpha}} \vec{X}^{\vec{\gamma}} \prec \vec{X}^{\beta} \vec{X}^{\vec{\gamma}}$
- Every $S \subseteq \mathcal{M}\left(X_{1}, \ldots, X_{m}\right), S \neq \emptyset$ has a unique smallest element.

Example:

$\vec{X}^{\hat{\alpha}} \prec_{\text {lex }} \vec{X}^{\vec{\beta}}$ if $\vec{\beta}-\vec{\alpha}$ has a first non zero element >0.
Example:
$\vec{X}^{\vec{\alpha}} \prec_{\text {tot }} \vec{X}^{\vec{\beta}}$ if (1) or (2) holds:
(1) $\sum \alpha_{i}<\sum \beta_{i}$
(2) $\sum \alpha_{i}=\sum \beta_{i}$ and $\vec{X}^{\vec{\alpha}} \prec_{l e x} \vec{X}^{\vec{\beta}}$

In an ideal world...

Definition:

$J \subseteq k[\vec{X}]$ is an ideal if for all $F \in J, G \in J$ and $H \in k[\vec{X}]$

- $F+G \in J$
- $F H \in J$

$$
J=\left\langle F_{1}(\vec{X}), \ldots, F_{s}(\vec{X})\right\rangle=\left\{\sum_{i=1}^{s} H_{i}(\vec{X}) F_{i}(\vec{X}) \mid H_{i}(\vec{X}) \in k[\vec{X}]\right\}
$$

Example:
$\mathbf{F}_{4}=\{0,1, \alpha, \alpha+1\}$. Rules: $2=0, \alpha^{2}+\alpha+1=0$
$J=\left\langle X^{4}-X, Y^{4}-Y, X Y^{2}+X Y+\alpha\right\rangle \subseteq \mathbf{F}_{4}[X, Y]$

Varieties

Definition:

The variety $\mathcal{V}_{k}(J)$ is the common zeros of the polynomials in (the generators of) J.

Example:

$\mathcal{V}_{\bar{F}_{q}}\left(I_{q}\right)=\mathcal{V}_{\mathbf{F}_{q}}(I)$ where $I_{q}=I+\left\langle X_{1}^{q}-X_{1}, \ldots, X_{m}^{q}-X_{m}\right\rangle$ as $X_{i}^{q}-X_{i}$ "defines" \mathbf{F}_{q}.

Footprint

Definition:

Fix \prec. The set of monomials that can not be found as leading monomial of any polynomial in J is the footprint $\Delta_{\prec}(J)$.

Example:
$\Delta_{\prec}\left(\left\langle X^{4}-X, Y^{4}-Y\right\rangle\right)=\left\{X^{i} Y^{j} \mid 0 \leq i<4,0 \leq j<4\right\}$

Footprint

Example:

$\Delta_{\prec}\left(\left\langle X^{4}-X, Y^{4}-Y, X^{2} Y+a X Y+b X^{2}+c X+d Y+e\right\rangle\right)$ is contained in $\left\{1, X, Y, X^{2}, X Y, Y^{2}, X^{3}, X^{2} Y, Y^{3}, X^{3} Y\right\}$. May very well be smaller!!!

Residue-class ring

$$
\begin{aligned}
& R=k[\vec{X}] / J \\
& (F(\vec{X})+J)+(G(\vec{X})+J)=F(\vec{X})+G(\vec{X})+J \\
& (F(\vec{X})+J)(G(\vec{X})+J)=F(\vec{X}) G(\vec{X})+J
\end{aligned}
$$

Theorem:
$\left\{M+J \mid M \in \Delta_{\prec}(I)\right\}$ is a basis for R as a vector space over k.
Example:
$J=\left\langle X^{4}-X, Y^{4}-Y\right\rangle . R=F_{4}[X, Y] / J$.
$\Delta_{\prec}(J)=\left\{X^{i} Y^{j} \mid 0 \leq i<4,0 \leq j<4\right\}$. Dimension of R is 16 .

The evaluation map

Given $I \subseteq \mathbf{F}_{q}[\vec{X}]$ define $I_{q}:=I+\left\langle X_{1}^{q}-X_{1}, \ldots, X_{m}^{q}-X_{m}\right\rangle$.
$\mathcal{V}_{\mathbf{F}_{q}}\left(I_{q}\right)=\left\{P_{1}, \ldots, P_{n}\right\}$.
$\mathrm{ev}: \mathbf{F}_{q}[\vec{X}] / I_{q} \rightarrow \mathbf{F}_{q}^{n}$ given by ev $\left(F+I_{q}\right)=\left(F\left(P_{1}\right), \ldots, F\left(P_{n}\right)\right)$.
Lagrange (like) interpolation possible. Hence, a surjective vectorspace homomorphism.

The evaluation map

Definition:

An ideal J is radical if $F^{r} \in J, r>1$ implies $F \in J$.

Proposition:

I_{q} is radical.
Theorem: (Hilbert's Strong Nullstellensatz)
If J is radical then the vanishing ideal of $\mathcal{V}_{\bar{k}}(J)$ is J.
Corollary:
ev : $\mathbf{F}_{q}\left[X_{1}, \ldots, X_{m}\right] / I_{q} \rightarrow \mathbf{F}_{q}^{n}$ is an isomorphism.

The footprint bound

Corollary:

$\# \mathcal{V}_{\mathbf{F}_{q}}\left(I_{q}\right)=\# \Delta_{\prec}\left(I_{q}\right)$.
Corollary:
If $\operatorname{Im}(F)=X^{i_{1}} \ldots X_{m}^{i_{m}}$ with $i_{1}, \ldots, i_{m}<q$ then at most $q^{m}-\Pi\left(q-i_{s}\right)$ zeros over \mathbf{F}_{q}^{m}.

Example:
$\Delta_{\prec}\left(\left\langle X^{4}-X, Y^{4}-Y, X^{2} Y+a X Y+b X^{2}+c X+d Y+e\right\rangle\right)$

\# zeros at most 10

Generalized Reed-Muller codes

$$
\begin{aligned}
& I=\langle 0\rangle \\
& I_{q}=\langle 0\rangle+\left\langle X_{1}^{q}-X_{1}, \ldots, X_{m}^{q}-X_{m}\right\rangle=\left\langle X_{1}^{q}-X_{1}, \ldots, X_{m}^{q}-X_{m}\right\rangle \\
& \Delta_{\prec}\left(I_{q}\right)=\left\{X_{1}^{i_{1}} \ldots X_{m}^{i_{m}} \mid 0 \leq i_{1}<q, \ldots, 0 \leq i_{m}<q\right\} \\
& \mathcal{V}_{F_{q}}\left(I_{q}\right)=\mathbf{F}_{q}^{m}=\left\{P_{1}, \ldots, P_{q^{m}}\right\} \\
& \operatorname{ev}\left(F(\vec{X})+I_{q}\right)=\left(F\left(P_{1}\right), \ldots, F\left(P_{q^{m}}\right)\right) \\
& \operatorname{RM}_{q}(s, m)=\left\{\operatorname{ev}\left(F+I_{q}\right) \mid \operatorname{deg}_{X_{1}}<q, \ldots, \operatorname{deg}_{X_{m}}(F)<q\right. \\
& \left.\quad \operatorname{deg}_{t o t}(F) \leq s\right\}
\end{aligned}
$$

Vectors on r.h.s. are linearly independent. Hence, dimension easily found. By the footprint bound the minimum distance is:

$$
d=\min \left\{\prod_{t=1}^{m}\left(q-i_{t}\right) \mid 0 \leq i_{1}<q, \ldots, 0 \leq i_{m}<q\right.
$$

$$
\left.i_{1}+\ldots+i_{m} \leq s\right\}
$$

Generalized Reed-Muller codes - continued

Minimum distance by footprint bound:
$d=\min \left\{\prod_{s=1}^{m}\left(q-i_{s}\right) \mid 0 \leq i_{1}<q, \ldots, 0 \leq i_{m}<q, \sum_{s=1}^{m} \leq s\right\}$
Worst case on the border.
For $s \leq m(q-1)$ write $s=a(q-1)+b$ with $0 \leq b<q$ then min equals $(q-b) q^{m-a-1}$.

Y^{3}	4	3	2	1
Y^{2}	8	6	4	2
Y	12	9	6	3
1	16	12	8	4
	1	X	X^{2}	X^{3}

Hyperbolic codes

Y^{3}	4	3	2	1
Y^{2}	8	6	4	2
Y	12	9	6	3
1	16	12	8	4
	1	X	X^{2}	X^{3}

$$
\begin{array}{r}
\operatorname{Hyp}_{q}(s, m)=\operatorname{Span}_{\mathbf{F}_{q}}\left\{\operatorname{ev}\left(X_{1}^{i_{1}} \ldots X_{m}^{i_{m}}+I_{q}\right) \mid 0 \leq i_{1}<q, \ldots\right. \\
\left.0 \leq i_{m}<q, \prod_{t=1}^{m}\left(q-i_{t}\right) \geq \delta\right\}
\end{array}
$$

where $\delta=q^{m}-s$.
Minimum distance equals δ by footprint bound. Dimension can be calculated. Closed form estimate for dimension exists.

$$
\begin{aligned}
I & =\left\langle x^{q}+Y z^{q}-y^{q} z-x, U^{q}-z^{q+1}+a X^{q}-a Y^{q} z+b \varphi^{q+1}+U\right\rangle \\
& \subseteq F_{q_{2}}[x, y, z, u], \quad a, b \in F_{q} \\
\omega(X) & =(q, 1), \omega(Y)=(9,9), \omega(z)=(9,0), \omega(4)=(q+1,0)
\end{aligned}
$$

Alphabet $=\mathbb{F}_{64}, n=262144$

Hermite codes

$$
\begin{aligned}
& I=\left\langle X^{3}-Y^{2}-Y\right\rangle \subseteq \mathbf{F}_{4}[X, Y] \\
& I_{4}=\left\langle X^{3}-Y^{2}-Y, X^{4}-X, Y^{4}-Y\right\rangle \\
& V_{\mathbf{F}_{4}}\left(I_{4}\right)=\left\{P_{1}, \ldots, P_{8}\right\} \\
& \operatorname{ev}: R_{4}=\mathbf{F}_{4}[X, Y] / I_{4} \rightarrow \mathbf{F}_{4}^{8} \\
& \operatorname{ev}\left(F+I_{4}\right)=\left(F\left(P_{1}\right), \ldots, F\left(P_{8}\right)\right)
\end{aligned}
$$

$$
E(s)=\operatorname{Span}_{F_{4}}\left\{\operatorname{ev}\left(X^{i} Y^{j}+I_{q}\right) \mid 2 i+3 j \leq s\right\}
$$

Hermite codes

Definition:

Let a weighted degree ordering on $\mathcal{M}(X, Y)$ be given by $X^{i_{1}} Y^{j_{1}} \prec_{w} X^{i_{2}} Y^{j_{2}}$ if (1) or (2) holds:
(1) $2 i_{1}+3 j_{1}<2 i_{2}+3 j_{2}$
(2) $2 i_{1}+3 j_{1}=2 i_{2}+3 j_{2}$ but $j_{1}<j_{2}$

As ev is an isomorphism and eight zeros, the footprint is:

Y^{3}	$*$	$*$	$*$	$*$	$*$	$*$
Y^{2}	\square	\cdot	$*$	$*$	$*$	$*$
Y	\cdot	\cdot	\cdot	\cdot	$*$	$*$
1	\cdot	\cdot	\cdot	\cdot	\square	$*$
	1	X	X^{2}	X^{3}	X^{4}	X^{5}

Hermite codes

$E(s)=\operatorname{Span}_{F_{4}}\left\{\operatorname{ev}\left(X^{i} Y^{j}+I_{q}\right) \mid X^{i} Y^{j} \in \Delta_{\alpha_{w}}\left(I_{4}\right), 2 i+3 j \leq s\right\}$ Dimension easily found.
$\# \nu_{\mathbf{F}_{4}}\left(\left\langle Y+a X+b, X^{3}-Y^{2}-Y, X^{4}-X, Y^{4}-Y\right\rangle\right)=$?
Analysis so far: at most 4 zeros.
Deeper analysis will show: at most $w(Y)=0 \cdot 2+1 \cdot 3=3$ zeros.

Affine Variety Codes

$$
\begin{aligned}
& I \subseteq \mathbf{F}_{q}\left[X_{1}, \ldots, X_{m}\right], I_{q}=I+\left\langle X_{1}^{q}-X_{1}, \ldots, X_{m}^{q}-X_{m}\right\rangle \\
& R_{q}=\mathbf{F}_{q}[\vec{X}] / I_{q} . \\
& \mathcal{V}_{\mathbf{F}_{q}}\left(I_{q}\right)=\left\{P_{1}, \ldots, P_{n}\right\} \\
& \operatorname{ev}\left(F+I_{q}\right)=\left(F\left(P_{1}\right), \ldots, F\left(P_{n}\right)\right) \\
& L \subseteq R_{q} .
\end{aligned}
$$

Definition:
$C(I, L)=\operatorname{ev}(L) . C^{\perp}(I, L)$ is the dual space.

Affine Variety codes

$\mathrm{RM}_{q}(s, m)=C(I, L)$ where

$$
\begin{array}{r}
L=\operatorname{Span}_{\mathbf{F}_{q}}\left\{X_{1}^{i_{1}} \ldots X_{m}^{i_{m}}+\left\langle X_{1}^{q}-X_{1}, \ldots, X_{m}^{q}-X_{m}\right\rangle\right. \\
\left.0 \leq i_{1}<q, \ldots, 0 \leq i_{m}<q, \sum_{s=1}^{m} i_{s} \leq s\right\}
\end{array}
$$

$\operatorname{Hyp}_{q}(s, m)=C(I, L)$ where
$L=\operatorname{Span}_{\mathbf{F}_{q}}\left\{X_{1}^{i_{1}} \cdots X_{m}^{i_{m}} \mid 0 \leq i_{1}<q, \ldots, 0 \leq i_{m}<q\right.$,

$$
\left.\prod_{s=1}^{m}\left(q-i_{s}\right) \geq q^{m}-s\right\}
$$

Hermite code over F_{4} is $C(I, L)$ where

$$
L=\operatorname{Span}_{\mathbf{F}_{4}}\left\{X^{i} Y^{j}+I_{4} \mid 0 \leq i<4,0 \leq j<2,2 i+3 j \leq s\right\}
$$

Division algorithm

\prec_{w} with $w(X)=2, w(Y)=3$

$$
\begin{array}{lccc}
X^{5}+Y^{3}+1: & X^{3}+Y^{2}+Y & X^{4}+X & Y^{4}+Y \\
X^{5}+X^{2} & & \text { remainder } \\
\hline Y^{3}+X^{2}+1 & & \\
Y^{3}+X^{3} Y+Y^{2} & Y & & \\
\hline X^{3} Y+Y^{2}+X^{2}+1 & & & \\
X^{3} Y & & X^{3} Y \\
\hline Y^{2}+X^{2}+1 & & \\
Y^{2}+X^{3}+Y & & & X^{3}+X^{2}+Y+1 \\
X^{3}+X^{2}+Y+1 & & \\
X^{5}+Y^{3}+1 \text { rem }\left\{X^{3}+Y^{2}+Y, X^{4}+X, Y^{4}+Y\right\}= & \\
X^{3} Y+X^{3}+X^{2}+Y+1 & &
\end{array}
$$

Gröbner basis

Definition:
$\mathcal{G}=\left\{G_{1}(\vec{X}), \ldots, G_{s}(\vec{X})\right\} \subseteq J$ is a Gröbner basis for J w.r.t. \prec if whenever $M \in \operatorname{lm}(J)$ holds M is divisible by $\operatorname{lm}\left(G_{i}\right)$ for some i.

Facts about GB:

- A Gröbner basis is a basis.
- Buchbergers's algorithm finds GB.
- Footprint is easily read of from GB.
- For fixed \prec division with remainder modulo a GB is unique.

We get:
Theorem:
$\left\{M+J \mid M \in \Delta_{\prec}(J)\right\}$ is a basis for $k[\vec{X}] / J$

Hermite code

$X^{i_{1}} Y^{j_{1}} \prec_{w} X^{i_{2}} Y^{j_{2}}$ if (1) or (2) holds:
(1) $2 i_{1}+3 j_{1}<2 i_{2}+3 j_{2}$
(2) $2 i_{1}+3 j_{1}=2 i_{2}+3 j_{2}$ but $j_{1}<j_{2}$
$\left\{X^{3}-Y^{2}-Y, X^{4}-X, Y^{4}-Y\right\}$ GB with respect to \prec_{w}

$E(3)=C(I, L)$ with $L=\operatorname{Span}_{F_{4}}\left\{1+I_{q}, X+I_{q}, Y+I_{q}\right\}$

Motivation for definition of OWB

If $\vec{c} \in E(3)$ then $\vec{c}=\operatorname{ev}\left(H(X, Y)+I_{4}\right)$ for some
$H(X, Y)=a Y+b X+c$. We know

$$
w_{H}(\vec{c})=n-\# \Delta_{\prec_{w}}\left(\left\langle X^{3}-Y^{2}-Y, X^{4}-X, Y^{4}-Y, H(X, Y)\right\rangle\right)
$$

which is the number of elements in $\Delta_{\prec_{w}}\left(I_{4}\right)$ that is NOT in $\Delta_{\prec_{w}}\left(I_{4}+\langle H(X, Y)\rangle\right)$.

Case 1- $\operatorname{Im}(H)=Y$

- $\operatorname{Im}(1 \cdot H(X, Y)$ rem $\mathcal{G})=Y$
- $\operatorname{Im}(X \cdot H(X, Y)$ rem $\mathcal{G})=X Y$
- $\operatorname{Im}\left(X^{2} \cdot H(X, Y)\right.$ rem $\left.\mathcal{G}\right)=X^{2} Y$
- $\operatorname{Im}\left(X^{3} \cdot H(X, Y)\right.$ rem $\left.\mathcal{G}\right)=X^{3} Y$
- $\operatorname{Im}(Y \cdot H(X, Y)$ rem $\mathcal{G})=X^{3}$

Motivation for OWB continued

Here, last result follows from:

$$
\begin{aligned}
\operatorname{Im}(Y H(X, Y) \operatorname{rem} \mathcal{G}) & =\operatorname{Im}\left(Y^{2}+b X Y+c Y \operatorname{rem} \mathcal{G}\right) \\
& =\operatorname{Im}\left(X^{3}+Y+b X Y+c Y \operatorname{rem} \mathcal{G}\right) \\
& =\operatorname{Im}\left(X^{3}+b X Y+(c+1) Y \operatorname{rem} \mathcal{G}\right)=X^{3}
\end{aligned}
$$

Hence, $Y, X Y, X^{2} Y, X^{3} Y, X^{3}$ are NOT in $\Delta_{\prec_{w}}\left(I_{4}+\langle H(X, Y)\rangle\right)$. Hence, Hamming weight at least 5.

Case 2- $\operatorname{Im}(H)=X$ 6 element NOT in $\Delta_{\prec_{w}}\left(I_{4}+\langle H(X, Y)\rangle\right)$ are determined.

Case $3-\operatorname{Im}(H)=1$ 8 element NOT in $\Delta_{\prec_{w}}\left(I_{4}+\langle H(X, Y)\rangle\right)$ are determined.

Hence, minimum distance at least 5.

Hermite code

$E(3)=C(I, L)$ with $L=\operatorname{Span}_{F_{4}}\left\{1+I_{4}, X+I_{4}, Y+I_{4}\right\}$

Notation:

$\left\{1+I_{4}, X+I_{4}, Y+I_{4}\right\}$ is said to be a well-behaving basis for L because

- $\{1, X, Y\} \in \Delta_{\prec_{w}}\left(I_{4}\right)$
- $1 \prec_{w} X \prec_{w} Y$

A basis for L that is not well-behaving is $\left\{1+I_{4}, X+Y+I_{4}, X+\alpha Y+I_{4}\right\}$.

We write $\square_{\prec w}(L)=\{1, X, Y\}$

Well-behaving basis

$L \subseteq \mathbf{F}_{q}[\vec{X}] / I_{q}$.
Definition:
A basis $\left\{B_{1}+I_{q}, \ldots, B_{\text {dim }(L)}+I_{q}\right\}$ for $L \subseteq R_{q}$ where $\operatorname{Supp}\left(B_{i}\right) \subseteq \Delta_{\prec}\left(I_{q}\right)$ for $i=1, \ldots, \operatorname{dim}(L)$ and where $\operatorname{Im}\left(B_{1}\right) \prec \cdots \prec \operatorname{Im}\left(B_{\operatorname{dim}(L)}\right)$ is said to be well-behaving with respect to \prec.

Definition:

$$
\square_{\prec}(L)=\left\{\operatorname{Im}\left(B_{1}\right), \ldots, \operatorname{Im}\left(B_{\operatorname{dim}(L)}\right)\right\}
$$

where $\left\{B_{1}+I_{q}, \ldots, B_{\operatorname{dim}(L)}+I_{q}\right\}$ is any well-behaving basis of L with respect to \prec.

OWB

Definition:

Let \mathcal{G} be a Gröbner basis for I_{q} with respect to \prec. Then $\left(M_{1}, M_{2}\right), M_{1}, M_{2} \in \Delta_{\prec}\left(I_{q}\right)$ is said to be OWB if for all H with $\operatorname{Supp}(H) \subseteq \Delta_{\prec}\left(I_{q}\right)$ and $\operatorname{Im}(H)=M_{1}$

$$
\operatorname{lm}\left(M_{1} M_{2} \operatorname{rem} \mathcal{G}\right)=\operatorname{Im}\left(H M_{2} \operatorname{rem} \mathcal{G}\right)
$$

Example:
$I_{q}=\left\langle X^{4}-X, Y^{4}-Y\right\rangle, \prec_{\text {tot }}, \mathcal{G}=\left\{X^{4}-X, Y^{4}-Y\right\}$ is GB .
$\left(X^{2} Y, Y^{2}\right)$ is OWB as

$$
\begin{aligned}
& \left(X^{2} Y+a X Y^{2}+b Y^{3}+c X^{2}+d X Y+e Y^{2}+f X+g Y+h\right) Y^{2} \text { rem } \mathcal{G} \\
& =X^{2} Y^{3}+a X Y+b Y^{2}+c X^{2} Y^{2}+d X Y^{3}+e Y+f X Y^{2}+g Y^{3}+h Y^{2}
\end{aligned}
$$

Leading monomial equals $X^{2} Y^{3}$ whether or not $a=b=c=d=e=f=g=h=0$.

Minimum distance

Theorem:

Let \prec be fixed. The minimum distance of $C(I, L)$ is at least

$$
\begin{aligned}
& \min \left\{\# \left\{K \in \Delta_{\prec}\left(I_{q}\right) \mid \exists N \in \Delta_{\prec}\left(I_{q}\right)\right.\right. \text { such that } \\
& \left.\quad(P, N) \text { is OWB and } \operatorname{Im}(P N \text { rem } \mathcal{G})=K\} \mid P \in \square_{\prec}(L)\right\} .
\end{aligned}
$$

Order domain codes are affine variety codes where many OWB pairs are easily found.

Corollary:

Let \prec be fixed. The minimum distance of $C(I, L)$ is at least

$$
\begin{equation*}
\min \left\{\#\left\{K \in \Delta_{\prec}\left(I_{q}\right) \mid P \text { divides } K\right\} \mid P \in \square_{\prec}(L)\right\} \tag{1}
\end{equation*}
$$

Proof: Let K, P be as in (1). Clearly $\frac{K}{P} \in \Delta_{\prec}\left(I_{q}\right)$. To see that $\left(P, \frac{K}{P}\right)$ is OWB let H be a polynomial with $\operatorname{Im}(H)=P$ and Supp $(H) \subseteq \Delta_{\prec}\left(I_{q}\right)$. Clearly, the leading monomial of H_{P}^{K} is equal to K. The division algorithm, when applied to $H \frac{K}{P}$ and \mathcal{G}, starts by moving K to the remainder. This is due to $K \in \Delta_{\prec}\left(I_{q}\right)$. When we run the division algorithm all other terms A are either moved to the remainder, are replaced with with polynomials S such that $\operatorname{Im}(S) \prec \operatorname{Im}(A)$ holds, or are replaced with 0 .
Therefore,

$$
\operatorname{Im}\left(H \frac{K}{P} \operatorname{rem} \mathcal{G}\right)=K=\operatorname{Im}\left(P \frac{K}{P} \operatorname{rem} \mathcal{G}\right)
$$

Hermite code

$X^{i_{1}} Y^{j_{1}} \prec_{w} X^{i_{2}} Y^{j_{2}}$ if (1) or (2) holds:
(1) $2 i_{1}+3 j_{1}<2 i_{2}+3 j_{2}$
(2) $2 i_{1}+3 j_{1}=2 i_{2}+3 j_{2}$ but $j_{1}<j_{2}$
$\left\{X^{3}-Y^{2}-Y, X^{4}-X, Y^{4}-Y\right\}$ GB with respect to \prec_{w}

$E(3)=C(I, L)$ with $L=\operatorname{Span}_{F_{4}}\left\{1+I_{q}, X+I_{q}, Y+I_{q}\right\}$

$E(3)$ - continued

$$
\begin{array}{c|cccc}
Y & \cdot & \cdot & \cdot & \cdot \\
1 & \cdot & \cdot & \cdot & \cdot \\
\hline & 1 & X & X^{2} & X^{3}
\end{array}
$$

Corollary gives $(Y, 1),(Y, X),\left(Y, X^{2}\right),\left(Y, X^{3}\right)$ are OWB with remainder modulo \mathcal{G} equal to $Y, X Y, X^{2} Y, X^{3} Y$ respectively.

$$
\begin{aligned}
& (Y+a X+b) Y \text { rem }\left\{X^{3}-Y^{2}-Y, X^{4}-X, Y^{4}-Y\right\} \\
& =X^{3}+a X Y+(b+1) Y
\end{aligned}
$$

Hence, $\operatorname{Im}((Y+a X+b) Y$ rem $\mathcal{G})=X^{3}$ whether or not $a=b=0$ and therefore also (Y, Y) is OWB.

$E(3)$ - continued

$$
\begin{array}{c|cccc}
Y & \cdot & \cdot & \cdot & \cdot \\
1 & \cdot & \cdot & \cdot & \cdot \\
\hline & 1 & X & X^{2} & X^{3}
\end{array}
$$

Corollary gives $(X, 1),(X, X),\left(X, X^{2}\right),(X, Y),(X, X Y),\left(X, X^{2} Y\right)$ are OWB with remainders modulo \mathcal{G} equal to $X, X^{2}, X^{3}, X Y, X^{2} Y, X^{3} Y$ respectively.

Corollary gives $(1, N)$ OWB for all $N \in \Delta_{\prec_{w}}\left(I_{4}\right)$, and all $K \in \Delta_{\prec_{w}}\left(I_{4}\right)$ are realized as remainders.

Theorem gives $d(E(3)) \geq \min \{5,6,8\}=5$

minimum distance

Proof: Let $\vec{c} \in C(I, L)$. Then there exists an F such that $\operatorname{Supp}(F) \subseteq \Delta_{\prec}\left(I_{q}\right), \operatorname{Im}(F)=P \in \square_{\prec}(L)$ and $\operatorname{ev}\left(F+I_{q}\right)=\vec{c}$. By the footprint bound the Hamming weight of \vec{c} is equal to $n-\# \Delta_{\prec}\left(I_{q}+\langle F\rangle\right)$. If $N, K \in \Delta_{\prec}\left(I_{q}\right)$ satisfy that (P, N) is OWB and $\operatorname{lm}(P N \operatorname{rem} \mathcal{G})=K$ then

$$
K \in \Delta_{\prec}\left(I_{q}\right) \backslash \Delta_{\prec}\left(I_{q}+\langle F\rangle\right) .
$$

Hence,

$$
\# \Delta_{\prec}\left(I_{q}+\langle F\rangle\right) \leq \# \Delta_{\prec}\left(I_{q}\right)-\#\left\{K \in \Delta_{\prec}\left(I_{q}\right) \mid \exists N \in \Delta_{\prec}\left(I_{q}\right)\right.
$$ such that (P, N) is OWB and $\operatorname{Im}(P N$ rem $\mathcal{G})=K\}$.

But $n=\# \Delta_{\prec}\left(I_{q}\right)$ and therefore the Hamming weight of \vec{c} is at least

$$
\begin{aligned}
& \#\left\{K \in \Delta_{\prec}\left(I_{q}\right) \mid \exists N \in \Delta_{\prec}\left(I_{q}\right)\right. \\
& \quad \text { such that }(P, N) \text { is OWB and } \operatorname{Im}(P N \text { rem } \mathcal{G}=K\} .
\end{aligned}
$$

Hermite Codes - general case

$$
\begin{aligned}
& I=\left\langle X^{q+1}-Y^{q}-Y\right\rangle \subseteq \mathbf{F}_{q^{2}}[X, Y] \\
& I_{q^{2}}=\left\langle X^{q+1}-Y^{q}-Y, X^{q^{2}}-X, Y^{q^{2}}-Y\right\rangle
\end{aligned}
$$

Let $w\left(X^{i} Y^{j}\right)=q i+(q+1) j$. Define $X^{i_{1}} Y^{j_{1}} \prec_{w} X^{i_{2}} Y^{j_{2}}$ if (1) or (2) holds:
(1) $w\left(X^{i_{1}} Y^{j_{1}}\right)<w\left(X^{i_{2}} Y^{j_{2}}\right)$
(2) $w\left(X^{i_{1}} Y^{j_{1}}\right)=w\left(X^{i_{2}} Y^{j_{2}}\right)$ but $j_{1}<j_{2}$.
$\mathcal{H}=\left\{X^{q+1}-Y^{q}-Y\right\}$ is a Gröbner basis for I
$\mathcal{G}=\left\{X^{q+1}-Y^{q}-Y, X^{q^{2}}-X, Y^{q^{2}}-Y\right\}$ is a Gröbner basis for I
Hence,

$$
\begin{aligned}
& \Delta_{\prec_{w}}(I)=\left\{X^{i} Y^{j} \mid 0 \leq i, 0 \leq j<q\right\} \\
& \Delta_{\prec_{w}}\left(I_{q^{2}}\right)=\left\{X^{i} Y^{j} \mid 0 \leq i<q^{2}, 0 \leq j<q\right\}
\end{aligned}
$$

Hermite Codes - the general case

Example: the case $q^{2}=4$

Fact 1 (general case):
If $M, M^{\prime} \in \Delta_{\prec_{w}}(I)$ and $w(M)=w\left(M^{\prime}\right)$ holds, then $M=M^{\prime}$.
Fact 2 (general case):
Assume $F(X, Y)$ has a single monomial of highest weight, say w^{\prime}. Then the polynomial $F(X, Y)$ rem $\left\{X^{q+1}-Y^{q}-Y\right\}$ has a single monomial of highest weight and this weight equals w^{\prime}.

Hermite Codes - the general case

Example: the case $q^{2}=4$

To see (Y, Y) OWB observe:

- Let $\operatorname{Im}(F)=Y$ and $\operatorname{Supp}(F) \in \Delta_{\prec_{w}}\left(I_{4}\right)$ then F has a single monomial of highest weight and this weight is 3 .
- From fact 2 we see $w(F(X, Y) Y$ rem $\mathcal{H})=w\left(Y^{2}\right)=6$.
- From fact $1 \operatorname{lm}(F(X, Y) Y$ rem $\mathcal{H})=X^{3}$
- By inspection $X^{3} \in \Delta_{\prec_{w}}\left(I_{q^{2}}\right)$ and therefore $\operatorname{lm}(F(X, Y) Y$ rem $\mathcal{G})=X^{3}$

Hermite Codes - the general case

Example: the case $q^{2}=4$

3	5	7	9	5	3	2	1
0	2	4	6	8	6	4	2
$w\left(\Delta_{\prec_{w}}\left(I_{q^{2}}\right)\right)$			$\bar{\sigma}(P)$				

$\bar{\sigma}(P)=\#\{K \mid \exists N,(P, N)$ OWB $\quad \operatorname{Im}(P N$ rem $\mathcal{G})=K\}$
$L=\left\{1, X, Y, X^{2}\right\}$ then $C(I, L)$ is $[n, k, d]=[8,4,4]$
$\mathbb{F}_{9}[X, Y] / I, \quad I=\left\langle X^{9}-X, Y^{9}-Y, X^{4}-Y^{3}-Y\right\rangle$
$w(X)=3, w(Y)=4$

$\begin{array}{lllllllll}Y & X Y & X^{2} Y & X^{3} Y & X^{4} Y & X^{5} Y & X^{6} Y & X^{7} Y & X^{8} Y\end{array}$

1	X	X^{2}	X^{3}	X^{4}	X^{5}	X^{6}	X^{7}	X^{8}

8	11	14	17	20	23	26	29	32
4	7	10	13	16	19	22	25	28
0	3	6	9	12	15	18	21	24

19	16	13	10	7	4	3	2	1
23	20	17	14	11	8	6	4	2
27	24	21	18	15	12	9	6	3

$$
\begin{aligned}
\bar{\sigma}\left(X^{4} Y^{2}\right) & =\sigma(20) \\
& =\#\{20+0,20+3,20+4, \\
& =7
\end{aligned}
$$

Hermite codes over \mathbf{F}_{9}

8	11	14	17	20	23	26	29	32
4	7	10	13	16	19	22	25	28
0	3	6	9	12	15	18	21	24

19	16	13	10	7	4	3	2	1
23	20	17	14	11	8	6	4	2
27	24	21	18	15	12	9	6	3

Observation: $n-w(P) \leq \bar{\sigma}(P)$ holds.
Hence, if $L=\operatorname{Span}_{\mathbf{F}_{9}}\left\{P+I_{q} \mid w(P) \leq s\right\}$ then
$d(C(I, L)) \geq n-s$.
Better choice: $L^{\prime}=\operatorname{Span}_{\mathbf{F}_{9}}\{P \mid \bar{\sigma}(P) \geq \delta\}$ then $d\left(C\left(I, L^{\prime}\right)\right) \geq \delta$.

$$
\begin{array}{ll}
C(I, L) \text { with } s=23: & d \geq 4, k=21 \\
C\left(I, L^{\prime}\right) \text { with } \delta=4: & d \geq 4, k=22
\end{array}
$$

Generalized weighted degree orderings

Definition:

Given numbers $w\left(X_{1}\right), \ldots, w\left(X_{m}\right) \in \mathbf{N}$ define $w\left(X_{1}^{\alpha_{1}} \cdots X_{m}^{\alpha_{m}}\right)=\sum_{i=1}^{m} \alpha_{i} w\left(X_{i}\right)$. The weighted degree lexicographic ordering \prec_{w} is the ordering with $\vec{X}^{\vec{\alpha}} \prec_{w} \vec{X}^{\beta}$ if (1) or (2) holds:
(1) $w\left(\vec{X}^{\vec{\alpha}}\right)<w\left(\vec{X}^{\vec{\beta}}\right)$
(2) $w\left(\vec{X}^{\vec{\alpha}}\right)=w\left(\vec{X}^{\vec{\beta}}\right)$ but $\vec{X}^{\vec{\alpha}} \prec_{\text {lex }} \vec{X}^{\vec{\beta}}$ holds

Note: One can replace $\prec_{l e x}$ with any other monomial ordering. This is an example of a generalized weighted degree ordering.

Order domain theory

The order domain conditions: Let \prec_{w} be a generalized weighted degree ordering on $\mathcal{M}(\vec{X})$. Let $I=\left\langle G_{1}(\vec{X}), \ldots, G_{s}(\vec{X})\right\rangle \subseteq \mathbf{F}_{q}[\vec{X}]$ be an ideal such that:

- $\left\{G_{1}, \ldots, G_{s}\right\}$ is a Gröbner basis for / w.r.t. \prec_{w}.
- For $i=1, \ldots, s G_{i}$ has exactly two monomials of highest weight in its support.
- No two monomials in $\Delta_{\alpha_{w}}(I)$ is of the same weight.

The order domain conditions guarantees that we can use the same tricks as with the Hermitian codes.

The generalized Reed-Muller code construction fits this description in the more general case where weights are not numerical.

Generalized Reed-Muller codes revisited

$$
w\left(X^{\prime} Y^{j}\right)=(i, j)
$$

$$
I=\langle 0\rangle \subseteq \mathbf{F}_{5}[X, Y] . I_{5}=\left\langle X^{5}-X, Y^{5}-Y\right\rangle .
$$

Y^{4}	$(0,4)$	$(1,4)$	$(2,4)$	$(3,4)$	$(4,4)$
Y^{3}	$(0,3)$	$(1,3)$	$(2,3)$	$(3,3)$	$(4,3)$
Y^{2}	$(0,2)$	$(1,2)$	$(2,2)$	$(3,2)$	$(4,2)$
Y	$(0,1)$	$(1,1)$	$(2,1)$	$(3,1)$	$(4,1)$
1	$(0,0)$	$(1,0)$	$(2,0)$	$(3,0)$	$(4,0)$
	1	X	X^{2}	X^{3}	X^{4}

Y^{4}	5	4	3	2	1
Y^{3}	10	8	6	4	2
Y^{2}	15	12	9	6	3
Y	20	16	12	8	4
1	25	20	15	10	5
	1	X	X^{2}	X^{3}	X^{4}

$$
\begin{aligned}
\sigma((2,3))=\# & \{(2,3)+(0,0),(2,3)+(0,1),(2,3)+(1,0) \\
& (2,3)+(1,1),(2,3)+(2,0),(2,3)+(2,1)\}=6
\end{aligned}
$$

Order domain codes

Definition:
Let \prec_{w} and I satisfy the order domain conditions. The semigroup $\Gamma:=w\left(\Delta_{\prec_{w}}(I)\right)$ is called the value semigroup. For $\lambda \in w\left(\Delta_{\prec_{w}}\left(I_{q}\right)\right) \subseteq \Gamma$ define

$$
\sigma(\lambda)=\#\left\{\gamma \in w\left(\Delta_{\prec_{w}}\left(I_{q}\right)\right) \mid \gamma-\lambda \in \Gamma\right\}
$$

Observation:

The above condition $\gamma-\lambda \in \Gamma$ can w.l.o.g. be replaced by
$\gamma-\lambda \in w\left(\Delta_{\prec_{w}}\left(I_{q}\right)\right)$.
Observation:
The value semigroup is generated by $w\left(X_{1}\right), \ldots, w\left(X_{m}\right)$. That is, $\Gamma=\left\langle w\left(X_{1}\right), \ldots, w\left(X_{m}\right)\right\rangle$.

Order domain codes

Definition:

Let \prec_{w} and $/$ satisfy the order domain conditions. Define

$$
\begin{aligned}
E(s) & =\left\{\operatorname{ev}\left(F\left(\vec{X}+I_{q}\right) \mid \operatorname{wdeg}(F) \leq s\right\}\right. \\
& =C(I, L)
\end{aligned}
$$

where $L=\left\{M+I_{q} \mid M \in \Delta_{\prec_{w}}\left(I_{q}\right), w(M) \leq s\right\}$.
Define also

$$
\begin{aligned}
\tilde{E}(\delta) & =\operatorname{Span}_{\mathbf{F}_{q}}\left\{\operatorname{ev}\left(M+I_{q}\right) \mid \sigma(w(M)) \geq \delta\right\} \\
& =C\left(I, L^{\prime}\right)
\end{aligned}
$$

where $L^{\prime}=\left\{M+I_{q} \mid M \in \Delta_{\prec w}\left(I_{q}\right), \sigma(w(M))=\bar{\sigma}(M) \geq \delta\right\}$.

Minimum distance of $E(s)$ and $\tilde{E}(\delta)$

According to theorem:
$d(E(s)) \geq \min \{\sigma(\lambda) \mid \lambda \leq s\}$
$d(\tilde{E}(\delta)) \geq \delta$.

Lemma:

If Γ is a numerical semigroup with finitely many gaps and $\lambda \in \Gamma$ then

$$
\lambda=\#(\Gamma \backslash(\lambda+\Gamma))
$$

where $\lambda+\Gamma=\{\lambda+\gamma \mid \gamma \in \Gamma\}$.
Observation:
For $\lambda \in w\left(\Delta_{\prec_{w}}\left(I_{q}\right)\right), \sigma(\lambda)=\# w\left(\Delta_{\prec_{w}}\left(I_{q}\right)\right) \cap(\lambda+\Gamma)$
Corollary:
Consider (numerical) weights. For $\lambda \in \Delta_{\prec_{w}}\left(I_{q}\right)$ we have $n-\lambda \leq \sigma(\lambda)$

Minimum distance of $E(s)$ - continued

Corollary:

For (numerical) weights and $\lambda \in \Delta_{\prec_{w}}\left(I_{q}\right)$ we have $n-\lambda \leq \sigma(\lambda)$
Theorem:
(For numerical weights) the minimum distance of $E(s)$ is at least $n-s$.

Well-behaving basis

$L \subseteq \mathbf{F}_{q}[\vec{X}] / I_{q}$.
Definition:
A basis $\left\{B_{1}+I_{q}, \ldots, B_{\text {dim }(L)}+I_{q}\right\}$ for $L \subseteq R_{q}$ where $\operatorname{Supp}\left(B_{i}\right) \subseteq \Delta_{\prec}\left(I_{q}\right)$ for $i=1, \ldots, \operatorname{dim}(L)$ and where $\operatorname{Im}\left(B_{1}\right) \prec \cdots \prec \operatorname{Im}\left(B_{\operatorname{dim}(L)}\right)$ is said to be well-behaving with respect to \prec.

Definition:

$$
\square_{\prec}(L)=\left\{\operatorname{Im}\left(B_{1}\right), \ldots, \operatorname{Im}\left(B_{\operatorname{dim}(L)}\right)\right\}
$$

where $\left\{B_{1}+I_{q}, \ldots, B_{\operatorname{dim}(L)}+I_{q}\right\}$ is any well-behaving basis of L with respect to \prec.

OWB

Definition:

Let \mathcal{G} be a Gröbner basis for I_{q} with respect to \prec. Then (M_{1}, M_{2}), $M_{1}, M_{2} \in \Delta_{\prec}\left(I_{q}\right)$ is said to be OWB if for all H with $\operatorname{Supp}(H) \subseteq \Delta_{\prec}\left(I_{q}\right)$ and $\operatorname{Im}(H)=M_{1}$

$$
\operatorname{Im}\left(M_{1} M_{2} \operatorname{rem} \mathcal{G}\right)=\operatorname{Im}\left(H M_{2} \operatorname{rem} \mathcal{G}\right)
$$

The Feng-Rao bound

Theorem:

Let \prec be fixed. The minimum distance of $C(I, L)^{\perp}$ is at least

$$
\begin{equation*}
\min \left\{\# \left\{P \in \Delta_{\prec}\left(I_{q}\right) \mid \exists N \in \Delta_{\prec}\left(I_{q}\right) \text { such that }(P, N)\right.\right. \text { is OWB } \tag{2}
\end{equation*}
$$ and $\operatorname{lm}(P N$ rem $\left.\mathcal{G})=K\} \mid K \in \Delta_{\prec}\left(I_{q}\right) \backslash \square_{\prec}(L)\right\}$.

$\mathbb{F}_{9}[X, Y] / I, \quad I=\left\langle X^{9}-X, Y^{9}-Y, X^{4}-Y^{3}-Y\right\rangle$
$w(X)=3, w(Y)=4$
$\begin{array}{llllllllllllllllllll}Y^{2} & X Y^{2} & X^{2} Y^{2} & X^{3} Y^{2} & X^{4} Y^{2} & X^{5} Y^{2} & X^{6} Y^{2} & X^{7} Y^{2} & X^{8} Y^{2}\end{array}$
$\begin{array}{lllllllll}Y & X Y & X^{2} Y & X^{3} Y & X^{4} Y & X^{5} Y & X^{6} Y & X^{7} Y & X^{8} Y\end{array}$
$\begin{array}{lllllllll}1 & X & X^{2} & X^{3} & X^{4} & X^{5} & X^{6} & X^{7} & X^{8}\end{array}$

8	11	14	17	20	23	26	29	32
4	7	10	13	16	19	22	25	28
0	3	6	9	12	15	18	21	24

3	6	9	12	15	18	21	24	27
2	4	6	8	11	14	17	20	23
1	2	3	4	7	10	13	16	19

$$
\begin{aligned}
\bar{\mu}\left(X^{4}\right) & =\mu(12) \\
& =\#\{12-0,12-3,12-4, \\
& 12-6,12-8,12-9,12-12\} \\
& =7
\end{aligned}
$$

Order domain theory

The order domain conditions: Let \prec_{w} be a generalized weighted degree ordering on $\mathcal{M}(\vec{X})$. Let $I=\left\langle G_{1}(\vec{X}), \ldots, G_{s}(\vec{X})\right\rangle \subseteq \mathbf{F}_{q}[\vec{X}]$ be an ideal such that:

- $\left\{G_{1}, \ldots, G_{s}\right\}$ is a Gröbner basis for / w.r.t. \prec_{w}.
- For $i=1, \ldots, s G_{i}$ has exactly two monomials of highest weight in its support.
- No two monomials in $\Delta_{\alpha_{w}}(I)$ is of the same weight.

Definition:

Let \prec_{w} and / satisfy the order domain conditions. The semigroup $\Gamma:=w\left(\Delta_{\alpha_{w}}(I)\right)$ is called the value semigroup. For $\lambda \in w\left(\Delta_{<_{w}}\left(I_{q}\right)\right) \subseteq \Gamma$ define

$$
\mu(\lambda)=\#\left\{\gamma \in w\left(\Delta_{\prec_{w}}\left(I_{q}\right)\right) \mid \lambda-\gamma \in \Gamma\right\}
$$

Order domain codes

Definition:

Let \prec_{w} and $/$ satisfy the order domain conditions. Define

$$
\begin{aligned}
C(s) & =\left\{\vec{c} \mid \vec{c} \cdot \operatorname{ev}\left(F(\vec{X})+I_{q}\right)=0 \text { for all } F \text { with } \operatorname{wdeg}(F) \leq s\right\} \\
& =C^{\perp}(I, L)
\end{aligned}
$$

$L=\operatorname{Span}_{\mathbf{F}_{q}}\left\{M+I_{q} \mid M \in \Delta_{\prec_{w}}\left(I_{q}\right), w(M) \leq s\right\}$.
$\tilde{C}(\delta)=\left\{\vec{c} \mid \vec{c} \cdot \operatorname{ev}\left(M+I_{q}\right)=0\right.$ for all M with $\left.\mu(w(M))<\delta\right\}$

$$
=C^{\perp}\left(I, L^{\prime}\right)
$$

$L^{\prime}=\operatorname{Span}_{\mathbf{F}_{q}}\left\{M+I_{q} \mid M \in \Delta_{\prec_{w}}\left(I_{q}\right), \mu(w(M))=\bar{\mu}(M)<\delta\right\}$.
By Feng-Rao theorem for general order domain code the minimum distance is at least $\min \left\{\mu(\lambda) \mid \lambda \in \Delta_{\prec_{w}}\left(I_{q}\right) \backslash \square_{\prec}(L)\right\}$.
$d(C(s)) \geq \min \left\{\mu(\lambda) \mid \lambda \in \Delta_{\prec_{w}}\left(I_{q}\right), \lambda>s\right\}$
$d(\tilde{C}(\delta)) \geq \delta$

Hermite codes over \mathbf{F}_{9}

8	11	14	17	20	23	26	29	32
4	7	10	13	16	19	22	25	28
0	3	6	9	12	15	18	21	24
3	6	9	12	15	18	21	24	27
2	4	6	8	11	14	17	20	23
1	2	3	4	7	10	13	16	19
$C^{\perp}(I, L)$ with $s=7:$	$d \geq 3, k=22$							
$C^{\perp}\left(I, L^{\prime}\right)$ with $\delta=4: \quad d \geq 4, k=22$								

GRM/Hyp codes over \mathbf{F}_{8}

Table below: σ / μ

Y^{7}	$8 / 8$	$7 / 16$	$6 / 24$	$5 / 32$	$4 / 40$	$3 / 48$	$2 / 56$	$1 / 64$
Y^{6}	$16 / 7$	$14 / 14$	$12 / 21$	$10 / 28$	$8 / 35$	$6 / 42$	$4 / 49$	$2 / 56$
Y^{5}	$24 / 6$	$21 / 12$	$18 / 18$	$15 / 24$	$12 / 30$	$9 / 36$	$6 / 42$	$3 / 48$
Y^{4}	$32 / 5$	$28 / 10$	$24 / 15$	$20 / 20$	$16 / 25$	$12 / 30$	$8 / 35$	$4 / 40$
Y^{3}	$40 / 4$	$35 / 8$	$30 / 12$	$25 / 16$	$20 / 20$	$15 / 24$	$10 / 28$	$5 / 32$
Y^{2}	$48 / 3$	$42 / 6$	$36 / 9$	$30 / 12$	$24 / 15$	$18 / 18$	$12 / 21$	$6 / 24$
Y	$56 / 2$	$49 / 4$	$42 / 6$	$35 / 8$	$28 / 10$	$21 / 12$	$14 / 14$	$7 / 16$
1	$64 / 1$	$56 / 2$	$48 / 3$	$40 / 4$	$32 / 5$	$24 / 6$	$16 / 7$	$8 / 8$
	1	X	X^{2}	X^{3}	X^{4}	X^{5}	X^{6}	X^{7}

Indeed, for appropriate choices of L and \hat{L} we have $C(I, L)=C^{\perp}(I, \hat{L})$. This includes Generalized Reed-Muller codes and Hyperbolic codes.

Hermite codes over \mathbf{F}_{9}

Table below: σ / μ

Y^{2}	$19 / 3$	$16 / 6$	$13 / 9$	$10 / 12$	$7 / 15$	$4 / 18$	$3 / 21$	$2 / 24$	$1 / 27$
Y	$23 / 2$	$20 / 4$	$17 / 6$	$14 / 8$	$11 / 11$	$8 / 14$	$6 / 17$	$4 / 20$	$2 / 23$
1	$27 / 1$	$24 / 2$	$21 / 3$	$18 / 4$	$15 / 7$	$12 / 10$	$9 / 13$	$6 / 16$	$3 / 19$
	1	X	X^{2}	X^{3}	X^{4}	X^{5}	X^{6}	X^{7}	X^{8}

Indeed, for appropriate choices of L and $\hat{L} C(I, L)=C^{\perp}(I, \hat{L})$. Includes $E(s), \tilde{E}(\delta)$ versus $C(s), \tilde{C}(\delta)$.

$$
I=\left\langle X\left(q^{r}-1\right) /(q-1)-Y Y^{q^{r-1}}-Y^{q^{r-2}}-\cdots-Y\right\rangle \subseteq \mathbb{F}_{q^{r}}[X, Y]
$$

Alphabet $=\mathbb{F}_{q^{r}}=\mathbb{F}_{2^{7}}, n=2^{13}$ Improved versus non-improved.

$$
I=\left\langle X\left(q^{r}-1\right) /(q-1)-Y q^{q^{r-1}}-Y Y^{q^{r-2}}-\cdots-Y\right\rangle \subseteq \mathbb{F}_{q^{r}}[X, Y]
$$

Alphabet $=\mathbb{F}_{64}$. From above: $64=8^{2}$ gives $n=2^{9}, 64=4^{3}$ gives $n=2^{10}, 64=2^{6}$ gives $n=2^{11}, \operatorname{Hyp}_{64}(s, 2)$ gives $n=2^{12}$

A "non-duality example"

Consider the the generalized weighted degree ordering on $\mathcal{M}(X, Y, Z, U)$ with weights $w(X)=64, w(Y)=80, w(Z)=100, w(U)=125$. The ideal $I:=\left\langle X^{5}+Y^{4}+Y, Y^{5}+Z^{4}+Z, Z^{5}+U^{4}+U^{2}\right\rangle \subseteq \mathbf{F}_{16}[X, Y, Z, U]$ and \prec_{w} satisfies the order domain conditions. Expanding

$$
\left\{X^{16}-X, Y^{16}-Y, Z^{16}-Z, U^{16}-U, X^{5}+Y^{4}+Y, Y^{5}+Z^{4}+Z, Z^{5}+U^{4}+U^{2}\right\}
$$

to a Gröbner basis for I_{q} results in an awfully large basis. The leading monomials are:

$$
\begin{aligned}
& \left\{Y^{4}, Z^{4}, U^{4}, X^{10} Y^{2} Z^{2}, X^{5} Y^{2} Z U^{2}, X^{10} Z U^{2}, X^{5} Y^{2} Z^{3}, X^{10} Z^{3}, X^{10} Y^{3}, X^{15},\right. \\
& X Y^{3} Z^{3} U^{2}, X^{6} Y^{3} U^{2}, X^{11} U^{2}, X^{6} Z^{2} U^{2}, X^{6} Y^{3} Z^{2}, X^{11} Y, X^{11} Z, X^{6} Y Z U^{2}, \\
& \left.X^{6} Y Z^{3}, X^{10} Y^{2} U^{2}, X^{5} Y Z^{2} U^{2}\right\} .
\end{aligned}
$$

The footprint does not have the shape of a box. By inspection $n=\Delta_{\prec_{w}}\left(I_{q}\right)=512$.

$$
\begin{aligned}
& I=\left\langle x^{5}-Y^{4}-Y, Y^{5}-Z^{4}-Z, Z^{5}-U^{4}-U^{2}\right\rangle \subseteq \mathbb{F}_{16}[X, Y, Z, U] \\
& \omega(x)=64, \omega(Y)=80, \omega(Z)=100, \omega(U)=125
\end{aligned}
$$

Alphabet $=\Pi_{16}, n=512$

Bad can be good...

$\vec{u} \cdot \vec{v}=\sum v_{i} u_{i}$ (usual inner product)
$\vec{u} * \vec{v}=\left(u_{1} v_{1}, \ldots, u_{m} v_{m}\right)$ (Hadamard or "bad student" inner product).
$\vec{w} \cdot(\vec{v} * \vec{u})=(\vec{w} * \vec{v}) \cdot \vec{u}$

$$
\begin{aligned}
& \vec{w} \cdot(\vec{v} * \vec{u}) \neq 0 \\
& \vec{w} * \vec{v} \neq \overrightarrow{0}
\end{aligned}
$$

Proof of Feng-Rao bound

Let $\left\{B_{1}+I_{q}, \ldots, B_{\operatorname{dim}(L)}+I_{q}\right\}$ be a well-behaving basis for L.
Consider $\vec{c} \in C(I, L)^{\perp} \backslash\{\overrightarrow{0}\}$. That is, \vec{c} satisfies
$\vec{c} \cdot \mathrm{ev}\left(B_{i}+I_{q}\right)=0$ for $i=1, \ldots, \operatorname{dim}(L)$ but

$$
\begin{equation*}
\vec{c} \cdot \mathrm{ev}\left(K+I_{q}\right) \neq 0 \tag{3}
\end{equation*}
$$

holds for some $K \in \Delta_{\prec}\left(I_{q}\right)$.
Let $K \in \Delta_{\prec}\left(I_{q}\right)$ be smallest possible with respect to \prec such that (3) holds. By linearity of the inner product and the minimality of K we have $K \notin \square_{\prec}(L)$.

Proof of Feng-Rao bound - continued

Consider OWB pairs $\left(P_{1}, N_{1}\right), \ldots,\left(P_{\delta}, N_{\delta}\right)$, where $P_{1}, N_{1}, \ldots, P_{\delta}, N_{\delta} \in \Delta_{\prec}\left(I_{q}\right), P_{1} \prec \cdots \prec P_{\delta}$ and $\operatorname{lm}\left(P_{i} N_{i}\right.$ rem $\left.\mathcal{G}\right)=K$ for $i=1, \ldots, \delta$.

The minimality of K and the OWB property of $\left(P_{i}, N_{i}\right)$ ensure that

$$
\begin{equation*}
\vec{c} \cdot \mathrm{ev}\left(\left(\sum_{\substack{t=1, \ldots, i \\ a_{i} \neq 0}} a_{t} P_{t}\right) N_{i} \text { rem } \mathcal{G}+I_{q}\right) \neq 0 \tag{4}
\end{equation*}
$$

holds for any $i \in\{1, \ldots, \delta\}$.

Proof of Feng-Rao bound - continued

As

$$
\left(\sum_{\substack{t=1, \ldots, i \\ a_{i} \neq 0}} a_{t} P_{t}\right) N_{i} \text { rem } \mathcal{G}+I_{q}=\left(\sum_{t=1, \ldots, i} a_{t} a_{t}\right) N_{i}+l_{q}
$$

we conclude from (4) that

$$
\vec{c} * \operatorname{ev}\left(\left(\sum_{\substack{t=1, \ldots, i \\ a_{i} \neq 0}} a_{t} P_{t}\right)+I_{q}\right) \neq \overrightarrow{0} \quad \text { for any } \quad i \in\{1, \ldots, \delta\}
$$

Proof of Feng-Rao bound - continued

Hence, $\vec{c} * \vec{e} \neq \overrightarrow{0}$ for all

$$
\begin{equation*}
\vec{e} \in\left\{\operatorname{ev}\left(\left(\sum_{t=1}^{\delta} a_{t} P_{t}\right)+I_{q}\right) \mid a_{1}, \ldots, a_{\delta} \in \mathbf{F}_{q}, \text { not all } a_{i} \text { equal } 0\right\} . \tag{5}
\end{equation*}
$$

The space consisting of (5) and $(0, \ldots, 0)$ is of dimension δ and therefore the Hamming weight of \vec{c} needs to be at least δ.

Generalized weighted degree orderings

Definition:

Given $w\left(X_{1}\right), \ldots, w\left(X_{m}\right) \in \mathbf{N}_{0}^{r}$ define
$w\left(X_{1}^{\alpha_{1}} \cdots X_{m}^{\alpha_{m}}\right)=\sum_{i=1}^{m} \alpha_{i} w\left(X_{i}\right)$. Let $\prec_{\mathbf{N}_{0}^{r}}$ be a monomial ordering on \mathbf{N}_{0}^{r} and let $\prec_{\mathcal{M}}$ be a monomial ordering on $\mathcal{M}\left(X_{1}, \ldots, X_{m}\right)$. The generalized weighted degree ordering \prec_{w} is the ordering with $\vec{X}^{\vec{\alpha}} \prec_{w} \vec{X}^{\vec{\beta}}$ if (1) or (2) holds:
(1) $w\left(\vec{X}^{\vec{\alpha}}\right) \prec_{\mathbf{N}_{0}^{r}} w\left(\vec{X}^{\vec{\beta}}\right)$
(2) $w\left(\vec{X}^{\vec{\alpha}}\right)=w\left(\vec{X}^{\vec{\beta}}\right)$ but $\vec{X}^{\vec{\alpha}} \prec_{\mathcal{M}} \vec{X}^{\vec{\beta}}$ holds

Order domain theory

The order domain conditions: Let \prec_{w} be a generalized weighted degree ordering on $\mathcal{M}(\vec{X})$. Let $I=\left\langle G_{1}(\vec{X}), \ldots, G_{s}(\vec{X})\right\rangle \subseteq \mathbf{F}_{q}[\vec{X}]$ be an ideal such that:

- $\left\{G_{1}, \ldots, G_{s}\right\}$ is a G"röbner basis for / w.r.t. \prec_{w}.
- For $i=1, \ldots, s G_{i}$ has exactly two monomials of highest weight (with respect to $\prec_{\mathbf{N}_{0}^{r}}$) in its support.
- No two monomials in $\Delta_{\prec_{w}}(I)$ is of the same weight.

The order domain conditions guarantees that we can use the same tricks as with the Hermitian codes (using the weights to determine OWB pairs).

$$
\begin{aligned}
I & =\left\langle x^{q}+Y z^{q}-y^{q} z-x, U^{q}-z^{q+1}+a X^{q}-a Y^{q} z+b \varphi^{q+1}+U\right\rangle \\
& \subseteq F_{q_{2}}[x, y, z, u], \quad a, b \in F_{q} \\
\omega(X) & =(q, 1), \omega(Y)=(9,9), \omega(z)=(9,0), \omega(4)=(q+1,0)
\end{aligned}
$$

Alphabet $=\mathbb{F}_{64}, n=262144$

Tensor products of order domains

$R_{1}=\mathbf{F}_{q}[\vec{X}] / \iota_{1}$
$I_{1}=\left\langle F_{1}(\vec{X}), \ldots, F_{s_{1}}(\vec{X})\right\rangle$
\prec_{w}^{1} is defined by weights in $\mathbf{N}_{0}^{r_{1}}, \prec_{\mathcal{M}(\vec{X})}$ and $\prec_{\mathbf{N}_{o}^{r_{1}}}$
$R_{2}=\mathbf{F}_{q}[\vec{Y}] / I_{2}$
$I_{2}=\left\langle G_{1}(\vec{Y}), \ldots, G_{s_{2}}(\vec{Y})\right\rangle$
\prec_{W}^{2} is defined by weights in $\mathbf{N}_{0}^{r_{1}}, \prec_{\mathcal{M}(\vec{Y})}$ and $\prec_{\mathbf{N}_{o}^{\prime_{2}}}$
$R=\mathbf{F}_{q}[\vec{X}, \vec{Y}] / I$
$I=\left\langle F_{1}(\vec{X}), \ldots, F_{s_{1}}(\vec{X}), G_{1}(\vec{Y}), \ldots, G_{s_{2}}(\vec{Y})\right\rangle$
\prec_{w} is defined by weights in $\mathbf{N}_{0}^{r_{1}+r_{2}}$ as follows
$w\left(\vec{X}^{\vec{\alpha}} \vec{Y}^{\vec{\beta}}\right)=(w(\vec{X}), w(\vec{Y}))$
Choose $\prec_{\mathcal{M}(\vec{X}, \vec{Y})}$ and $\prec_{\mathbf{N}_{0}^{1_{1}+r_{2}}}$ with care.
Example: The structures supporting the generalized Reed Muller codes and the hyperbolic codes fits this general description.

Generalized Reed-Muller codes revisited

$$
w\left(X^{\prime} Y^{j}\right)=(i, j)
$$

$$
I=\langle 0\rangle \subseteq \mathbf{F}_{5}[X, Y] . I_{5}=\left\langle X^{5}-X, Y^{5}-Y\right\rangle .
$$

Y^{4}	$(0,4)$	$(1,4)$	$(2,4)$	$(3,4)$	$(4,4)$
Y^{3}	$(0,3)$	$(1,3)$	$(2,3)$	$(3,3)$	$(4,3)$
Y^{2}	$(0,2)$	$(1,2)$	$(2,2)$	$(3,2)$	$(4,2)$
Y	$(0,1)$	$(1,1)$	$(2,1)$	$(3,1)$	$(4,1)$
1	$(0,0)$	$(1,0)$	$(2,0)$	$(3,0)$	$(4,0)$
	1	X	X^{2}	X^{3}	X^{4}

Y^{4}	5	4	3	2	1
Y^{3}	10	8	6	4	2
Y^{2}	15	12	9	6	3
Y	20	16	12	8	4
1	25	20	15	10	5
	1	X	X^{2}	X^{3}	X^{4}

$$
\begin{aligned}
\sigma((2,3))=\# & \{(2,3)+(0,0),(2,3)+(0,1),(2,3)+(1,0) \\
& (2,3)+(1,1),(2,3)+(2,0),(2,3)+(2,1)\}=6
\end{aligned}
$$

Tensor product of m Hermitian order domains involves weights in \mathbf{N}_{0}^{m}.

Alphabet $=\mathbb{F}_{256}$. From above: $\operatorname{Hyp}_{256}(s, 2)$ of length $n=65536$, $\operatorname{Herm}_{256}(s, 2)$ of length $n=16777216, \operatorname{Hyp}_{256}(s, 3)$ of length $n=16777216, \operatorname{Herm}_{256}(s, 3)$ of length $n=68719476736$.

Order functions

Definition:

Let $(\Gamma,<)$ be a well-order. An order function on an \mathbf{F}-algebra R is a surjective function

$$
\rho: R \rightarrow \Gamma \cup\{-\infty\}
$$

such that
(O.0) $\rho(f)=-\infty$ iff $f=0$
(O.1) $\rho(a f)=\rho(f)$ for all nonzero $a \in \mathbf{F}$
(O.2) $\rho(f+g) \leq \max \{\rho(f), \rho(g)\}$
(O.3) If $\rho(f)<\rho(g)$ and $h \neq 0$ then $\rho(f h)<\rho(g h)$
(O.4) If f and g are nonzero and $\rho(f)=\rho(g)$ then there exists a nonzero $a \in \mathbf{F}$ such that $\rho(f-a g)<\rho(g)$

Weight functions

An order function induces an operation + on R by:
(O.5) $\rho(f)+\rho(g)=\rho(f g)$

Definition:

Let $(\Gamma,+)$ be a sub structure of $\left(\mathbf{N}_{o}^{r},+\right)$ and assume $(0.0), \ldots,(0.5)$ are satisfied. Then ρ is called a weight function.

Theorem:

If Γ is finitely generated then ρ is a weight function and
$R \simeq \mathbf{F}[\vec{X}] / /$ for some / satisfying the order domain conditions.

Some results

R is an integral domain.
Let ρ be a weight function. The smallest number r such that
$\Gamma \subseteq \mathbf{N}_{0}^{r}$ (up to isomorphism) satisfies $r=\operatorname{trdg}(\operatorname{Quot}(R))$
When weights are numerical we have: $R \subseteq \cup_{m=0}^{\infty} \mathcal{L}(m P)$ where P is a rational place (a point) in some algebraic function field of one variable (coming from a curve)
Given the description $R \simeq \mathbf{F}[\vec{X}] / /$ from the above theorem, all rational places (points) except P are affine!

Given an algebraic function field of one variable and a rational place (point) then any subring $R \subseteq \cup_{m=0}^{\infty} \mathcal{L}(m P)$ is an order domain.

The codes

Codes from order domains with numerical weights correspond to one-point geometric Goppa codes (and one-point geometric Reed-Solomon codes). We do not need Riemann-Roch. Improvements easily handled. Treatment of more point codes requires generalization of order function.

We have an easy generalization of one-point codes to structures of higher transcendence degree.

Warning

Given algebraic function field and place (point) it is not in general easy to find

$$
R=\cup_{m=0}^{\infty} \mathcal{L}(m P)
$$

Neither is it easy to find the ideal $/$ such that $R=\mathbf{F}_{q}[\vec{X}] / I$.
But, such an / exists and allows for theoretical treatment.

A non order-domain example

$$
\begin{aligned}
& I=\left\langle X^{3} Y+Y^{3}+X\right\rangle \subseteq \mathbf{F}_{8}[X, Y] \\
& I_{8}=\left\langle X^{3} Y+Y^{3}+X, X^{8}+X, Y^{8}+Y\right\rangle \\
& w(X)=2 \text { and } w(Y)=3 \\
& \\
& \Delta_{\prec w}\left(I_{q}\right)=\left\{1, X, Y, X^{2}, X Y, Y^{2}, X^{3}, X^{2} Y, X Y^{2}, X^{4}, Y^{3}, X^{2} Y^{2},\right. \\
& \left.\quad X^{5}, X Y^{3}, Y^{4}, X^{6}, X^{2} Y^{3}, X Y^{4}, X^{7}, Y^{5}, X^{2} Y^{4}, Y^{6}\right\}
\end{aligned}
$$

with corresponding weights

$$
\{0,2,3,4,5,6,6,7,8,8,9,10,10,11,12,12,13,14,14,15,16,18\}
$$

Can still determine OWB pairs. However, more involved.

Decoding

General affine variety code:

- Fitzgerald and Lax
- Farr and Gao

Order domain codes:

- Høholdt, van Lint and Pellikaan via improved BMS-algorithm
- Improvements to above algorithm
- Attempt to Sudan-likde decode (Matsumoto and G)

When order domains are of transcendence degree 1 , well-known and strong decoding algorithms from theory of AG codes exists.

Minimum distance decoding of Reed-Solomon codes

Consider a Reed-Solomon code
$\mathrm{RS}_{q}(k)=\left\{\left(F\left(P_{1}\right), \ldots, F\left(P_{q}\right)\right) \mid \operatorname{deg}(F)<k\right\}$.
Define $t=\lfloor(d-1) / 2\rfloor=\lfloor(q-k) / 2\rfloor$.
If we receive $\vec{r}=\left(r_{1}, \ldots, r_{q}\right)$ then we determine a non zero polynomial

$$
Q(X, Y)=Q_{0}(X)+Y Q_{1}(X)
$$

that satisfies the following

- $Q\left(P_{1}, r_{1}\right)=0, Q\left(P_{2}, r_{2}\right)=0, \ldots, Q\left(P_{q}, r_{q}\right)=0$
- $\operatorname{deg}\left(Q_{0}\right) \leq q-1-t=I_{0}$
- $\operatorname{deg}\left(Q_{1}\right) \leq t=l_{1}$

How can we be sure that such a polynomial $Q(X, Y)$ exists?
Let $Q_{0}(X)=Q_{0,0}+Q_{0,1} X+Q_{0,2} X^{2}+\cdots+Q_{0, l_{0}} X^{10}$ and
$Q_{1}(X)=Q_{1,0}+Q_{1,1} X+\cdots+Q_{1,1_{1}} X^{1}$. We get

$$
Q\left(P_{1}, r_{1}\right)=0
$$

I

$$
\begin{aligned}
Q_{0,0} & +Q_{0,1} P_{1}+Q_{0,2} P_{1}^{2}+\cdots+Q_{0, l_{0}} P_{1}^{l_{0}} \\
& +Q_{1,0} r_{1}+Q_{1,1} r_{1} P_{1}+\cdots+Q_{1, / 1} r_{1} P_{1}^{4_{1}}=0
\end{aligned}
$$

This is a homogeneous equation with $\left(I_{0}+1\right)+\left(I_{1}+1\right)=q+1$ unknown (the $Q_{i, j}$'s).

There are q such equations. A homogeneous system of linear equations with more unknowns than equations possesses a non zero solution.

In matrix form we have:

$$
\left[\begin{array}{ccccccccc}
1 & P_{1} & P_{1}^{2} & \cdots & P_{0}^{\prime} & r_{1} & r_{1} P_{1} & \cdots & r_{1} P_{1}^{\mu_{1}} \\
1 & P_{2} & P_{2}^{2} & \cdots & P_{2}^{l_{2}} & r_{2} & r_{2} P_{2} & \cdots & r_{2} P_{2}^{1_{1}} \\
\vdots & \vdots & \vdots & \cdots & \vdots & \vdots & \vdots & \cdots & \vdots \\
1 & P_{q} & P_{q}^{2} & \cdots & P_{q}^{l} & r_{q} & r_{q} P_{q} & \cdots & r_{q} P_{q}^{h_{1}}
\end{array}\right]\left[\begin{array}{c}
Q_{0,0} \\
Q_{0,1} \\
Q_{0,2} \\
\vdots \\
Q_{0, l_{0}} \\
Q_{1,0} \\
Q_{1,1} \\
\vdots \\
Q_{1, l_{1}}
\end{array}\right]=\left[\begin{array}{c}
0 \\
0 \\
0 \\
\vdots \\
0 \\
0 \\
0 \\
\vdots \\
0
\end{array}\right]
$$

Assume $\vec{c}=\left(F\left(P_{1}\right), F\left(P_{2}\right), \ldots, F\left(P_{q}\right)\right)$ was send (it is unknown to us) and assume that at most t errors occurred under transmission.

We have $Q\left(P_{1}, r_{1}\right)=Q\left(P_{2}, r_{2}\right)=\cdots=Q\left(P_{q}, r_{q}\right)=0$ and as at most t errors occurred at least $q-t$ zeros among

$$
Q\left(P_{1}, F\left(P_{1}\right)\right), Q\left(P_{2}, F\left(P_{2}\right)\right), \ldots, Q\left(P_{q}, F\left(P_{q}\right)\right)
$$

Interpret $Q(X, F(X))=Q_{0}+F(X) Q_{1}(X)$ as a polynomial in X. It is of degree at most $\max \{q-1-t,(k-1)+t\}=q-1-t$. A polynomial of degree at most $q-1-t$, that has at least $q-t$ zeros is the zero-polynomial 0 . We get

$$
Q(X, F(X))=0
$$

\uparrow

$$
Q_{0}(X)+F(X) Q_{1}(X)=0
$$

\Uparrow

$$
F(X)=-\frac{Q_{0}(X)}{Q_{1}(X)}
$$

List decoding

There does not always exists a code word within the distance $t=\lfloor(d-1) / 2\rfloor$ from the received word \vec{r}. In such a case we would like to investigate greater radii than t. Using such a method we must accept to sometimes find more candidates for the send word.

The minimum distance decoding method is generalized to list decoding as follows:

Look for $Q(X, Y)=Q_{0}(X)+Q_{1}(X) Y+\cdots+Q_{m}(X) Y^{m}$ such that

- $Q\left(P_{i}, r_{i}\right)=0$ for $i=1, \ldots, q$
- Certain degree conditions on the Q_{i} 's must be satisfied

Determine all factors $Y-F(X)$ i $Q(X, Y)$. There can at most be m such factors (in by far most cases only one factor).

The method can be further improved, if zeros are counted with multiplicity. Multiplicity of polynomials in more variables is not a trivial thing. Many different definitions exist.

Above method can be generalized to work also for order domain codes: Arguments involves the σ function. We cannot yet deal with multiplicities. (Except in the case of one-point geometric Goppa codes and generalized Reed-Muller codes).

