On Weierstrass semigroups and rational places

O. Geil, Aalborg University
(joint with R. Matsumoto)

Algebraic geometry, coding and computing, Universidad de Valladolid, Segovia

October 8-10 2007

Outline

Terminology

The bounds

Examples

A bound on $N_{q}(g)$

Towers of function fields

Sketch of a proof

Terminology

$\mathbb{F} / \mathbb{F}_{q} \quad \mathbb{F}_{q}$ full constant field
$N(\mathbb{F})$ the number of rational places
$g(\mathbb{F})$ the genus
$N_{q}(g)=\max \left\{N(\mathbb{F}) \mid \mathbb{F}\right.$ is a function field over $\left.\mathbb{F}_{q}, g(\mathbb{F})=g\right\}$
Let \wedge be a Weierstrass semigroup for a rational place \mathcal{P}
$\Lambda=-\nu_{\mathcal{P}}\left(\cup_{m=0}^{\infty}(m \mathcal{P}) \backslash\{0\}\right)$
We have $\# \mathbb{N}_{0} \backslash \Lambda=g$

Terminology

Λ sometimes holds more information about $N(\mathbb{F})$ than does g alone.

If no function field over \mathbb{F}_{q} has a rational place having Λ as Weierstrass semigroup then $N_{q}(\Lambda)=0$
else
$N_{q}(\Lambda)=\max \left\{N(\mathbb{F}) \mid \mathbb{F}\right.$ is a function field over \mathbb{F}_{q} having a rational place with
Weierstrass semigroup equal to $\Lambda\}$

Lewittes' bound

$\Lambda=\left\langle\lambda_{1}, \ldots, \lambda_{m}\right\rangle, \lambda_{1}<\cdots<\lambda_{m}$.
λ_{1} is called the multiplicity.

Lewittes showed
$N_{q}(\Lambda) \leq q \lambda_{1}+1$
Example:
Hermitian function field $X^{q+1}-Y^{q}-Y$ over $\mathbb{F}_{q^{2}}$.
\mathcal{P}_{∞} has Weierstrass semigroup $\Lambda=\langle q, q+1\rangle$.
$q^{2} \lambda_{1}+1=q^{3}+1$ which is attained.

An improvement to Lewittes' bound

$$
\begin{aligned}
N_{q}(\Lambda) & \leq \#\left(\Lambda \backslash\left(\cup_{i=0}^{m} q \lambda_{i}+\Lambda\right)\right)+1 \\
& \leq \#\left(\Lambda \backslash\left(q \lambda_{1}+\Lambda\right)\right)+1 \\
& =q \lambda_{1}+1 \\
\text { where } & \eta+\Lambda=\{\eta+\lambda \mid \lambda \in \Lambda\}
\end{aligned}
$$

A first example

$$
\begin{aligned}
& \Lambda=\langle 3,5\rangle, \lambda_{1}=3, \lambda_{2}=5, q=2 \\
& \Lambda=\{0,3,5,6,8,9,10,11,12,13, \ldots\} \\
& q \lambda_{1}+\Lambda=\{6,9,11,12,14,15,16,17, \ldots\}
\end{aligned}
$$

$$
q \lambda_{2}+\Lambda=\{10,13,15,16,18,19,20, \ldots\}
$$

$$
\Lambda \backslash\left(q \lambda_{1}+\Lambda\right)=\{0,3,5,8,10,13\}
$$

$$
\Lambda \backslash\left(\left(q \lambda_{1}+\Lambda\right) \cup\left(q \lambda_{2}+\Lambda\right)\right)=\{0,3,5,8\}
$$

Lewittes' bound: $N_{2}(\Lambda) \leq 7$
New bound: $N_{2}(\Lambda) \leq 5$

Proposition

If $\lambda_{1}<q$ then let j be the largest index such that $\lambda_{j}<q$ holds else let $j=0$.
We have

$$
q \lambda_{1}-g \leq \#\left(\Lambda \backslash\left(\cup_{i=1}^{m}\left(q \lambda_{i}+\Lambda\right)\right)\right) \leq\left(\prod_{i=1}^{j} \lambda_{i}\right) q^{m-j} \leq q^{m}+1
$$

Remark The conductor of a semigroup $\Lambda \subseteq \mathbb{N}_{0}$ with finitely many gaps is the smallest number c such that there are no gaps greater or equal to c.
If $q \lambda_{1}+c \leq q \lambda_{2}$ the new bound and Lewittes' bound are the same. In particular if $q \lambda_{1}+2 g \leq q \lambda_{2}$. Happens for Garcia-Stichtenoth's second tower.

More examples

$\Lambda=\langle 8,9,20\rangle$								$g=20$
q	2	3	4	8	9	16		
bounds	$17 / 9$	$25 / 16$	$33 / 25$	$65 / 65$	$73 / 73$	$129 / 129$		
$N_{q}(g)$	$19-21$	$30-34$	$40-45$	$76-83$	$70-91$	$127-139$		

$\Lambda=\langle 13,15,24,31\rangle$								$g=38$	
q	2	3	4	8	9	16			
bounds	$27 / 13$	$40 / 28$	$53 / 40$	$105 / 97$	$118 / 112$	$209 / 207$			
$N_{q}(g)$	$30-33$	$*$	$64-74$	$129-135$	$105-149$	$193-233$			

... and still more examples

$\Lambda=\langle 13,14,20\rangle$								$g=42$	
q	2	3	4	8	9	16			
bounds	$27 / 9$	$40 / 17$	$53 / 33$	$105 / 95$	$118 / 102$	$209 / 195$			
$N_{q}(g)$	$33-35$	$52-59$	$75-80$	$129-147$	$122-161$	$209-254$			

$\Lambda=\langle 10,11,20,22\rangle$								$g=45$	
q	2	3	4	8	9	16			
bounds	$21 / 5$	$31 / 10$	$41 / 17$	$81 / 65$	$91 / 82$	$161 / 141$			
$N_{q}(g)$	$33-37$	$54-62$	$80-84$	$144-156$	$136-170$	$242-268$			

All semigroups of genus 8

$N_{2}(8)=11$: Excluded 13/33
$N_{3}(8) \in\{17,18\}$: Assuming 18, excluded 26/31
$N_{4}(8) \in\{21,22,23,24\}$: Assuming 24, excluded 26/31

Semigroup	$q=2$	$q=3$	$q=4$
$\langle 2,17\rangle$	$5 / 5$	$7 / 7$	$9 / 9$
$\langle 3,10,17\rangle$	$7 / 6$	$10 / 10$	$13 / 13$
$\langle 3,11,16\rangle$	$7 / 7$	$10 / 10$	$13 / 13$
$\langle 3,13,14\rangle$	$7 / 7$	$10 / 10$	$13 / 13$
$\langle 4,6,13\rangle$	$9 / 9$	$13 / 13$	$17 / 17$
$\langle 4,6,15,17\rangle$	$9 / 9$	$13 / 13$	$17 / 17$
$\langle 4,7,17\rangle$	$9 / 6$	$13 / 11$	$17 / 17$
$\langle 4,9,10\rangle$	$9 / 9$	$13 / 12$	$17 / 17$
$\langle 4,9,11\rangle$	$9 / 7$	$13 / 13$	$17 / 17$
$\langle 4,9,14,15\rangle$	$9 / 8$	$9 / 9$	$17 / 17$
$\langle 4,10,11,17\rangle$	$9 / 9$	$13 / 13$	$17 / 17$
$\langle 4,10,13,15\rangle$	$9 / 9$	$13 / 13$	$17 / 17$
$\langle 4,11,13,14\rangle$	$9 / 9$	$13 / 13$	$17 / 17$

All semigroups of genus 8 - cont.

$N_{2}(8)=11$: Excluded 13/33
$N_{3}(8) \in\{17,18\}$: Assuming 18, excluded 26/31
$N_{4}(8) \in\{21,22,23,24\}$: Assuming 24, excluded 26/31

Semigroup	$q=2$	$q=3$	$q=4$
$\langle 5,6,13\rangle$	$11 / 7$	$16 / 12$	$21 / 18$
$\langle 5,6,14\rangle$	$11 / 7$	$16 / 12$	$21 / 19$
$\langle 5,7,9\rangle$	$11 / 7$	$16 / 13$	$21 / 19$
$\langle 5,7,11\rangle$	$11 / 9$	$16 / 14$	$21 / 19$
$\langle 5,7,13,16\rangle$	$11 / 8$	$16 / 14$	$21 / 20$
$\langle 5,8,9\rangle$	$11 / 9$	$16 / 15$	$21 / 20$
$\langle 5,8,11,12\rangle$	$11 / 9$	$16 / 14$	$21 / 21$
$\langle 5,8,11,14,17\rangle$	$11 / 9$	$16 / 15$	$21 / 20$
$\langle 5,8,12,14\rangle$	$11 / 9$	$16 / 15$	$21 / 21$
$\langle 5,9,11,12\rangle$	$11 / 9$	$16 / 16$	$21 / 21$
$\langle 5,9,11,13,17\rangle$	$11 / 9$	$16 / 15$	$21 / 21$
$\langle 5,9,12,13,16\rangle$	$11 / 10$	$16 / 16$	$21 / 21$
$\langle 5,11,12,13,14\rangle$	$11 / 11$	$16 / 16$	$21 / 21$

All semigroups of genus 8-cont.

$N_{2}(8)=11$: Excluded 13/33
$N_{3}(8) \in\{17,18\}$: Assuming 18, excluded $26 / 31$
$N_{4}(8) \in\{21,22,23,24\}$: Assuming 24, excluded 26/31

Semigroup	$q=2$	$q=3$	$q=4$
$\langle 6,7,8,17\rangle$	$13 / 8$	$19 / 15$	$25 / 22$
$\langle 6,7,9,17\rangle$	$13 / 10$	$19 / 17$	$25 / 22$
$\langle 6,7,10,11\rangle$	$13 / 11$	$19 / 16$	$25 / 21$
$\langle 6,7,10,15\rangle$	$13 / 10$	$19 / 17$	$25 / 23$
$\langle 6,7,11,15,16\rangle$	$13 / 9$	$19 / 16$	$25 / 23$
$\langle 6,8,11,13,15\rangle$	$13 / 11$	$19 / 19$	$25 / 25$
$\langle 6,8,10,13,15,17\rangle$	$13 / 12$	$19 / 19$	$25 / 25$
$\langle 6,8,10,11,15\rangle$	$13 / 12$	$19 / 19$	$25 / 25$
$\langle 6,8,10,11,13\rangle$	$13 / 11$	$19 / 18$	$25 / 25$
$\langle 6,8,9,10\rangle$	$13 / 11$	$19 / 19$	$25 / 25$
$\langle 6,8,9,11\rangle$	$13 / 10$	$19 / 19$	$25 / 25$
$\langle 6,8,9,13\rangle$	$13 / 11$	$19 / 19$	$25 / 25$
$\langle 6,9,10,11,14\rangle$	$13 / 12$	$19 / 19$	$25 / 25$
$\langle 6,9,10,11,13\rangle$	$13 / 11$	$19 / 19$	$25 / 25$

All semigroups of genus 8 - cont.

$N_{2}(8)=11:$ Excluded 13/33
$N_{3}(8) \in\{17,18\}$: Assuming 18, excluded 26/31
$N_{4}(8) \in\{21,22,23,24\}$: Assuming 24, excluded 26/31

Semigroup	$q=2$	$q=3$	$q=4$
$\langle 6,9,10,13,14,17\rangle$	$13 / 12$	$19 / 19$	$25 / 25$
$\langle 6,9,11,13,14,16\rangle$	$13 / 12$	$19 / 19$	$25 / 25$
$\langle 6,10,11,13,14,15\rangle$	$13 / 12$	$19 / 19$	$25 / 25$
$\langle 7,8,9,10,11\rangle$	$15 / 10$	$22 / 18$	$29 / 26$
$\langle 7,8,9,10,12\rangle$	$15 / 10$	$22 / 18$	$29 / 26$
$\langle 7,8,9,10,13\rangle$	$15 / 10$	$22 / 18$	$29 / 26$
$\langle 7,8,9,11,12\rangle$	$15 / 11$	$22 / 18$	$29 / 27$
$\langle 7,8,9,11,13\rangle$	$15 / 11$	$22 / 18$	$28 / 27$
$\langle 7,8,9,12,13\rangle$	$15 / 11$	$22 / 18$	$29 / 27$
$\langle 7,8,10,12,13\rangle$	$15 / 12$	$22 / 19$	$29 / 27$
$\langle 7,8,10,11,12\rangle$	$15 / 11$	$22 / 19$	$29 / 29$
$\langle 7,8,10,11,13\rangle$	$15 / 11$	$22 / 19$	$29 / 27$
$\langle 7,8,11,12,13,17\rangle$	$15 / 12$	$22 / 20$	$29 / 28$

All semigroups of genus 8 - cont.

$N_{2}(8)=11:$ Excluded 13/33
$N_{3}(8) \in\{17,18\}$: Assuming 18, excluded 26/31
$N_{4}(8) \in\{21,22,23,24\}$: Assuming 24, excluded 26/31

Semigroup	$q=2$	$q=3$	$q=4$
$\langle 7,9,10,11,12,13\rangle$	$15 / 11$	$22 / 20$	$29 / 27$
$\langle 7,9,10,11,13,15\rangle$	$15 / 11$	$22 / 20$	$29 / 28$
$\langle 7,9,10,12,13,15\rangle$	$15 / 12$	$22 / 21$	$29 / 28$
$\langle 7,9,11,12,13,15,17\rangle$	$15 / 12$	$22 / 21$	$29 / 28$
$\langle 7,10,11,12,13,15,16\rangle$	$15 / 13$	$22 / 21$	$29 / 29$
$\langle 8,9,10,11,12,13,14\rangle$	$17 / 13$	$25 / 22$	$33 / 31$
$\langle 8,9,10,11,12,13,15\rangle$	$17 / 13$	$25 / 22$	$33 / 31$
$\langle 8,9,10,11,12,14,15\rangle$	$17 / 13$	$25 / 22$	$33 / 31$
$\langle 8,9,10,11,13,14,15\rangle$	$17 / 13$	$25 / 22$	$33 / 31$
$\langle 8,9,10,12,13,14,15\rangle$	$17 / 14$	$25 / 22$	$33 / 32$
$\langle 8,9,11,12,13,14,15\rangle$	$17 / 14$	$25 / 24$	$33 / 32$
$\langle 8,10,11,12,13,14,15,17\rangle$	$17 / 15$	$25 / 23$	$33 / 33$
$\langle 9,10,11,12,13,14,15,16,17\rangle$	$19 / 15$	$28 / 26$	$37 / 35$

An estimation of the new upper bound

Corollary

Define

$$
t=\#\left\{\lambda \in \Lambda \mid \lambda \in\left[\lambda_{1}+1, \lambda_{1}+\left\lceil\lambda_{1} / q\right\rceil-1\right]\right\} .
$$

We have

$$
N(\mathbb{F}) \leq q \lambda_{1}-t+1 .
$$

Example
Consider the extreme case $\lambda_{1}=g+1, \Lambda=\{0, g+1, g+2, \ldots\}$. We get $t=\lceil(g+1) / q\rceil-1$, and therefore

$$
N(\mathbb{F}) \leq q(g+1)+2-\lceil(g+1) / q\rceil
$$

For this particular semigroup:

$$
\#\left(\Lambda \backslash\left(\cup_{i=1}^{m}\left(\lambda_{i}+\Lambda\right)\right)\right)=q \lambda_{1}-t+1 .
$$

Bounds on $N_{q}(g)$

Proposition

$$
N_{q}(g) \leq\left(q-\frac{1}{q}\right) g+q+2-\frac{1}{q} .
$$

Consequently,

$$
\begin{aligned}
& N_{2}(g) \leq 1 \frac{1}{2} g+3 \frac{1}{2} \\
& N_{3}(g) \leq 2 \frac{2}{3} g+4 \frac{2}{3} \\
& N_{4}(g) \leq 3 \frac{3}{4} g+5 \frac{3}{4}
\end{aligned}
$$

whereas Serre's upper bound states

$$
\begin{aligned}
& N_{2}(g) \leq 2 g+3 \\
& N_{3}(g) \leq 3 g+4 \\
& N_{4}(g) \leq 4 g+5
\end{aligned}
$$

Towers of function fields

Corollary

Assume a tower of function fields is given with $g^{(i)} \rightarrow \infty$ for $i \rightarrow \infty$ and $\lim \inf _{i \rightarrow \infty}\left(\frac{N^{(i)}}{g^{(i)}}\right)=\kappa>0$. Let $\left(\mathcal{P}^{(1)}, \mathcal{P}^{(2)}, \ldots\right)$ be any sequence such that $\mathcal{P}^{(i)}$ is a rational place of $F^{(i)}$ for $i=1,2, \ldots$. Let $\lambda_{1}^{(i)}$ be the multiplicity of the Weierstrass semigroup related to $\mathcal{P}^{(i)}$ and let m_{i} be the number of generators in some description of $\Lambda^{(i)}$. We have

$$
\begin{gather*}
\liminf _{j \rightarrow \infty}\left(\lambda_{1}^{(i)} / g^{(i)}\right) \geq \kappa / q \tag{1}\\
m_{i} \rightarrow \infty \text { for } i \rightarrow \infty
\end{gather*}
$$

Proof: Follows from Lewittes' bound.

Towers of function fields

Garcia-Stichtenoth's second tower:

$$
\lim _{i \rightarrow \infty}\left(\lambda_{1}^{(i)} / g^{(i)}\right)=1 / q
$$

Above corollary reads

$$
\liminf _{i \rightarrow \infty}\left(\lambda_{1}^{(i)} / g^{(i)}\right) \geq(q-1) / q^{2}=\frac{1-1 / q}{q}
$$

Corollary: One cannot construct asymptotically good towers of function fields having telescopic Weierstrass semigroups.

Sketch of a proof

Step 1:
Use order domain theory to describe $\cup_{m=0}^{\infty} \mathcal{L}(m \mathcal{P})$ as a factor ring $\mathbb{F}_{q}\left[X_{1}, \ldots, X_{m}\right] / /$ where I is a certain type of ideal.

Step 2:
Observe, that the rational places except \mathcal{P} corresponds to the elements in $\mathbb{V}_{\mathbb{F}_{q}}(I)$.

Step 3:
Apply Gröbner basis techniques to the problem of estimating the size of $\mathbb{V}_{\mathbb{F}_{q}}(I)$
NOTE: we do not assume to know I but only assume to know \wedge.

Definition Given $w_{1}, \ldots, w_{m} \in \mathbb{N}$ define
$w\left(X_{1}^{a_{1}} \cdots X_{m}^{a_{m}}\right)=a_{1} w_{1}+\cdots+a_{m} w_{m}$. Given further a fixed monomial ordering \prec on $\mathcal{M}\left(X_{1}, \ldots, X_{m}\right)$ the weighted graded ordering \prec_{w} on $\mathcal{M}\left(X_{1}, \ldots, X_{m}\right)$ is given by $X_{1}^{\alpha_{1}} \ldots X_{m}^{\alpha_{m}} \prec_{w} X_{1}^{\beta_{1}} \cdots X_{m}^{\beta_{m}}$ if one of the following two conditions holds:
(1) $w\left(X_{1}^{\alpha_{1}} \ldots X_{m}^{\alpha_{m}}\right)<w\left(X_{1}^{\beta_{1}} \ldots X_{m}^{\beta_{m}}\right)$
(2) $w\left(X_{1}^{\alpha_{1}} \cdots X_{m}^{\alpha_{m}}\right)=w\left(X_{1}^{\beta_{1}} \cdots X_{m}^{\beta_{m}}\right)$
and $X_{1}^{\alpha_{1}} \ldots X_{m}^{\alpha_{m}} \prec X_{1}^{\beta_{1}} \ldots X_{m}^{\beta_{m}}$

Definition

Denote by $\mathcal{M}\left(X_{1}, \ldots, X_{m}\right)$ the set of monomials in X_{1}, \ldots, X_{m}. Given a monomial ordering \prec on $\mathcal{M}\left(X_{1}, \ldots, X_{m}\right)$ and an ideal $I \subseteq k\left[X_{1}, \ldots, X_{m}\right]$ the footprint of I is the set

$$
\Delta_{\prec}(I)=\left\{M \in \mathcal{M}\left(X_{1}, \ldots, X_{m}\right) \mid M\right. \text { is not }
$$

a leading monomial of any polynomial in $I\}$.

Main example of numerical weight function

Main example of numerical weight function:

$$
\rho: \cup_{m=0}^{\infty} \mathcal{L}(m \mathcal{P}) \rightarrow-\wedge \cup\{-\infty\}
$$

given by $\rho(f)=-\nu_{\mathcal{P}}(f)$.

A result from order domain theory

Theorem

Let $/$ be an ideal in $k\left[X_{1}, \ldots, X_{m}\right]$ and assume

- $\mathcal{G}=\left\{F_{1}\left(X_{1}, \ldots, X_{m}\right), \ldots, F_{s}\left(X_{1}, \ldots, X_{m}\right)\right\}$ is a Gröbner basis for I with respect to a weighted degree ordering \prec_{w}.
- The elements of $\Delta_{\alpha_{w}}(I)$ have mutually distinct weights
- Every element of \mathcal{G} has exactly two monomials of highest weight in its support.
Write $\Lambda=\left\{w(M) \mid M \in \Delta_{<_{w}}(I)\right\}$. For $f \in k\left[X_{1}, \ldots, X_{m}\right] / I$ denote by F the (unique) remainder of any polynomial in f after division with \mathcal{G}. Then $R=k\left[X_{1}, \ldots, X_{m}\right] / /$ is an order domain with a numerical weight function $\rho: R \rightarrow \Lambda \cup\{-\infty\}$ defined by $\rho(0)=-\infty$ and $\rho(f)=\max \{w(M) \mid M \in \operatorname{Supp}(F)\}$ for $f \neq 0$. On the other hand let R be an order domain with a numerical weight function $\rho: R \rightarrow \Lambda \cup\{-\infty\}$ where $\Lambda=\left\langle\lambda_{1}, \ldots, \lambda_{m}\right\rangle$.
Then there exists a description as above with
$w\left(X_{1}\right)=\lambda_{1}, \ldots, w\left(X_{m}\right)=\lambda_{m}$.

Lemma

Let $\cup_{m=0}^{\infty} \mathcal{L}(m \mathcal{P})$ be described as a factor ring as in previous Theorem. The number of rational places of \mathbb{F} equals $\# \mathbb{V}_{\mathbb{F}_{q}}(I)+1=\# \mathbb{V}_{\mathbb{F}_{q}}\left(I_{q}\right)+1$ where $I_{q}=\left\langle X_{1}^{q}-X_{1}, \ldots, X_{m}^{q}-X_{m}, F_{1}\left(X_{1}, \ldots, X_{m}\right), \ldots, F_{s}\left(X_{1}, \ldots, X_{m}\right)\right\rangle$.

How to count

Proposition

Let $J \subseteq \mathbb{F}_{q}\left[X_{1}, \ldots, X_{m}\right]$ be an ideal such that $X_{1}^{q}-X_{1}, \ldots, X_{m}^{q}-X_{m} \in J$. Let \prec be any monomial ordering on $\mathcal{M}\left(X_{1}, \ldots, X_{m}\right)$. The footprint $\Delta_{\prec}(J)$ is finite and $\# \mathbb{V}_{\mathbb{F}_{q}}(J)=\# \Delta_{\prec}(J)$ holds.

Lemma Given description as in above theorem. Assume that $G\left(X_{1}, \ldots, X_{m}\right)$ has precisely one monomial of highest weight in its support. Denote this highest weight by $w\left(G\left(X_{1}, \ldots, X_{m}\right)\right)$. The polynomial

$$
G\left(X_{1}, \ldots, X_{m}\right) \text { rem }\left(F_{1}\left(X_{1}, \ldots, X_{m}\right), \ldots, F_{s}\left(X_{1}, \ldots, X_{m}\right)\right.
$$

also has precisely one monomial of highest weight in its support and this weight equals $w\left(G\left(X_{1}, \ldots, X_{m}\right)\right)$.

Apply Lemma to $\left(X_{1}^{a_{1}} \cdots X_{m}^{a_{m}}\right)\left(X_{i}^{q}-X_{i}\right)$ for all choices of a_{1}, \ldots, a_{m}, i.

