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Terminology

F/Fq Fq full constant field

N(F) the number of rational places

g(F) the genus

Nq(g) = max{N(F) | F is a function field over Fq, g(F) = g}

Let Λ be a Weierstrass semigroup for a rational place P

Λ = −νP(∪∞m=0(mP)\{0})

We have #N0\Λ = g



Terminology

Λ sometimes holds more information about N(F) than does g
alone.

If no function field over Fq has a rational place having Λ as
Weierstrass semigroup then Nq(Λ) = 0

else

Nq(Λ) = max{N(F) | F is a function field over Fq

having a rational place with

Weierstrass semigroup equal to Λ}



Lewittes’ bound

Λ = 〈λ1, . . . , λm〉, λ1 < · · · < λm.

λ1 is called the multiplicity.

Lewittes showed
Nq(Λ) ≤ qλ1 + 1

Example:
Hermitian function field X q+1 − Y q − Y over Fq2 .
P∞ has Weierstrass semigroup Λ = 〈q, q + 1〉.
q2λ1 + 1 = q3 + 1 which is attained.



An improvement to Lewittes’ bound

Nq(Λ) ≤ #(Λ\(∪m
i=0qλi + Λ)) + 1

≤ #(Λ\(qλ1 + Λ)) + 1

= qλ1 + 1

where η + Λ = {η + λ | λ ∈ Λ}



A first example

Λ = 〈3, 5〉, λ1 = 3, λ2 = 5, q = 2

Λ = {0, 3, 5, 6, 8, 9, 10, 11, 12, 13, . . .}

qλ1 + Λ = {6, 9, 11, 12, 14, 15, 16, 17, . . .}

qλ2 + Λ = {10, 13, 15, 16, 18, 19, 20, . . .}

Λ\(qλ1 + Λ) = {0, 3, 5, 8, 10, 13}

Λ\((qλ1 + Λ) ∪ (qλ2 + Λ)) = {0, 3, 5, 8}

Lewittes’ bound: N2(Λ) ≤ 7

New bound: N2(Λ) ≤ 5



Proposition
If λ1 < q then let j be the largest index such that λj < q holds
else let j = 0.
We have

qλ1 − g ≤ #(Λ\(∪m
i=1(qλi + Λ))) ≤ (

j∏
i=1

λi)q
m−j ≤ qm + 1

Remark The conductor of a semigroup Λ ⊆ N0 with finitely
many gaps is the smallest number c such that there are no
gaps greater or equal to c.
If qλ1 + c ≤ qλ2 the new bound and Lewittes’ bound are the
same. In particular if qλ1 + 2g ≤ qλ2. Happens for
Garcia-Stichtenoth’s second tower.



More examples

Λ = 〈8, 9, 20〉 g = 20
q 2 3 4 8 9 16

bounds 17/9 25/16 33/25 65/65 73/73 129/129
Nq(g) 19− 21 30− 34 40− 45 76− 83 70− 91 127− 139

Λ = 〈13, 15, 24, 31〉 g = 38
q 2 3 4 8 9 16

bounds 27/13 40/28 53/40 105/97 118/112 209/207
Nq(g) 30− 33 ∗ 64− 74 129− 135 105− 149 193− 233



... and still more examples

Λ = 〈13, 14, 20〉 g = 42
q 2 3 4 8 9 16

bounds 27/9 40/17 53/33 105/95 118/102 209/195
Nq(g) 33− 35 52− 59 75− 80 129− 147 122− 161 209− 254

Λ = 〈10, 11, 20, 22〉 g = 45
q 2 3 4 8 9 16

bounds 21/5 31/10 41/17 81/65 91/82 161/141
Nq(g) 33− 37 54− 62 80− 84 144− 156 136− 170 242− 268



All semigroups of genus 8

N2(8) = 11: Excluded 13/33
N3(8) ∈ {17, 18}: Assuming 18, excluded 26/31
N4(8) ∈ {21, 22, 23, 24}: Assuming 24, excluded 26/31

Semigroup q = 2 q = 3 q = 4
〈2, 17〉 5/5 7/7 9/9
〈3, 10, 17〉 7/6 10/10 13/13
〈3, 11, 16〉 7/7 10/10 13/13
〈3, 13, 14〉 7/7 10/10 13/13
〈4, 6, 13〉 9/9 13/13 17/17
〈4, 6, 15, 17〉 9/9 13/13 17/17
〈4, 7, 17〉 9/6 13/11 17/17
〈4, 9, 10〉 9/9 13/12 17/17
〈4, 9, 11〉 9/7 13/13 17/17
〈4, 9, 14, 15〉 9/8 9/9 17/17
〈4, 10, 11, 17〉 9/9 13/13 17/17
〈4, 10, 13, 15〉 9/9 13/13 17/17
〈4, 11, 13, 14〉 9/9 13/13 17/17



All semigroups of genus 8 - cont.

N2(8) = 11: Excluded 13/33
N3(8) ∈ {17, 18}: Assuming 18, excluded 26/31
N4(8) ∈ {21, 22, 23, 24}: Assuming 24, excluded 26/31

Semigroup q = 2 q = 3 q = 4
〈5, 6, 13〉 11/7 16/12 21/18
〈5, 6, 14〉 11/7 16/12 21/19
〈5, 7, 9〉 11/7 16/13 21/19
〈5, 7, 11〉 11/9 16/14 21/19
〈5, 7, 13, 16〉 11/8 16/14 21/20
〈5, 8, 9〉 11/9 16/15 21/20
〈5, 8, 11, 12〉 11/9 16/14 21/21
〈5, 8, 11, 14, 17〉 11/9 16/15 21/20
〈5, 8, 12, 14〉 11/9 16/15 21/21
〈5, 9, 11, 12〉 11/9 16/16 21/21
〈5, 9, 11, 13, 17〉 11/9 16/15 21/21
〈5, 9, 12, 13, 16〉 11/10 16/16 21/21
〈5, 11, 12, 13, 14〉 11/11 16/16 21/21



All semigroups of genus 8 - cont.
N2(8) = 11: Excluded 13/33
N3(8) ∈ {17, 18}: Assuming 18, excluded 26/31
N4(8) ∈ {21, 22, 23, 24}: Assuming 24, excluded 26/31

Semigroup q = 2 q = 3 q = 4
〈6, 7, 8, 17〉 13/8 19/15 25/22
〈6, 7, 9, 17〉 13/10 19/17 25/22
〈6, 7, 10, 11〉 13/11 19/16 25/21
〈6, 7, 10, 15〉 13/10 19/17 25/23
〈6, 7, 11, 15, 16〉 13/9 19/16 25/23
〈6, 8, 11, 13, 15〉 13/11 19/19 25/25
〈6, 8, 10, 13, 15, 17〉 13/12 19/19 25/25
〈6, 8, 10, 11, 15〉 13/12 19/19 25/25
〈6, 8, 10, 11, 13〉 13/11 19/18 25/25
〈6, 8, 9, 10〉 13/11 19/19 25/25
〈6, 8, 9, 11〉 13/10 19/19 25/25
〈6, 8, 9, 13〉 13/11 19/19 25/25
〈6, 9, 10, 11, 14〉 13/12 19/19 25/25
〈6, 9, 10, 11, 13〉 13/11 19/19 25/25



All semigroups of genus 8 - cont.

N2(8) = 11: Excluded 13/33
N3(8) ∈ {17, 18}: Assuming 18, excluded 26/31
N4(8) ∈ {21, 22, 23, 24}: Assuming 24, excluded 26/31

Semigroup q = 2 q = 3 q = 4
〈6, 9, 10, 13, 14, 17〉 13/12 19/19 25/25
〈6, 9, 11, 13, 14, 16〉 13/12 19/19 25/25
〈6, 10, 11, 13, 14, 15〉 13/12 19/19 25/25
〈7, 8, 9, 10, 11〉 15/10 22/18 29/26
〈7, 8, 9, 10, 12〉 15/10 22/18 29/26
〈7, 8, 9, 10, 13〉 15/10 22/18 29/26
〈7, 8, 9, 11, 12〉 15/11 22/18 29/27
〈7, 8, 9, 11, 13〉 15/11 22/18 28/27
〈7, 8, 9, 12, 13〉 15/11 22/18 29/27
〈7, 8, 10, 12, 13〉 15/12 22/19 29/27
〈7, 8, 10, 11, 12〉 15/11 22/19 29/29
〈7, 8, 10, 11, 13〉 15/11 22/19 29/27
〈7, 8, 11, 12, 13, 17〉 15/12 22/20 29/28



All semigroups of genus 8 - cont.

N2(8) = 11: Excluded 13/33
N3(8) ∈ {17, 18}: Assuming 18, excluded 26/31
N4(8) ∈ {21, 22, 23, 24}: Assuming 24, excluded 26/31

Semigroup q = 2 q = 3 q = 4
〈7, 9, 10, 11, 12, 13〉 15/11 22/20 29/27
〈7, 9, 10, 11, 13, 15〉 15/11 22/20 29/28
〈7, 9, 10, 12, 13, 15〉 15/12 22/21 29/28
〈7, 9, 11, 12, 13, 15, 17〉 15/12 22/21 29/28
〈7, 10, 11, 12, 13, 15, 16〉 15/13 22/21 29/29
〈8, 9, 10, 11, 12, 13, 14〉 17/13 25/22 33/31
〈8, 9, 10, 11, 12, 13, 15〉 17/13 25/22 33/31
〈8, 9, 10, 11, 12, 14, 15〉 17/13 25/22 33/31
〈8, 9, 10, 11, 13, 14, 15〉 17/13 25/22 33/31
〈8, 9, 10, 12, 13, 14, 15〉 17/14 25/22 33/32
〈8, 9, 11, 12, 13, 14, 15〉 17/14 25/24 33/32
〈8, 10, 11, 12, 13, 14, 15, 17〉 17/15 25/23 33/33
〈9, 10, 11, 12, 13, 14, 15, 16, 17〉 19/15 28/26 37/35



An estimation of the new upper bound
Corollary
Define

t = #{λ ∈ Λ | λ ∈ [λ1 + 1, λ1 + dλ1/qe − 1]}.

We have
N(F) ≤ qλ1 − t + 1.

Example
Consider the extreme case λ1 = g + 1, Λ = {0, g + 1, g + 2, . . .}.
We get t = d(g + 1)/qe − 1, and therefore

N(F) ≤ q(g + 1) + 2− d(g + 1)/qe

For this particular semigroup:

#(Λ\(∪m
i=1(λi + Λ))) = qλ1 − t + 1.



Bounds on Nq(g)
Proposition

Nq(g) ≤ (q − 1
q

)g + q + 2− 1
q

.

Consequently,

N2(g) ≤ 1
1
2

g + 3
1
2

N3(g) ≤ 2
2
3

g + 4
2
3

N4(g) ≤ 3
3
4

g + 5
3
4

whereas Serre’s upper bound states

N2(g) ≤ 2g + 3

N3(g) ≤ 3g + 4

N4(g) ≤ 4g + 5



Towers of function fields

Corollary
Assume a tower of function fields is given with g(i) →∞ for
i →∞ and lim infi→∞(N(i)

g(i) ) = κ > 0. Let (P(1),P(2), . . .) be any

sequence such that P(i) is a rational place of F (i) for
i = 1, 2, . . .. Let λ

(i)
1 be the multiplicity of the Weierstrass

semigroup related to P(i) and let mi be the number of
generators in some description of Λ(i). We have

lim infi→∞(λ
(i)
1 /g(i)) ≥ κ/q (1)

mi →∞ for i →∞

Proof: Follows from Lewittes’ bound.



Towers of function fields

Garcia-Stichtenoth’s second tower:

lim
i→∞

(λ
(i)
1 /g(i)) = 1/q.

Above corollary reads

lim inf
i→∞

(λ
(i)
1 /g(i)) ≥ (q − 1)/q2 =

1− 1/q
q

.

Corollary : One cannot construct asymptotically good towers
of function fields having telescopic Weierstrass semigroups.



Sketch of a proof

Step 1:
Use order domain theory to describe ∪∞m=0L(mP) as a factor
ring Fq[X1, . . . , Xm]/I where I is a certain type of ideal.

Step 2:
Observe, that the rational places except P corresponds to the
elements in VFq (I).

Step 3:
Apply Gröbner basis techniques to the problem of estimating
the size of VFq (I)
NOTE: we do not assume to know I but only assume to know Λ.



Definition Given w1, . . . , wm ∈ N define
w(X a1

1 · · ·X am
m ) = a1w1 + · · ·+ amwm. Given further a fixed

monomial ordering ≺ on M(X1, . . . , Xm) the weighted graded
ordering ≺w on M(X1, . . . , Xm) is given by
Xα1

1 · · ·Xαm
m ≺w Xβ1

1 · · ·Xβm
m if one of the following two

conditions holds:

(1) w(Xα1
1 · · ·Xαm

m ) < w(Xβ1
1 · · ·Xβm

m )

(2) w(Xα1
1 · · ·Xαm

m ) = w(Xβ1
1 · · ·Xβm

m )

and Xα1
1 · · ·Xαm

m ≺ Xβ1
1 · · ·Xβm

m



Definition
Denote by M(X1, . . . , Xm) the set of monomials in X1, . . . , Xm.
Given a monomial ordering ≺ on M(X1, . . . , Xm) and an ideal
I ⊆ k [X1, . . . , Xm] the footprint of I is the set

∆≺(I) = {M ∈M(X1, . . . , Xm) | M is not

a leading monomial of any polynomial in I}.



Main example of numerical weight function

Main example of numerical weight function:

ρ : ∪∞m=0L(mP) → −Λ ∪ {−∞}

given by ρ(f ) = −νP(f ).



A result from order domain theory
Theorem
Let I be an ideal in k [X1, . . . , Xm] and assume

I G = {F1(X1, . . . , Xm), . . . , Fs(X1, . . . , Xm)} is a Gröbner
basis for I with respect to a weighted degree ordering ≺w .

I The elements of ∆≺w (I) have mutually distinct weights
I Every element of G has exactly two monomials of highest

weight in its support.

Write Λ = {w(M) | M ∈ ∆≺w (I)}. For f ∈ k [X1, . . . , Xm]/I
denote by F the (unique) remainder of any polynomial in f after
division with G. Then R = k [X1, . . . , Xm]/I is an order domain
with a numerical weight function ρ : R → Λ ∪ {−∞} defined by
ρ(0) = −∞ and ρ(f ) = max{w(M) | M ∈ Supp(F )} for f 6= 0.
On the other hand let R be an order domain with a numerical
weight function ρ : R → Λ ∪ {−∞} where Λ = 〈λ1, . . . , λm〉.
Then there exists a description as above with
w(X1) = λ1, . . . , w(Xm) = λm.



Lemma
Let ∪∞m=0L(mP) be described as a factor ring as in previous
Theorem. The number of rational places of F equals
#VFq (I) + 1 = #VFq (Iq) + 1 where

Iq = 〈X q
1 −X1, . . . , X q

m−Xm, F1(X1, . . . , Xm), . . . , Fs(X1, . . . , Xm)〉.



How to count

Proposition
Let J ⊆ Fq[X1, . . . , Xm] be an ideal such that
X q

1 − X1, . . . , X q
m − Xm ∈ J. Let ≺ be any monomial ordering on

M(X1, . . . , Xm). The footprint ∆≺(J) is finite and
#VFq (J) = #∆≺(J) holds.



Lemma Given description as in above theorem. Assume that
G(X1, . . . , Xm) has precisely one monomial of highest weight in
its support. Denote this highest weight by w(G(X1, . . . , Xm)).
The polynomial

G(X1, . . . , Xm) rem (F1(X1, . . . , Xm), . . . , Fs(X1, . . . , Xm)

also has precisely one monomial of highest weight in its
support and this weight equals w(G(X1, . . . , Xm)).

Apply Lemma to (X a1
1 · · ·X am

m )(X q
i − Xi) for all choices of

a1, . . . , am, i .
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