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1 Notation and background material

I = 〈F1( ~X), . . . , Fs( ~X)〉 ⊆ Fq[ ~X]

Iq = I + 〈Xq
1 −X1, . . . , X

q
m −Xm〉

= 〈F1( ~X) . . . , Fs( ~X), Xq
1 −X1, . . . , X

q
m −Xm〉

R = Fq[ ~X]/I

Rq = Fq[ ~X]/Iq

If we write VFq(Iq) = {P1, . . . , Pn}, then we know from Max’s introduction that
the map ev : Rq 7→ Fn

q given by ev(F + I) = (F (P1), . . . , F (Pn)) is a vector
space isomorphism. It extends naturally to a surjective vector space homomor-
phism ev : R 7→ Fn

q .

In this course we shall consider codes of the form ev(L) and (ev(L))⊥ where
L ⊆ Rq or L ⊆ R. When working with these codes the following results will be
useful.

From Max’s introduction we know that {M + I | M ∈ ∆≺(I)} is a basis for
R. This in particular holds for I = Iq, in which case of course R = Rq. Here,
∆≺(I) is the set of monomials that can not be found as leading monomials of
any polynomial in I.
Also from Max’s introduction we know that for general ideal J ⊆ Fq[ ~X] the size
of a variety is bounded above by the size of the corresponding footprint. That
is, we have the footprint bound:

#VFq(J) ≤ #∆≺(J). (1)

In case J contains Xq
1 −X1, . . . , X

q
m −Xm then equality holds in (1).
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2 Reed-Solomon codes, Generalized Reed-Muller codes
and Hyperbolic codes

2.1 (Generalized) Reed-Solomon codes

Write Fq = {P1, . . . , Pn=q} and define

RSk = {(F (P1), . . . , F (Pn)) | F ∈ Fq[X],deg(F ) < k}

If k ≤ n then dim(RSk) = k and d(RSk) = n− k + 1.
Generator matrix is

G =


1 1 · · · 1
P1 P2 · · · Pn
...

...
. . .

...
P k−1

1 P k−1
2 · · · P k−1

n


Proof: Assume

(F1(P1), . . . , F1(Pn)) = (F2(P1), . . . , F2(Pn))

where deg(F1),deg(F2) < k ≤ n. F1 − F2 now is a polynomial of degree less
than n having n zeros. Hence, it is the zero polynomial. This explains the
dimension.
A non-zero polynomial of degree less than k can have at most k−1 zeros. Hence,
minimum distance is at least n− (k− 1) = n− k + 1. This gives a lower bound
on the minimum distance. The polynomial

k−1∏
i=1

(X − Pi)

has k − 1 zeros and we see that the bound is sharp.

2.2 Generalized Reed-Muller codes

We consider polynomials in Fq[X1, . . . , Xm] which we evaluate in the points
Fm

q = {P1, . . . , Pn=qm} (every point is an m-tuple).

RMq(s,m) = {(F (P1), . . . , F (Pn)) | deg(F ) ≤ s}
= {(F (P1), . . . , F (Pn)) | deg(F ) ≤ s

and 0 ≤ degX1
(F ), . . . ,degXm

(F ) < q}

Length is n = qm. Dimension is

k = #{(i1, . . . , im) | i1 + · · ·+ im ≤ s, 0 ≤ i1, . . . , im < q}.

For 0 ≤ s ≤ m(q − 1) write s = a(q − 1) + b with 0 ≤ b < q − 1. Minimum
distance is (q − b)qm−a−1.

2



Proof of minimum distance: Let ~c ∈ RMq(s,m)\{~0} then ~c = (F (P1), . . . , F (Pn))
for some non-zero polynomial with leading monomial say Xi1

1 · · ·Xim
m . We have

i1 + · · ·+ im ≤ s and i1, . . . , im < q. The number of non-zeros in ~c is

n−#∆≺(〈Xq
1 −X1, . . . , X

q
m −Xm, F ( ~X)〉)

≥ qm −#∆≺(〈Xq
1 , . . . , Xq

m, X i1
1 · · ·Xim

m 〉)
= (q − i1) · · · (q − im). (2)

Minimum value of (2) is attained “on the border”. That is, when as many is
as possible equal q − 1 and only one other is different from zero. This proves
that the minimum distance is at least as what is claimed. That it is not larger
follows from the fact that( a∏

i=1

( q−1∏
s=1

(Xi − αs)
))( b∏

t=1

(Xm − αt)
)

has exactly (q − i1) · · · (q − im) non-zeros. Here, {α1, . . . , αq} = Fq.

Example 1 In this example we consider RM3(2, 2). The points are F2
3 =

{(0, 0), (0, 1), (0, 2), (1, 0), (1, 1), (1, 2), (2, 0), (2, 1), (2, 2)} and therefore the code
RM3(2, 2) is of length n = 9. Counting the number of monomials of total degree
at most 2 we find that the dimension is k = 6. From previous theory we find
that minimum distance is d = 3. Generator matrix is

G =



1 1 1 1 1 1 1 1 1
0 1 2 0 1 2 0 1 2
0 0 0 1 1 1 2 2 2
0 1 1 0 1 1 0 1 1
0 0 0 0 1 2 0 1 2
0 0 0 1 1 1 1 1 1


Example 2 In this example we consider Generalized Reed-Muller codes RM8(s, 2).
In the proof for the minimum distance we used the fact that ev(F (X, Y )) has
Hamming weight at least n − #∆≺(〈X8, Y 8, lm(F )〉 = (8 − i)(8 − j), when
lm(F ) = XiY j. These numbers are listed in the table below.

Y 7 8 7 6 5 4 3 2 1
Y 6 16 14 12 10 8 6 4 2
Y 5 24 21 18 15 12 9 6 3
Y 4 32 28 24 20 16 12 8 4
Y 3 40 35 30 25 20 15 10 5
Y 2 48 42 36 30 24 18 12 6
Y 56 49 42 35 28 21 14 7
1 64 56 48 40 32 24 16 8

1 X X2 X3 X4 X5 X6 X7

We get codes with the following values of the parameters [k, d]: [1, 64], [3, 56], [6, 48],
[10, 40], [15, 32], [21, 24], [28, 16], [36, 8], [43, 7], [49, 6], [54, 5], [58, 4], [61, 3], [63, 2], [64, 1]
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2.3 Hyperbolic codes

The hyperbolic codes are improved Generalized Reed-Muller codes. Therefore
again we consider polynomials in Fq[X1, . . . , Xm] which we evaluate in the points
Fm

q = {P1, . . . , Pn=qm} (every point is an m-tuple).

Hypq(s,m) = SpanFq
{ev(Xi1

1 · · ·Xim
m ) |

m∏
s=1

(q − is) ≥ qm − s

and 0 ≤ i1, . . . , im < q}

Minimum distance is d

(
Hyps(s,m)

)
= qm − s. There exists closed formula

bounds for the dimensions in terms of n and d. Calculating the exact dimen-
sions is a job for a computer.

Proof of minimum distance: Let ~c ∈ Hypq(s,m)\{~0} then ~c = (F (P1) . . . , F (Pn))
for some non-zero polynomial F with leading monomial say Xi1

1 · · ·Xim
m . We

have
∏m

s=1(q − is) ≥ qm − s and i1, . . . , im < q. From previous proof (subsec-
tion on Generalized Reed-Muller codes) we have that Hamming weight is at least
qm−s. We can find particular codeword having this weight and we are through.

Example 3 This is a continuation of Example 2. Looking up the table there
we find that RM8(7, 2) is an [n = 64, k = 36, d = 8] code whereas there are
hyperbolic codes with parameters [64, 48, 8], [64, 35, 15] and [64, 37, 14].

Example 4 In this example we compare the codes RM16(s, 3) with the codes
Hyp16(s, 3). These codes are all of length n = 4096. The performance of the
first one are marked with +’s. The hyperbolic codes are the ones marked with a
◦

GF(16)

0

0.2

0.4

0.6

0.8

1

d/n

0.2 0.4 0.6 0.8 1k/n

3 The second weight of Generalized Reed-Muller codes

To get a complete picture of how good a code performs under maximum likeli-
hood decoding one needs a complete picture of the distances in the code. For
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linear codes this corresponds to a complete picture of the Hamming weights.

d

This motivates why we are interested in finding the second smallest Hamming
weight that occurs in the Generalized Reed-Muller code. We consider here only
the case s < q and we state the result in the language of number of zeros of a
polynomial rather than in the language of Hamming weight.

Proposition 1 Let F (X1, . . . , Xm) ∈ Fq[X1, . . . , Xm] be of total degree s where
2 ≤ s < q and 2 ≤ m. Then either F ( ~X) has sqm−1 zeros or it has at most
sqm−1 − (s− 1)qm−2 zeros.

Before proving Proposition 1 we give a definition and state a few results that
will be useful to us.

Definition 1 Consider an ideal 〈G1( ~X), . . . , Gv( ~X)〉. Then

R(Gi, Gj) := S(Gi, Gj) rem (Gi, . . . , Gv)

Here, S(Gi, Gj) is the S-polynomial introduced by Max and rem (Gi, . . . , Gv)
means remainder modulo the ordered set (Gi, . . . , Gv).

Remark 1 R(Gi, Gj) ∈ 〈G1, . . . , Gv〉 and if R(Gi, Gj) 6= 0 then lm(R(Gi, Gj)) �
lm(S(Gi, Gj)).

Lemma 1 Let 2 ≤ m and 2 ≤ s < q. Consider tuples (i1, . . . , im) ∈ Nm
0 such

that i1, . . . , im < s and i1 + · · ·+ im = s. The minimal value of
∏m

l=1(q − il) is
qm − sqm−1 + (s− 1)qm−2.

Lemma 2 Let 2 ≤ m and 2 ≤ s < q. Consider tuples (i1, . . . , im) ∈ Nm
0 such

that i1 < s, i2, . . . , im < q and i1 + · · ·+ im = q. The minimal value of

(s− i1)
m∏

l=2

(q − il)

is (s− 1)qm−2.

Proof of Proposition 1
Let ≺ be the total degree lexicographic ordering and let lm(F ) = Xi1

1 · · ·Xim
m .
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We have i1 + · · ·+ im = s.
Assume first that 0 ≤ i1 < s, . . . , 0 ≤ im < s holds. We get

#∆≺(〈F ( ~X), Xq
1 −X1, . . . , X

q
m −Xm〉)

≤ #∆≺(〈Xi1
1 · · ·Xim

m , Xq
1 , . . . , Xq

m〉)

= qm −
m∏

l=1

(q − il)

Lemma 1 now applies.
Assume finally w.l.o.g. i1 = s, i2 = · · · = im = 0 and lc(F ) = 1. Recall, from
Max’s introduction that Buchberger’s algorithm extends a basis for an ideal to
a Gröbner basis in the following way. It calculates all possible S-polynomials
between basis elements and then it reduces them modulo the basis. Every time
a non-zero remainder is found it is added to the basis. When eventually at
some point all S-polynomials can be reduced to zero then the basis is a Gröbner
basis. A usefull lemma tells us that whenever gcd(lm(G1), lm(G2)) = 1 we have
S(G1, G2) rem (G1, G2) = 0. Hence, to check if {F,Xq

1 −X1, . . . , X
q
m −Xm}

is a Gröbner basis we consider in the first iteration of Buchberger’s algorithm
only the polynomial

H( ~X) := S(Xq
1 −X1, F ( ~X))

= Xq
1 −X1 −Xq−s

1 F ( ~X)

Observe that the total degree of H is at most q. Following Buchberger’s al-
gorithm we then reduce H( ~X modulo (F,Xq

1 − X1, . . . , X
q
m − Xm) to get the

remainder R( ~X). If R( ~X) equals 0 then {F,Xq
1 − X1, . . . , X

q
m − Xm} is a

Gröbner basis. According to the footprint bound F then has precisely sqm−1

zeros. If the remainder is non-zero then we consider its leading monomial, say
Xv1

1 · · ·Xvm
m (we do not proceed with Buchberger’s algorithm in this case). We

have 0 ≤ v1 < s, 0 ≤ v2 < q, . . . , 0 ≤ vm < q and v1 + · · · + vm ≤ q holds by
Remark 1 and the choice of ordering (the total degree ordering). We have

#∆≺(〈F ( ~X), Xq
1 −X1, . . . , X

q
m −Xm〉)

≤ #∆≺(〈Xs
1 , Xq

2 , . . . , Xq
m, Xv1

1 · · ·Xvm
m 〉)

= sqm−1 − (s− v1)
m∏

i=2

(q − vi)

Lemma 2 now applies. One can easily find a polynomial with the prescribed
number of zeros.

4 Codes from Norm-Trace Curves

We will consider codes from the norm-trace polynomial

X
qr−1
q−1 − Y qr−1 − Y qr−2 − · · · − Y q − Y.
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We write I = 〈X
qr−1
q−1 − Y qr−1 − Y qr−2 − · · · − Y q − Y 〉. The norm map N :

Fqr → Fq is given by N(α) = α(qr−1)/(q−1) and the trace map is given by
Tr : Fqr → Fq Tr(β) = βqr−1

+ βqr−2
+ · · · + βq + β. Hence, the name of

the norm-trace polynomial is justified. It is well-known that for every γ ∈ Fq

there are exactly qr−1 β ∈ Fqr with Tr(β) = γ. Hence, the size of the variety
V(Iqr) is qrqr−1 = q2r−1. Combining this observation with the footprint bound
we see that #∆≺(Iqr) = q2r−1. Hence, if we choose a monomial ordering with

X
qr−1
q−1 ≺ Y qr−1 then {X

qr−1
q−1 −Y qr−1 −Y qr−2 − · · ·−Y q −Y, Xqr −X, Y qr −Y }

becomes a Gröbner basis. For such a monomial ordering we get

∆≺(Iqr) = {XiY j | 0 ≤ i < qr, 0 ≤ j < qr−1}

and therefore
{XiY j + Iqr | 0 ≤ i < qr, 0 ≤ j < qr−1}

constitutes a basis for Rqr = Fqr [X, Y ]/Iqr .

We now choose a particular monomial ordering. Namely, the weighted degree
lexicographic ordering given as follows. First we write W (XiY j) = i · qr−1 + j ·
qr−1
q−1 . We now have Xi1Y j1 ≺w Xi2Y j2 iff one of the following conditions holds:

• w(Xi1Y j1) < w(Xi2Y j2)

• w(Xi1Y j1) = w(Xi2Y j2) but j1 < j2.

Example 5 Consider the Norm-Trace polynomial X3 +Y 2 +Y ∈ F4[X, Y ] We
have I4 = 〈X3 + Y 2 + Y, X4 + X, Y 4 + Y 〉 and V(I4) = {P1, . . . , P8}. The
developed theory tells us that R4 = F4[X, Y ]/I4 has basis

{1 + I4, X + I4, Y + I4, X
2 + I4, XY + I4, X

3 + I4, X
2Y + I4, X

2Y + I4}

(the corresponding weights are: {0, 2, 3, 4, 5, 6, 7, 9})
Consider the code

E(3) = SpanF4
{ev(1 + I4), ev(X + I4), ev(Y + I4)}

Here, the map ev corresponds to evaluation in the 8 points. We will show that
E(3) has minimum distance at least 5.
To this end, let ~c ∈ E(3)\{~0}. Then ~c = ev(F ) for some F = a0 + a1X + a2Y
where not all ai’s are equal to zero. Recall, that wH(~c) = n−#∆≺w(I4 + 〈F 〉).
Case 1: If lm(F ) = 1 then ∆≺w(I4 + 〈F 〉) ⊆ ∆≺w(〈X4, Y 2, 1〉) = ∅. Hence,
wH(~c) ≥ 8.
Case 2: If lm(F ) = X then ∆≺w(I4 + 〈F 〉) ⊆ ∆≺w(〈X, Y 2〉) = {1, Y }. Hence,
wH(~c) ≥ 6.
Case 3: If lm(F ) = Y we need a more involved analysis. Observe, that

∆≺w(I4 + 〈F 〉) ⊆ ∆≺w(I4)\lm(〈F,X3 + Y 2 + Y 〉)

7



We therefore have

wH(~c) ≥ n− (#∆≺w(I4)−#∆≺w(I4) ∩ lm(〈F,X3 + Y 2 + Y 〉))
= #∆≺w(I4) ∩ lm(〈F,X3 + Y 2 + Y 〉)

The set ∆≺w(I4)∩ lm(〈F,X3 +Y 2 +Y 〉) clearly contains Y, XY,X2Y and X3Y .
We now show that it actually also contains X3. To see this simply observe that
(a0 + a1X +Y 2) ·Y rem X3 +Y 2 +Y = (a0 +1)Y + a1XY +X3. So no mat-
ter what is a0 and a1 we have X3 in the considered set. We conclude wH(~c) ≥ 5.

Remark 2 We make the following very important observation which holds for
general norm-trace polynomials. Firstly. the norm-trace polynomial has exactly
two monomials of highest weight in its support. Secondly, the monomials in
∆≺w(Iqr) are all of different weights. The first observation implies that if we
consider a polynomial F (X, Y ) with Supp(F ) ⊆ ∆≺w(Iqr) then it will have a
unique monomial of highest weight (which will of course be the leading mono-
mial). Combining this fact with the second observation we see, that whenever we
reduce F modulo the norm-trace polynomial the weight of the leading monomial
will not change (but the leading monomial itself may).

Example 6 This is a continuation of Example 5. The above remark implies that
we can detect the size of ∆≺w(I4)∩ lm(〈F,X3 + Y 2 +Y 〉) simply by considering
weights.
Case 1: Let lm(F ) = 1. We have w(lm(F )) = w(1) = 0. Hence,

#∆≺w(I4) ∩ lm(〈F,X3 + Y 2 + Y 〉) ≥
#{0 + 0, 0 + 2, 0 + 3, 0 + 4, 0 + 5, 0 + 6, 0 + 7, 0 + 9} = 8

Case 2: Let lm(F ) = X. We have w(lm(F )) = w(X) = 2. Hence,

#∆≺w(I4) ∩ lm(〈F,X3 + Y 2 + Y 〉) ≥
#{2 + 0, 2 + 2, 2 + 3, 2 + 4, 2 + 5, 2 + 7} = 6

Case 3: Let lm(F ) = Y . We have w(lm(F )) = w(Y ) = 3. Hence,

#∆≺w(I4) ∩ lm(〈F,X3 + Y 2 + Y 〉) ≥
#{3 + 0, 3 + 2, 3 + 3, 3 + 4, 3 + 6} = 5

Example 7 In this Example we use the technique from the previous example to
deal with codes defined from X4 − Y 3 − Y ∈ F9[X, Y ]. We have

∆≺w(I9) = {XiY j | 0 ≤ i < 9, 0 ≤ j < 3}

In the table below we list the corresponding weights w and something that we

call σ(w). We have σ(λ) := #
(

∆≺w(I9) ∩ (λ + w(∆≺w(I9)))
)

. Here, λ +

w(∆≺w(I9)) = {λ + γ | γ ∈ w(∆≺w(I9))}. Define corresponding codes by
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w 0 3 4 6 7 8 9 10 11
σ(w) 27 24 23 21 20 19 18 17 16

w 12 13 14 15 16 17 18 19 20
σ(w) 15 14 13 12 11 10 9 8 7

w 21 22 23 24 25 26 28 29 32
σ(w) 6 6 4 3 4 3 2 2 1

E(s) = SpanF9
{ev(XiY j + I9) | XiY j ∈ ∆(I9), w(XiY j) ≤ s}

We have d(E(12)) is [n = 27, k = 10, d ≥ 15] and d(E(24)) is [n = 27, k =
22, d ≥ 3].
We could construct an improved code by leaving out w = 24 and including instead
w = 25. This would produce a code with parameters [n = 27, k = 22, d ≥ 4].

5 The affine variety code C(I, L)

Let I be any ideal in Fq[ ~X], and let Iq be defined as usual. Let V(Iq) =
{P1, . . . , Pn}. Given a subspace L ⊆ Rq we denote C(I, L) = ev(L). Such a
code is called an affine variety code. Observe, that all codes considered so far
are examples of affine variety codes (the Generalized Reed-Muller codes and the
Hyperbolic codes fits into the definition if we choose I = 〈0〉).

Definition 2 Let {B1 + Iq, . . . , Bdim(L) + Iq} be a basis for L ⊆ Rq such that
Supp(Bi) ⊆ ∆≺(Iq), for i = 1, . . . ,dim(L). If lm(B1) ≺ lm(B2) ≺ · · · ≺
lm(Bdim(L)) holds then the basis is called well-behaving.

Remark 3 Reducing the representatives of the residue classes modulo a Gröb-
ner basis we get that the first requirement is satisfied. Using then Gaussian
elimination we can make sure that the second requirement is satisfied. Hence, a
well-behaving basis always exists.

Remark 4 The typical example of a well-behaving basis is when the represen-
tatives of the residue classes are monomials from ∆≺(Iq).

Definition 3 Let L ⊆ Rq and consider any well-behaving basis. Then define
�≺(L) = {lm(B1), . . . , lm(Bdim(L))}.

Remark 5 If the representatives are monomials from the footprint then �≺(L)
equals the representatives.

Definition 4 Let G be a Gröbner basis for Iq with respect to ≺. An ordered pair
of monomials (M1,M2), M1,M2 ∈ ∆≺(Iq) is said to be one-way-well-behaving
(OWB) if for all H with Supp(H) ⊆ ∆≺(Iq) and lm(H) = M1 we have

lm(M1M2 rem G) = lm(HM2 rem G).
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From Gröbner basis theory we know that the remainder is unique no matter
which Gröbner basis is used. Hence, the above definition is independent of
the choice of G. The motivation of the above definition is as follows. Assume
Supp(F ) ⊆ ∆≺(Iq), F 6= 0 and consider ~c = ev(F ). If lm(F ) = M1 and
(M1,M2) is OWB then we know that

lm(M1M2 rem G) ∈ ∆≺(Iq)\lm(Iq + 〈F 〉).

Theorem 1 Let ≺ be fixed. The minimum distance of C(I, L) is at least

min
{
#{K ∈ ∆≺(Iq) | ∃N ∈ ∆≺(Iq) such that

(P,N) is OWB and lm(PN rem G) = K}
∣∣P ∈ �≺(L)

}
.

Proof: Let ~c ∈ C(I, L)\{~0}. Then there exists an F such that Supp(F ) ⊆
∆≺(Iq), lm(F ) = P ∈ �≺(L) and ev(F + Iq) = ~c. From the footprint bound we
know

wH(~c) = n−#∆≺(Iq + 〈F 〉)

We now study ∆≺(Iq + 〈F 〉). If N,K ∈ ∆≺(Iq) satisfy that (P,N) is OWB and
lm(PN rem G) = K then

K ∈ ∆≺(Iq)\∆≺(Iq + 〈F 〉).

Hence,

#∆≺(Iq + 〈F 〉) ≤ #∆≺(Iq)−#
{
K ∈ ∆≺(Iq) | ∃N ∈ ∆≺(Iq)

such that (P,N) is OWB and lm(PN rem G) = K
}
. (3)

But n = #∆≺(Iq) and therefore the Hamming weight of ~c is at least

#
{
K ∈ ∆≺(Iq) | ∃N ∈ ∆≺(Iq)

such that (P,N) is OWB and lm(PN rem G = K
}
.

6 The affine variety code C(I, L)⊥

Consider the code

C(I, L)⊥ = {~c ∈ Fn
q | ~c · ev(F + Iq) = 0 for all F + Iq ∈ L}

The following theorem is a reformulation of the Feng-Rao bound into the setting
of affine variety codes.

Theorem 2 Let ≺ be fixed. The minimum distance of C(I, L)⊥ is at least

min
{
#{P ∈ ∆≺(Iq) | ∃N ∈ ∆≺(Iq) such that (P,N) is OWB

and lm(PN rem G) = K}
∣∣K ∈ ∆≺(Iq)\�≺(L)

}
.

10



Proof: Let {B1+Iq, . . . , Bdim(L)+Iq} be a well-behaving basis for L. Consider
~c ∈ C(I, L)⊥\{~0}. That is, ~c satisfies ~c · ev(Bi + Iq) = 0 for i = 1, . . . ,dim(L)
but

~c · ev(K + Iq) 6= 0 (4)

holds for some K ∈ ∆≺(Iq). Let K ∈ ∆≺(Iq) be smallest possible with respect
to ≺ such that (4) holds. By linearity of the inner product and the minimality
of K we have K /∈ �≺(L). Consider OWB pairs (P1, N1), . . . , (Pδ, Nδ), where
P1, N1, . . . , Pδ, Nδ ∈ ∆≺(Iq), P1 ≺ · · · ≺ Pδ and lm(PiNi rem G) = K for
i = 1, . . . , δ. The OWB property implies that

lm
(
(

∑
t = 1, . . . , i

ai 6= 0

)Ni rem G
)

= K

The minimality of K therefore ensures that

~c · ev
(( ∑

t = 1, . . . , i
ai 6= 0

atPt

)
Ni rem G + Iq

)
6= 0 (5)

holds for any i ∈ {1, . . . , δ}. Let ∗ be the componentwise product on Fn
q given

by
(a1, . . . , an) ∗ (b1, . . . , bn) = (a1b1, . . . , anbn).

As( ∑
t = 1, . . . , i

ai 6= 0

atPt

)
Ni rem G + Iq =

( ∑
t = 1, . . . , i

ai 6= 0

atPt

)
Ni + Iq

we conclude from (5) that

~c ∗ ev
(( ∑

t = 1, . . . , i
ai 6= 0

atPt

)
+ Iq

)
6= ~0

for any i ∈ {1, . . . , δ}. Hence, ~c ∗ ~e 6= ~0 for all

~e ∈
{
ev

(( δ∑
t=1

atPt

)
+ Iq

)∣∣a1, . . . , aδ ∈ Fq, not all ai equal 0
}
. (6)

The space consisting of (6) and (0, . . . , 0) is of dimension δ and therefore the
Hamming weight of ~c needs to be at least δ.
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7 The order domain conditions

Recall from the examples in Section 4 that it helped us a lot that the defining
polynomial(s) of I contained exactly two monomials of the highest weight and
that the footprint ∆≺w(Iq) contained no two different monomials of the same
weight. When this kind of behavior is present we will say that the order domain
conditions are satisfied. To define the order domain conditions formally we start
by defining the generalized weighted degree orderings.

Definition 5 Let w(X1), . . . , w(Xm) ∈ Nr
0 and assume ≺Nr

0
is a monomial

ordering on Nr
0. Define

w(Xi1
1 · · ·Xim

m ) = i1w(X1) + · · ·+ imw(Xm).

Let ≺M be a monomial ordering on M( ~X). The generalized weighted degree
ordering defined from w(X1), . . . , w(Xm), ≺Nr

0
and ≺M is the ordering ≺w

given by Xi1
1 · · ·Xim

m ≺w Xj1
1 · · ·Xjm

m if

w(Xi1
1 · · ·Xim

m ) ≺Nr
0

w(Xj1
1 · · ·Xjm

m )

holds or if
w(Xi1

1 · · ·Xim
m ) = w(Xj1

1 · · ·Xjm
m )

holds but
Xi1

1 · · ·Xim
m ≺M Xj1

1 · · ·Xjm
m .

Definition 6 Let I ⊆ k[X1, . . . , Xm]. Let ≺w be a generalized weighted degree
ordering. Assume I possesses a Gröbner basis B such that

• any G ∈ B has exactly two monomials of highest weight in its support

• no two monomials in ∆≺w(I) are of the same weight

Then (I,≺w) satisfies the order domain conditions.

Lemma 3 Assume the order domain conditions are satisfied. Let F be a polyno-
mial with exactly one monomial of highest weight. Then w(lm(F )) = w(lm(F rem B)).
In particular w(lm(F )) = w(lm(F rem B)) holds for all F with Supp(F ) ⊆
∆≺w(I)

Proof: In the process of dividing F modulo B the leading monomial may be
replaced. However, always with a monomial of the same weight.

Clearly, the norm-trace polynomials satisfy the order domain conditions. We
now show that also the structures giving us Reed-Solomon codes, Generalized
Reed-Muller codes and Hyperbolic codes can be put into a form such that they
satisfy the order domain conditions.
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Example 8 Consider the ideals I = {0} = 〈0〉 ⊆ Fq[X1, . . . , Xm], Iq = 〈Xq
1 −

X1, . . . , X
q
m−Xm〉. We define weights by w(X1i1 · · ·Xim

m ) = (i1, . . . , im) and we
order Nm

0 by some monomial ordering ≺Nm
0
. As no two different monomials are

of the same weight we can choose ≺M to be any monomial ordering on M( ~X)
(it will never be used). There are no defining equation of I and therefore the
order domain conditions are trivially satisfied.

Example 9 Let a, b ∈ Fq and consider

H1(X, Y, Z, U) = Xq + Y Zq − Y qZ −X

H2(X, Y, Z, U) = U q − Zq+1 + aXq − aY qZ + bY q+1 + U

I = 〈H1,H2〉 ⊆ Fq2 [X, Y, Z, U ].

Choose weights w(X) = (q, 1), w(Y ) = (0, q), w(Z) = (q, 0), w(U) = (q+1, 0) ∈
N2

0 and let ≺N2
0
be any fixed monomial ordering on N2

0 with (q2, q), (q, q2), (0, q2+
q) ≺N2

0
(q2+q, 0) and (q, q2) ≺N2

0
(q2, q). Finally, let ≺M be any fixed monomial

ordering on M(X, Y, Z, U) that satisfies Y Zq ≺M Xq and Zq+1 ≺M U q. The
leading monomial of H1 resp. H2 is Xq resp. U q and therefore B = {H1,H2} is
a Gröbner basis (as the leading monomials are relatively prime). By inspection
the order domain conditions are seen to be satisfied.

Proposition 2 Assume I ⊆ Fq[X1, . . . , Xm] and ≺w satisfy the order domain
conditions. Consider Iq = I + 〈Xq

1 −X1, . . . , X
q
m −Xm〉. A pair (P,N) where

P,N ∈ ∆≺w(Iq) is OWB if w(P ) + w(N) ∈ w(∆≺w(Iq)). If K ∈ ∆≺w(Iq) and
P,N ∈ ∆≺w(I) satisfy w(P )+w(N) = w(K), then P,N ∈ ∆≺w(Iq), and (P,N)
is OWB.

Proof: Follows by the same arguments as where used in Section 4.

Definition 7 Assume I and ≺w satisfy the order domain conditions. Let Γ =
w(∆≺w(I)) and define for all λ ∈ ∆≺w(Iq)

σ(λ) = #{η ∈ w(∆≺w(Iq)) | η − λ ∈ Γ}

and for all λ ∈ Γ
µ(λ) = #{α ∈ Γ | λ− α ∈ Γ}.

Theorem 3 Assume I and ≺w satisfy the order domain conditions. Let L be
a subspace of Rq = Fq[X1, . . . , Xm]/Iq and assume

{B1 + Iq, . . . , Bdim(L) + Iq}

is a well-behaving basis. The minimum distance of C(I, L) is at least

min{σ(w(lm(B1))), . . . , σ(w(lm(Bdim(L))))}.

The minimum distance of C(I, L)⊥ is at least

min{µ(w(M)) | M ∈ ∆≺w(Iq)\{lm(B1), . . . , lm(Bdim(L))}
≥ min{µ(λ) | λ ∈ Γ\{w(B1), . . . , w(Bdim(L))}}.
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Consider the following choices of L. Let ~s ∈ Nr
0 and δ ∈ N.

L1 = SpanFq
{M + Iq | M ∈ ∆≺w(Iq), w(M) �Nr

0
~s} (7)

L2 = SpanFq
{M + Iq | M ∈ ∆≺w(Iq), σ(w(M)) ≥ δ} (8)

L3 = SpanFq
{M + Iq | M ∈ ∆≺w(Iq), µ(w(M)) < δ}. (9)

The minimum distance of C(I, L2) and C(I, L3)⊥ is at least δ. By construction
C(I, L2) and C(I, L3)⊥ are the largest codes with prescribed minimum distance
δ.

Remark 6 Assume that the pair I and ≺w satisfies the order domain condi-
tions. Let U ⊆ VFq(I). Every finite set of points is a variety and therefore there
exists polynomials H1, . . . ,Hr such that the vanishing ideal of U equals

IU = Iq + 〈H1, . . . ,Hr〉.

The estimates of the minimum distances of C(I, L) and C(I, L)⊥ still hold if
these codes are made by evaluating in U rather than in the entire variety VFq(I).
All we need to do is to replace Iq with IU in all the previous definitions and
results.

8 Order domains

Definition 8 Let k be a field and let R be a k-algebra. Let Γ ⊆ Nr
0 be a

semigroup and assume ≺Nr
0

is a monomial ordering on Nr
0. Given a basis B

for R and a bijective map ρ : B → Γ we will write B = {fλ | λ ∈ Γ}1 and
for all λ ∈ Γ define Rλ = Spank{fγ | γ �Nr

0
λ}. We also define R−∞ = {0}.

The ordered basis B is called a well-behaving basis if for all λ, γ ∈ Γ we have
fλfγ ∈ Rλ+γ but fλfγ /∈ Rδ for any δ ≺Nr

0
λ + γ.

The map ρ extends to a function on R by

• ρ(0) = −∞

• If f ∈ Rλ but f /∈ Rγ for any γ ≺Nr
0

λ then ρ(f) = λ

Such a function is called a weight function.

The following is an equivalent definition.

Definition 9 Let ≺Nr
0

be a monomial ordering on Nr
0 and let Γ, Γ ⊆ Nr

0 be a
semigroup. For all λ ∈ Γ define λ + (−∞) = −∞.
A surjective map ρ : R → Γ ∪ {−∞} is called a weight function if for all
f, g, h ∈ R we have

1with the underlying assumption that ρ(fλ) = λ

14



(W.0) ρ(f) = −∞⇔ f = 0

(W.1) ρ(af) = ρ(f) for all a ∈ k\{0}

(W.2) ρ(f + g) �Nr
0

max{ρ(f), ρ(g)}

(W.3) ρ(fg) = ρ(f) + ρ(g)

(W.4) If f and g are nonzero and ρ(f) = ρ(g) then there exists a
nonzero a ∈ k such that ρ(f − ag) ≺Nr

0
ρ(g)

We note that weight functions are special cases of order functions. To get the
general definition of an order function we replace (Γ ⊆ Nr

0,≺Nr
0
) by any well-

order (Γ, <Γ). Then we replace (W.3) with

(O.3) If ρ(f) <Γ ρ(g) and h 6= 0 then ρ(fh) <Γ ρ(gh).

In the following we consider only weight functions.

Example 10 Let P be a rational place in an algebraic function field of one
variable and let νP be the valuation corresponding to P. Then R = ∪∞m=0L(mP)
is an order domain with a (numerical) weight function given by ρ(x) = −νP(x)
for all x ∈ R. The whole function field is Quot(R).

It is not surprisingly that there is a strong connection between order domains
and ideals satisfying the order domain conditions. This connection is worked
out in the following two theorems.

Theorem 4 (The Factorring Theorem)
Let ≺w be a generalized weighted degree ordering on M(X1, . . . , Xm) and let
I ⊆ k[X1, . . . , Xm] be an ideal. If (I,≺w) satisfies the order domain conditions
then R = k[X1, . . . , Xm]/I is an order domain with a weight function defined as
follows:
Given a nonzero f ∈ R write f = F + I where Supp(F ) ⊆ ∆≺w(I). We have
ρ(f) = max{w(M) | M ∈ Supp(F )} and ρ(0) = −∞.

Proof: We construct a basis for R as follows

B = {M + I | M ∈ ∆≺w(I)}.

We must show that it is well-behaving. The second order domain condition
implies that ρ : B → w(∆≺w(I)) is a bijection. Consider f1, f2 ∈ R. We
may assume f1 = F1 + I, f2 = F2 + I where Supp(F1), Supp(F2) ⊆ ∆≺w(I).
Let lm(F1) = M1 and lm(F2) = M2. The polynomial F1F2 has precisely one
monomial of highest weight, namely M1M2. When reduced modulo the Gröbner
basis the weight is not changed (see Lemma 3). Therefore when f1f2 is written
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f1f2 = F + I with Supp(F ) ∈ ∆≺w(I) we have

w(lm(F )) = w(M1M2)
= w(M1) + w(M2)
= ρ(f1) + ρ(f2)

Hence, the definition of ρ in the theorem satisfies ρ(f1f2) = ρ(f1) + ρ(f2) and
the proof is complete.

Theorem 5 (The Presentation Theorem)
Given ≺Nr

0
and Γ = 〈λ1, . . . , λm〉 ⊆ Nr

0. Let ρ : R → Γ ∪ {−∞} be a weight
function. Then there exists a generalized weighted degree ordering ≺w and an
ideal I ⊆ k[X1, . . . , Xm] such that R ' k[X1, . . . , Xm]/I and such that (I,≺w)
satisfies the order domain conditions.

Fix ANY monomial ordering ≺M on Nm
0 'M(X1, . . . , Xm). Now

(w,≺Nr
0
,≺M) defines a generalized weighted degree ordering ≺w.

Choose x1, . . . , xm ∈ R with ρ(x1) = λ1, . . . , ρ(xm) = λm. Consider the homo-
morphism from k[X1, . . . , Xm] to R given by Xi 7→ xi. Denote by I the kernel.
Clearly, k[X1, . . . , Xm]/I ' R.

Definition 10 Let

B(Γ) := {(n1, . . . , nm) ∈ Nm
0 | if λ1n1 + · · ·+ λmnm = λ1k1 + · · ·+ λmkm

then (n1, . . . , nm) ≺M (k1, . . . , km)}

Let V (Γ) be the set of minimal elements in Nm
0 \B(Γ) with respect to the ordering

< given by (r1, . . . , rm) < (s1, . . . , sm) if ri ≤ si holds for i = 1, . . . ,m and
ri = si does not hold for all i = 1, . . . ,m.

Remark 7 Dickson’s Lemma tells us that V (Γ) is finite.

Proposition 3 {~x ~N | ~N ∈ B(Γ)} forms a k-basis for R.

Proof: As two different elements in the set have different weights, the elements
are linearly independent by the definition of a weight function. let h ∈ R\{0}.
There exists ~N = (n1, . . . , nm) ∈ B(Γ) such that ρ(~x ~N ) = ρ(h). We can choose
c ~N ∈ K such that ρ(h− c ~N ) ≺Nr

0
ρ(h). Continuing this way we see that

h =
∑

~N∈B(Γ)

c ~N~x
~N

where only finitely many c ~N 6= 0. Here we used the fact that a decreasing
sequence of monomials will eventually terminate.

Corollary 1 R = k[x1, . . . , xm]

Lemma 4 ∆≺w(I) = { ~X
~N | ~N ∈ B(Γ)}.
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Proof: As ∆≺w(I) constitutes a basis for k[X1, . . . , Xm]/I and {~x ~N | ~N ∈ B(Γ)}
constitutes a basis for R it is enough to show

∆≺w(I) ⊆ { ~X
~N | ~N ∈ B(Γ)}.

Aiming for a contradiction assume

~X
~P ∈ ∆≺w(I)\{ ~X

~N | N ∈ B(Γ)}.

By Proposition 3 we can write

~x
~P =

∑
~N ∈ B(Γ)

ρ(~x ~N ) ≺Nr
0

ρ(~x~P )

c ~N~x
~N .

The polynomial
~X

~P −
∑

~N ∈ B(Γ)
ρ(~x ~N ) ≺Nr

0
ρ(~x~P )

c ~N
~X

~N

belongs to I and by the definition of B(Γ) we have that the leading monomial
is ~X

~P . This is in contradiction with the assumption and we are through.

Observe that the above lemma implies that the second order domain conditions
in Definition 6 is satisfied.

Proposition 3 ensures that the following definition makes sense.

Definition 11 For each ~N ∈ V (Γ) let

F ~N ( ~X) := ~X
~N −

∑
~M∈B(Γ)

c ~M
~X

~M

where
~x

~N =
∑

~M∈B(Γ)

c ~M~x
~M

Proposition 4
B = {F ~N ( ~X) | ~N ∈ V (Γ)}

is a Gröbner basis for I with respect to ≺w.

Proof: The above set is finite. From Lemma 4 and the definition of V (Γ) we
get that 〈lm(B)〉 = 〈lm(I)〉. By definition B ⊆ I. Hence, it is satisfies all the
conditions for being a Gröbner basis.

By construction F ~N ( ~X) contains exactly two monomials of highest weight in its
support. Hence, also the first order domain condition in Definition 6 is satisfied.
All together we proved that the order domain conditions are satisfied. That is,
Theorem 5 has been proved.
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Theorem 6 Let ρ : R → Γ∪{−∞} be a weight function with finitely generated
value semigroup Γ ⊆ Nr

0. We may assume r is chosen smallest possible. Then
r equals the transcendence degree of Quot(R).

9 Codes from order domains

Having defined order domains we now consider the maps that will help us con-
struct codes.

Definition 12 Let R be an Fq-algebra. A surjective map ϕ : R → Fn
q is called

a morphism of Fq-algebras if ϕ is Fq linear and if

ϕ(fg) = ϕ(f) ∗ ϕ(g)

for all f, g ∈ R (here ∗ is the component-wise product).

Although in principle any finitely generated order domain2 can be described as
a factor ring satisfying the order domain conditions such a description might
not at all be easy to find. This is why we need the above general description of
an evaluation map. In the case of a factor ring the morphism in Definition 12
simply corresponds to evaluation in affine points.

Proposition 5 Let ϕ : R = Fq[X1, . . . , Xm]/I → Fn
q be a morphism of Fq

algebras. There exists a set

U = {P1, . . . , Pn} ⊆ VFq(I)

such that ϕ(F + I) = (F (P1), . . . , F (Pn)) for all F + I ∈ R. The Pi’s are
pairwise different.

Proof: We will use the notation ϕ(f) = (ϕ1(f), . . . , ϕn(f)). The assumption
that ϕ is surjective implies ϕi 6= ϕj for i 6= j. The remaining assumptions imply
that ϕi : Fq[ ~X]/I → Fq is a ring homomorphism with ϕi(c+I) = c for all c ∈ Fq.
Writing x1 = X1+I, . . . , xm = Xm +I and identifying c+I with c for all c ∈ Fq

we get F (X1, . . . , Xm)+ I = F (x1, . . . , xm). Now let P
(1)
i = ϕi(x1), . . . , P

(m)
i =

ϕi(xm) ∈ Fq. The fact that ϕi is a ring homomorphism with ϕi(c + I) = c for
all c ∈ Fq now implies that ϕi(F (x1, . . . , xm)) = F (P (1)

i , . . . , P
(m)
i ) holds. That

is, ϕi(F (X1, . . . , Xm) + I) = F (P (1)
i , . . . , P

(m)
i ). For every F (X1, . . . , Xm) ∈ I

we have ϕi(F (x1, . . . , xm)) = ϕi(0 + I) = 0 and therefore Pi = (P (1)
i , . . . , P

(m)
i )

is a zero of F ( ~X). In other words Pi ∈ VFq(I).

Definition 13 Let R be an order domain over Fq with a weight function ρ :
R → Γ ∪ {−∞} and let {fλ | ρ(fλ) = λ, λ ∈ Γ} be a well-behaving basis. Let
ϕ : R → Fn

q be a morphism. Define α(1) = 0. For i = 2, . . . , n define recursively
α(i) to be the smallest element in Γ that is greater than α(1), . . . , α(i − 1) and
satisfies

ϕ(fα(i)) /∈ SpanFq
{ϕ(fλ) | λ ≺Nr

0
α(i)}.

Write ∆(R, ρ, ϕ) = {α(1), . . . , α(n)}.
2an order domain with a weight function with finitely generated value semigroup
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Proposition 6 If {P1, . . . , Pn} = VFq(Iq) and ϕ(F + I) = (F (P1), . . . , F (Pn))
then

∆(R, ρ, ϕ) = w(∆≺w(Iq)). (10)

If {P1, . . . , Pn} ( VFq(Iq) a similar result holds.

Proof: We only consider the case {P1, . . . , Pn} = VFq(Iq). Both the sets
∆(R, ρ, ϕ) and ∆≺w(Iq) are of size n. Hence, we will be through if we can
show

∆(R, ρ, ϕ) ⊆ w(∆≺w(Iq)).

Clearly, α(1) = 0 is in w(∆≺w(Iq)) as any non-empty footprint contains 1.
Aiming for a contradiction assume α(i) /∈ w(∆≺w(Iq)) for some 2 ≤ i ≤ n.
Write fα(i) = F + I with Supp(F ) ⊆ ∆≺w(I) where w(lm(F )) = α(i). We have

ϕ(F + I) = ϕ(F rem G + I) (11)

where G is a Gröbner basis for Iq. The very definition of a Gröbner basis
ensures that lm(F rem G) ∈ ∆≺w(Iq). Hence, lm(F rem G) ≺w lm(F ). But
both Supp(F rem G) and Supp(F ) are contained in ∆≺w(I) and therefore

ρ(F + I) = w(lm(F )) �w ρ(F rem G + I) = w(lm(F rem G))

But then, by (11) α(i) does not satisfy the definition of the α(i)’s. We have
reached at a contradiction.

Definition 14 For λ ∈ ∆(R, ρ, ϕ) define

σ(λ) = #{γ ∈ ∆(R, ρ, ϕ) | γ − λ ∈ Γ}.

For λ ∈ Γ define
µ(λ) = #{α ∈ Γ | λ− α ∈ Γ}.

Definition 15 Let R be an order domain over Fq and let ϕ be a morphism.
Consider a fixed well-behaving basis {fλ | ρ(fλ) = λ, λ ∈ Γ}. For λ ∈ Γ and
δ ∈ N consider the codes

E(λ) = SpanFq
{ϕ(fη) | η �Nr

0
λ}

Ẽ(δ) = SpanFq
{ϕ(fη) | η ∈ ∆(R, ρ, ϕ) and σ(η) ≥ δ}

C(λ) = {~c ∈ Fn
q | ~c · ϕ(fη) = 0 for all η with η �Nr

0
λ}

C̃(δ) = {~c ∈ Fn
q | ~c · ϕ(fη) = 0 for all η ∈ ∆(R, ρ, ϕ) with µ(η) < δ}.

Theorem 7 The minimum distance of E(λ) is at least

min{σ(η) | η �Nr
0

λ, η ∈ R(R, ρ, δ)}

and the minimum distance of C(λ) is at least

min{µ(η) | λ ≺Nr
0

η and η ∈ ∆(R, ρ, ϕ)} ≥ min{µ(η) | λ ≺Nr
0

η}.

The minimum distances of Ẽ(δ) and C̃(δ) are at least δ.
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Proof: In the case of a finitely generated order domain the results follow by
considering the codes as affine variety codes.

Example 11 This is a continuation of Example 9 where we showed that {H1,H2}
is a Gröbner basis with respect to the generalized weighted degree ordering ≺w

under consideration. Now lets turn to the code construction. Applying Buch-
berger’s algorithm we find that

{H1,H2, X
q2 −X, Y q2 − Y, Zq2 − Z,U q2 − U}

is a Gröbner basis for Iq2 . Hence, we get

∆≺w(Iq) = {XαY βZγU δ | α, δ < q and β, γ < q2}.

The footprint is of size q6 and we therefore get codes of length n = q6. The
footprint ∆≺w(Iq) has the form of a box. From this observation it is not diffi-
cult to show that the dimension of C̃ϕ(s) equals the dimension of Ẽϕ(s) for all
s = 1, 2, . . . , q6. In Figure 1 we plot the estimated performances of the codes
Ẽϕ(δ) and C̃ϕ(δ) from the present example in the case Fq2 = F64. These codes
are of length n = 262144 and are marked with a �. The hyperbolic codes and the
generalized Reed-Muller codes from F64[X1, X2, X3] are of the same length. For
comparison we also plot their performances. The performances of the hyperbolic
codes are given by the graph marked with a ◦ and the performances of the gener-
alized Reed-Muller codes are marked with +’s. The last graph is the asymptotic
Gilbert-Varshamov bound.

Proposition 7 (The shape of a box) Let VFq(Iq) = {P1, P2, . . . , Pn} and con-
sider the evaluation map ϕ : R → Fn

q given by ϕ(F+I) = (F (P1), F (P2), . . . , F (Pn)).

20



Let ∆(R, ρ, ϕ) = {α(1), α(2), . . . , α(n)} be defined accordingly. If ∆≺w(Iq) is of
the form

∆≺w(Iq) = {Xβ1
1 Xβ2

2 . . . Xβm
m | β1 ≤ γ1, β2 ≤ γ2, . . . , βm ≤ γm} (12)

for some (γ1, γ2, . . . , γm) ∈ Nm
0 then

µ(ρ(Xβ1
1 · · ·Xβm

m + I)) = σ(ρ(Xγ1−β1
1 · · ·Xγm−βm

m + I)) (13)

holds for any Xβ1
1 · · ·Xβm

m ∈ ∆(Iq).

Example 12 The footprints used in the construction of Generalized Reed-Muller
code, hyperbolic codes and norm-trace codes have shapes of a box.

Example 13 Let I := 〈X5+Y 4+Y, Y 5+Z4+Z,Z5+U4+U2〉 ⊆ F16[X, Y, Z, U ]
(note the term U2). Define the generalized weighted degree ordering ≺w on
M(X, Y, Z, U) as follows. Consider weights w(X) = 64, w(Y ) = 80, w(Z) =
100, w(U) = 125 ∈ N0. Let ≺N0 be the usual (and unique) monomial ordering
on N0 and let ≺M be the lexicographic ordering on M(X, Y, Z, U) given by
X ≺M Y ≺M Z ≺M U . Clearly, {X5 + Y 4 + Y, Y 5 + Z4 + Z,Z5 + U4 + U2}
is a Gröbner basis and by inspection the order domain conditions are satisfied.
We therefore get a weight function

ρ : R := F16[X, Y, Z, U ]/I → 〈64, 80, 100, 125〉 ∪ {−∞}.

According to our agenda we should next derive a footprint for I16. By the use
of Buchberger’s algorithm we get a reduced Gröbner basis with 21 polynomials.
Due to lack of space we list here only their leading monomials

{Y 4, Z4, U4, X10Y 2Z2, X5Y 2ZU2, X10ZU2, X5Y 2Z3, X10Z3, X10Y 3, X15,
XY 3Z3U2, X6Y 3U2, X11U2, X6Z2U2, X6Y 3Z2, X11Y, X11Z,X6Y ZU2,
X6Y Z3, X10Y 2U2, X5Y Z2U2}.

By definition of a Gröbner basis the footprint of I16 consists of the monomials
that are not divisible of any of the above 21 monomials. The footprint is found
to be of size n = 512 and we therefore have a morphism ϕ : R → F512

16 for
the code construction. It is clear that the footprint does not satisfy the condi-
tions in (12). That is, it does not have the shape of a box. Therefore it should
come as no surprise that the codes C̃(δ) and the codes Ẽ(δ) perform quite dif-
ferently. In the figure below we plot the estimated performance of the codes
Ẽ(δ) and C̃(δ). It is clear that for values of k/n smaller than approximately
0.2 the codes Ẽ(δ) are the best whereas for larger values the codes C̃(δ) are
the best. Finally in the figure we plot the usual Goppa bound (old bound) for
the E(λ) codes versus the improved bound from the present paper (new bound).
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10 The tensor product construction

Given weight functions ρ1 : R1 → Γ1 ∪ {−∞}, Γ1 ⊆ Nr1 and ρ2 : R2 →
Γ2 ∪ {−∞} Γ2 ⊆ Nr2 we can construct a weight function ρ on the tensor
product R1 ⊗ R2 by ρ(f1f2) = (ρ1(f1), ρ2(f2)) for all f1 ∈ R1 and f2 ∈ R2.
We only need to choose a proper ordering ≺

N
r1+r2
0

. Clearly, we can consider
repeated tensor products of order domains.
Example 14 The polynomial ring in m variables can be considered at m tensor
products of the polynomial ring in one variable.

Example 15 In this example we consider the tensor product of m Hermitian
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order domains. This involves weights in Nm
0 . In the figure below we consider

codes over the alphabet F256. From above we have the codes: Hyp256(s, 2) of
length n = 65536, Herm256(s, 2) of length n = 16777216, Hyp256(s, 3) of length
n = 16777216, Herm256(s, 3) of length n = 68719476736.
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11 One-point geometric Goppa codes

From the discussion so far it is clear that one-point geometric Goppa codes and
their improvements can be considered as order domain codes where the weight
functions under consideration are numerical. Actually, it has been shown that
restricting to numerical weight functions produces no other codes than this. The
bounds described in this note fortunately turns out to be improvements to the
Goppa bounds.

Definition 16 Consider Γ ⊆ N0, N0\Γ finite. Write

Γ = {λ1 = 0, λ2, . . .}, λi < λi+1, i = 1, 2, . . .

Define

g(i) = #{λ ∈ N0\Γ | λ < λi}
g = #N0\Γ

D(i) = {(x, y) | x, y ∈ N0\Γ and x + y = λi}

Lemma 5

λi = #
(
Γ\(λi + Γ)

)
µ(λi) = i− g(i) + D(i)

Using the lemma we find the following theorem.

Theorem 8 Given numerical weight functions we get

d
(
E(λt)

)
≥ min{σ(λi) | i = 1, . . . , t} ≥ n− λt

d
(
C(λt)

)
≥ min{µ(λi) | i = t + 1, . . .} ≥ t + 1− g
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The right most expressions are known as the Goppa bounds.
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