On Weierstrass semigroups and rational places

O. Geil, Aalborg University (joint with R. Matsumoto)

Algebraic geometry, coding and computing, Universidad de Valladolid, Segovia October 8-10 2007

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Outline

Terminology

The bounds

Examples

A bound on $N_q(g)$

Towers of function fields

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ─ □ ─ の < @

Sketch of a proof

Terminology

 \mathbb{F}/\mathbb{F}_q \mathbb{F}_q full constant field

 $N(\mathbb{F})$ the number of rational places

 $g(\mathbb{F})$ the genus

 $N_q(g) = \max\{N(\mathbb{F}) \mid \mathbb{F} \text{ is a function field over } \mathbb{F}_q, g(\mathbb{F}) = g\}$

Let Λ be a Weierstrass semigroup for a rational place ${\mathcal P}$

 $\Lambda = -\nu_{\mathcal{P}}(\cup_{m=0}^{\infty}(m\mathcal{P}) \setminus \{0\})$

We have $\#\mathbb{N}_0\setminus\Lambda=g$

Terminology

A sometimes holds more information about $N(\mathbb{F})$ than does g alone.

If no function field over \mathbb{F}_q has a rational place having Λ as Weierstrass semigroup then $N_q(\Lambda) = 0$

else

 $N_q(\Lambda) = \max\{N(\mathbb{F}) \mid \mathbb{F} \text{ is a function field over } \mathbb{F}_q$ having a rational place with Weierstrass semigroup equal to $\Lambda\}$

Lewittes' bound

$$\Lambda = \langle \lambda_1, \ldots, \lambda_m \rangle, \, \lambda_1 < \cdots < \lambda_m.$$

 λ_1 is called the multiplicity.

Lewittes showed $N_q(\Lambda) \leq q\lambda_1 + 1$

Example: Hermitian function field $X^{q+1} - Y^q - Y$ over \mathbb{F}_{q^2} . \mathcal{P}_{∞} has Weierstrass semigroup $\Lambda = \langle q, q+1 \rangle$. $q^2 \lambda_1 + 1 = q^3 + 1$ which is attained.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○○○

An improvement to Lewittes' bound

$$egin{array}{rll} N_q(\Lambda) &\leq & \#(\Lambdaackslash(\cup_{i=0}^m q\lambda_i+\Lambda))+1 \ &\leq & \#(\Lambdaackslash(q\lambda_1+\Lambda))+1 \ &= & q\lambda_1+1 \end{array}$$

where $\eta + \Lambda = \{\eta + \lambda \mid \lambda \in \Lambda\}$

A first example

$$\begin{split} &\Lambda = \langle 3, 5 \rangle, \, \lambda_1 = 3, \, \lambda_2 = 5, \, q = 2 \\ &\Lambda = \{0, 3, 5, 6, 8, 9, 10, 11, 12, 13, \ldots\} \\ &q\lambda_1 + \Lambda = \{6, 9, 11, 12, 14, 15, 16, 17, \ldots\} \\ &q\lambda_2 + \Lambda = \{10, 13, 15, 16, 18, 19, 20, \ldots\} \\ &\Lambda \backslash (q\lambda_1 + \Lambda) = \{0, 3, 5, 8, 10, 13\} \\ &\Lambda \backslash ((q\lambda_1 + \Lambda) \cup (q\lambda_2 + \Lambda)) = \{0, 3, 5, 8\} \\ &\text{Lewittes' bound: } N_2(\Lambda) \leq 7 \end{split}$$

New bound: $N_2(\Lambda) \leq 5$

Proposition

If $\lambda_1 < q$ then let *j* be the largest index such that $\lambda_j < q$ holds else let j = 0. We have

$$q\lambda_1 - g \leq \#(\Lambda \setminus (\cup_{i=1}^m (q\lambda_i + \Lambda))) \leq (\prod_{i=1}^j \lambda_i)q^{m-j} \leq q^m + 1$$

Remark The conductor of a semigroup $\Lambda \subseteq \mathbb{N}_0$ with finitely many gaps is the smallest number *c* such that there are no gaps greater or equal to *c*.

If $q\lambda_1 + c \le q\lambda_2$ the new bound and Lewittes' bound are the same. In particular if $q\lambda_1 + 2g \le q\lambda_2$. Happens for Garcia-Stichtenoth's second tower.

More examples

		$ \Lambda = \langle 8 \rangle$	$ 0,9,20\rangle$	<i>g</i> = 20		
q	2	3	4	8	9	16
bounds	17/9	25/16	33/25	65/65	73/73	129/129
$N_q(g)$	19 – 21	30 – 34	40 – 45	76 – 83	70 – 91	127 – 139

$\Lambda=\langle 13,15,24,31 angle \qquad g=38$						
q	2 3 4 8 9 16					
bounds	27/13	40/28	53/40	105/97	118/112	209/207
$N_q(g)$	30 - 33	*	64 – 74	129 – 135	105 – 149	193 – 233

◆□ > ◆□ > ◆ 三 > ◆ 三 > ● ○ ○ ○ ○

... and still more examples

$\Lambda = \langle {f 13}, {f 14}, {f 20} angle \qquad g = 42$						
q	2	3	4	8	9	16
bounds	27/9	40/17	53/33	105/95	118/102	209/195
$N_q(g)$	33 – 35	52 – 59	75 – 80	129 – 147	122 – 161	209 - 254

$\Lambda=\langle 10,11,20,22 angle \qquad g=45$						
q	2	3	4	8	9	16
bounds	21/5	31/10	41/17	81/65	91/82	161/141
$N_q(g)$	33 – 37	54 – 62	80 - 84	144 – 156	136 – 170	242 - 268

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ● ●

All semigroups of genus 8

 $N_2(8) = 11$: Excluded 13/33

 $N_3(8) \in \{17, 18\}$: Assuming 18, excluded 26/31

Semigroup	<i>q</i> = 2	<i>q</i> = 3	<i>q</i> = 4
$\langle 2, 17 \rangle$	5/5	7/7	9/9
$\langle 3, 10, 17 angle$	7/6	10/10	13/13
$\langle 3, 11, 16 \rangle$	7/7	10/10	13/13
$\langle 3, 13, 14 \rangle$	7/7	10/10	13/13
$\langle 4, 6, 13 \rangle$	9/9	13/13	17/17
$\langle 4, 6, 15, 17 \rangle$	9/9	13/13	17/17
$\langle 4,7,17 angle$	9/6	13/11	17/17
$\langle 4,9,10 angle$	9/9	13/12	17/17
$\langle 4, 9, 11 \rangle$	9/7	13/13	17/17
$\langle 4,9,14,15 angle$	9/8	9/9	17/17
$\langle 4, 10, 11, 17 \rangle$	9/9	13/13	17/17
$\langle 4, 10, 13, 15 \rangle$	9/9	13/13	17/17
(4, 11, 13, 14)	9/9	13/13	17/17

 $N_2(8) = 11$: Excluded 13/33

 $N_3(8) \in \{17, 18\}$: Assuming 18, excluded 26/31

Semigroup	<i>q</i> = 2	<i>q</i> = 3	<i>q</i> = 4
⟨ 5, 6, 13⟩	11/7	16/12	21/18
$\langle 5, 6, 14 \rangle$	11/7	16/12	21/19
$\langle 5,7,9 \rangle$	11/7	16/13	21/19
$\langle 5, 7, 11 \rangle$	11/9	16/14	21/19
$\langle 5,7,13,16 \rangle$	11/8	16/14	21/20
$\langle 5, 8, 9 \rangle$	11/9	16/15	21/20
$\langle 5, 8, 11, 12 \rangle$	11/9	16/14	21/21
$\langle 5, 8, 11, 14, 17 \rangle$	11/9	16/15	21/20
$\langle 5, 8, 12, 14 \rangle$	11/9	16/15	21/21
$\langle 5, 9, 11, 12 \rangle$	11/9	16/16	21/21
⟨5, 9, 11, 13, 17⟩	11/9	16/15	21/21
⟨5, 9, 12, 13, 16⟩	11/10	16/16	21/21
(5, 11, 12, 13, 14)	11/11	16/16	21/21

 $N_2(8) = 11$: Excluded 13/33

 $N_3(8) \in \{17, 18\}$: Assuming 18, excluded 26/31

Semigroup	<i>q</i> = 2	<i>q</i> = 3	<i>q</i> = 4
$\langle 6, 7, 8, 17 \rangle$	13/8	19/15	25/22
$\langle 6, 7, 9, 17 \rangle$	13/10	19/17	25/22
$\langle 6, 7, 10, 11 \rangle$	13/11	19/16	25/21
$\langle 6,7,10,15 angle$	13/10	19/17	25/23
$\langle 6, 7, 11, 15, 16 \rangle$	13/9	19/16	25/23
$\langle 6, 8, 11, 13, 15 \rangle$	13/11	19/19	25/25
$\langle 6, 8, 10, 13, 15, 17 \rangle$	13/12	19/19	25/25
$\langle 6, 8, 10, 11, 15 \rangle$	13/12	19/19	25/25
$\langle 6, 8, 10, 11, 13 \rangle$	13/11	19/18	25/25
$\langle 6, 8, 9, 10 angle$	13/11	19/19	25/25
$\langle 6, 8, 9, 11 \rangle$	13/10	19/19	25/25
$\langle 6, 8, 9, 13 \rangle$	13/11	19/19	25/25
$\langle 6,9,10,11,14 angle$	13/12	19/19	25/25
$\langle 6,9,10,11,13 \rangle$	13/11	19/19	25/25

 $N_2(8) = 11$: Excluded 13/33

 $N_3(8) \in \{17, 18\}$: Assuming 18, excluded 26/31

Semigroup	<i>q</i> = 2	<i>q</i> = 3	<i>q</i> = 4
$\langle 6,9,10,13,14,17 angle$	13/12	19/19	25/25
$\langle 6, 9, 11, 13, 14, 16 angle$	13/12	19/19	25/25
$\langle 6, 10, 11, 13, 14, 15 \rangle$	13/12	19/19	25/25
$\langle 7, 8, 9, 10, 11 angle$	15/10	22/18	29/26
$\langle 7, 8, 9, 10, 12 angle$	15/10	22/18	29/26
$\langle 7, 8, 9, 10, 13 angle$	15/10	22/18	29/26
$\langle 7, 8, 9, 11, 12 \rangle$	15/11	22/18	29/27
$\langle 7, 8, 9, 11, 13 angle$	15/11	22/18	28/27
$\langle 7, 8, 9, 12, 13 \rangle$	15/11	22/18	29/27
$\langle 7, 8, 10, 12, 13 \rangle$	15/12	22/19	29/27
$\langle 7, 8, 10, 11, 12 \rangle$	15/11	22/19	29/29
(7, 8, 10, 11, 13)	15/11	22/19	29/27
$\langle 7, 8, 11, 12, 13, 17 \rangle$	15/12	22/20	29/28

 $N_2(8) = 11$: Excluded 13/33

 $N_3(8) \in \{17, 18\}$: Assuming 18, excluded 26/31

Semigroup	<i>q</i> = 2	<i>q</i> = 3	<i>q</i> = 4
⟨7,9,10,11,12,13⟩	15/11	22/20	29/27
$\langle 7, 9, 10, 11, 13, 15 angle$	15/11	22/20	29/28
$\langle 7, 9, 10, 12, 13, 15 angle$	15/12	22/21	29/28
$\langle 7,9,11,12,13,15,17 angle$	15/12	22/21	29/28
$\langle {f 7}, {f 10}, {f 11}, {f 12}, {f 13}, {f 15}, {f 16} angle$	15/13	22/21	29/29
$\langle 8, 9, 10, 11, 12, 13, 14 angle$	17/13	25/22	33/31
(8,9,10,11,12,13,15)	17/13	25/22	33/31
$\langle 8, 9, 10, 11, 12, 14, 15 angle$	17/13	25/22	33/31
$\langle 8, 9, 10, 11, 13, 14, 15 angle$	17/13	25/22	33/31
⟨8,9,10,12,13,14,15⟩	17/14	25/22	33/32
⟨8,9,11,12,13,14,15⟩	17/14	25/24	33/32
⟨8, 10, 11, 12, 13, 14, 15, 17⟩	17/15	25/23	33/33
(9, 10, 11, 12, 13, 14, 15, 16, 17)	19/15	28/26	37/35

An estimation of the new upper bound

Corollary Define

$$t = \#\{\lambda \in \Lambda \mid \lambda \in [\lambda_1 + 1, \lambda_1 + \lceil \lambda_1 / q \rceil - 1]\}.$$

We have

$$N(\mathbb{F}) \leq q\lambda_1 - t + 1.$$

Example

Consider the extreme case $\lambda_1 = g + 1$, $\Lambda = \{0, g + 1, g + 2, ...\}$. We get $t = \lceil (g+1)/q \rceil - 1$, and therefore

$$N(\mathbb{F}) \leq q(g+1) + 2 - \lceil (g+1)/q \rceil$$

For this particular semigroup:

$$\#(\Lambda \setminus (\cup_{i=1}^m (\lambda_i + \Lambda))) = q\lambda_1 - t + 1.$$

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Bounds on $N_q(g)$ Proposition

$$N_q(g) \leq (q-rac{1}{q})g+q+2-rac{1}{q}.$$

Consequently,

$$egin{array}{rcl} N_2(g) &\leq & 1rac{1}{2}g+3rac{1}{2} \ N_3(g) &\leq & 2rac{2}{3}g+4rac{2}{3} \ N_4(g) &\leq & 3rac{3}{4}g+5rac{3}{4} \end{array}$$

whereas Serre's upper bound states

$$egin{array}{rcl} N_2(g) &\leq 2g+3 \ N_3(g) &\leq 3g+4 \ N_4(g) &\leq 4g+5 \end{array}$$

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ─ □ ─ の < @

Towers of function fields

Corollary

Assume a tower of function fields is given with $g^{(i)} \to \infty$ for $i \to \infty$ and $\liminf_{i\to\infty} (\frac{N^{(i)}}{g^{(i)}}) = \kappa > 0$. Let $(\mathcal{P}^{(1)}, \mathcal{P}^{(2)}, \ldots)$ be any sequence such that $\mathcal{P}^{(i)}$ is a rational place of $F^{(i)}$ for $i = 1, 2, \ldots$ Let $\lambda_1^{(i)}$ be the multiplicity of the Weierstrass semigroup related to $\mathcal{P}^{(i)}$ and let m_i be the number of generators in some description of $\Lambda^{(i)}$. We have

$$\begin{split} & \liminf_{i \to \infty} (\lambda_1^{(i)} / g^{(i)}) \geq \kappa / q \qquad (1) \\ & m_i \to \infty \quad \text{for} \quad i \to \infty \end{split}$$

(日) (日) (日) (日) (日) (日) (日)

Proof: Follows from Lewittes' bound.

Towers of function fields

Garcia-Stichtenoth's second tower:

$$\lim_{i\to\infty}(\lambda_1^{(i)}/g^{(i)})=1/q.$$

Above corollary reads

$$\liminf_{i \to \infty} (\lambda_1^{(i)} / g^{(i)}) \ge (q-1)/q^2 = \frac{1 - 1/q}{q}$$

Corollary: One cannot construct asymptotically good towers of function fields having telescopic Weierstrass semigroups.

Sketch of a proof

```
Step 1:
Use order domain theory to describe \cup_{m=0}^{\infty} \mathcal{L}(m\mathcal{P}) as a factor ring \mathbb{F}_q[X_1, \ldots, X_m]/I where I is a certain type of ideal.
```

Step 2: Observe, that the rational places except \mathcal{P} corresponds to the elements in $\mathbb{V}_{\mathbb{F}_q}(I)$.

Step 3: Apply Gröbner basis techniques to the problem of estimating the size of $\mathbb{V}_{\mathbb{F}_q}(I)$ NOTE: we do not assume to know *I* but only assume to know Λ . **Definition** Given $w_1, \ldots, w_m \in \mathbb{N}$ define $w(X_1^{a_1} \cdots X_m^{a_m}) = a_1 w_1 + \cdots + a_m w_m$. Given further a fixed monomial ordering \prec on $\mathcal{M}(X_1, \ldots, X_m)$ the weighted graded ordering \prec_w on $\mathcal{M}(X_1, \ldots, X_m)$ is given by $X_1^{\alpha_1} \cdots X_m^{\alpha_m} \prec_w X_1^{\beta_1} \cdots X_m^{\beta_m}$ if one of the following two conditions holds:

(1)
$$w(X_1^{\alpha_1}\cdots X_m^{\alpha_m}) < w(X_1^{\beta_1}\cdots X_m^{\beta_m})$$

(2) $w(X_1^{\alpha_1}\cdots X_m^{\alpha_m}) = w(X_1^{\beta_1}\cdots X_m^{\beta_m})$
and $X_1^{\alpha_1}\cdots X_m^{\alpha_m} \prec X_1^{\beta_1}\cdots X_m^{\beta_m}$

(日) (日) (日) (日) (日) (日) (日)

Definition

Denote by $\mathcal{M}(X_1, \ldots, X_m)$ the set of monomials in X_1, \ldots, X_m . Given a monomial ordering \prec on $\mathcal{M}(X_1, \ldots, X_m)$ and an ideal $I \subseteq k[X_1, \ldots, X_m]$ the footprint of *I* is the set

 $\Delta_{\prec}(I) = \{ M \in \mathcal{M}(X_1, \dots, X_m) \mid M \text{ is not} \\ \text{a leading monomial of any polynomial in } I \}.$

(日) (日) (日) (日) (日) (日) (日)

Main example of numerical weight function

Main example of numerical weight function:

$$ho:\cup_{m=0}^{\infty}\mathcal{L}(m\mathcal{P})
ightarrow - \Lambda \cup \{-\infty\}$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

given by $\rho(f) = -\nu_{\mathcal{P}}(f)$.

A result from order domain theory

Theorem

Let *I* be an ideal in $k[X_1, \ldots, X_m]$ and assume

- G = {F₁(X₁,...,X_m),...,F_s(X₁,...,X_m)} is a Gröbner basis for *I* with respect to a weighted degree ordering ≺_w.
- The elements of $\Delta_{\prec_w}(I)$ have mutually distinct weights
- Every element of G has exactly two monomials of highest weight in its support.

Write $\Lambda = \{w(M) \mid M \in \Delta_{\prec_w}(I)\}$. For $f \in k[X_1, \ldots, X_m]/I$ denote by *F* the (unique) remainder of any polynomial in *f* after division with *G*. Then $R = k[X_1, \ldots, X_m]/I$ is an order domain with a numerical weight function $\rho : R \to \Lambda \cup \{-\infty\}$ defined by $\rho(0) = -\infty$ and $\rho(f) = \max\{w(M) \mid M \in \text{Supp}(F)\}$ for $f \neq 0$. On the other hand let *R* be an order domain with a numerical weight function $\rho : R \to \Lambda \cup \{-\infty\}$ where $\Lambda = \langle \lambda_1, \ldots, \lambda_m \rangle$. Then there exists a description as above with $w(X_1) = \lambda_1, \ldots, w(X_m) = \lambda_m$.

Lemma

Let $\bigcup_{m=0}^{\infty} \mathcal{L}(m\mathcal{P})$ be described as a factor ring as in previous Theorem. The number of rational places of \mathbb{F} equals $\#\mathbb{V}_{\mathbb{F}_q}(I) + 1 = \#\mathbb{V}_{\mathbb{F}_q}(I_q) + 1$ where

$$I_q = \langle X_1^q - X_1, \ldots, X_m^q - X_m, F_1(X_1, \ldots, X_m), \ldots, F_s(X_1, \ldots, X_m) \rangle.$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三■ - のへぐ

Proposition

Let $J \subseteq \mathbb{F}_q[X_1, \ldots, X_m]$ be an ideal such that $X_1^q - X_1, \ldots, X_m^q - X_m \in J$. Let \prec be any monomial ordering on $\mathcal{M}(X_1, \ldots, X_m)$. The footprint $\Delta_{\prec}(J)$ is finite and $\#\mathbb{V}_{\mathbb{F}_q}(J) = \#\Delta_{\prec}(J)$ holds.

(日) (日) (日) (日) (日) (日) (日)

Lemma Given description as in above theorem. Assume that $G(X_1, \ldots, X_m)$ has precisely one monomial of highest weight in its support. Denote this highest weight by $w(G(X_1, \ldots, X_m))$. The polynomial

$$G(X_1,\ldots,X_m)$$
 rem $(F_1(X_1,\ldots,X_m),\ldots,F_s(X_1,\ldots,X_m))$

also has precisely one monomial of highest weight in its support and this weight equals $w(G(X_1, ..., X_m))$.

Apply Lemma to $(X_1^{a_1} \cdots X_m^{a_m})(X_i^q - X_i)$ for all choices of a_1, \ldots, a_m, i .