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Terminology

F/Fq Fq full constant field

N (F) the number of rational places

g(FF) the genus

Ng(g) = max{N(F) | F is a function field over Fq,g(F) =g}
Let A be a Weierstrass semigroup for a rational place P

N = —vp(Un_o(mP)\{0})

We have #No\A =g



Terminology

A sometimes holds more information about N(IF) than does g
alone.

If no function field over Fqy has a rational place having A as
Weierstrass semigroup then Ng(A) =0

else

Ng(A) = max{N(F) | F is afunction field over Fq
having a rational place with
Weierstrass semigroup equal to A}



Lewittes’ bound

A1 is called the multiplicity.

Lewittes showed

Example:

Hermitian function field X9t — Y9 —Y over F..
P~ has Weierstrass semigroup A = (q,q + 1).
g%\ + 1 = g3 + 1 which is attained.



An improvement to Lewittes’ bound

Ng(A) #(M(ULeaNi +A)) +1
#(A\(@r1+A) +1

qAr +1

IAIA

wheren +A={n+X|XeA}



A first example

A= (3,5),\1 =3, X =5q=2
A={0,3,5,6,8,9,10,11,12,13,...}
g1+ A ={6,9,11,12,14,15,16,17, ...}
gA2 + A = {10,13,15,16,18,19, 20, ...}
A\(gA1 + A) = {0,3,5,8,10,13}

M((@A1 +A) U (ar2 + 7)) ={0,3,5,8}
Lewittes’ bound: Ny (A) < 7

New bound: N2(A) <5



Proposition
If Ay < g then let| be the largest index such that \; < g holds
elseletj =0.
We have
j .
gA — g < #A\(ULy(ax +A) < (J[Ma™ 7 <a™+1
i=1

Remark The conductor of a semigroup A C Ny with finitely
many gaps is the smallest number c such that there are no
gaps greater or equal to c.

If A1 + ¢ < gA the new bound and Lewittes’ bound are the
same. In particular if g\; + 2g < gqA,. Happens for
Garcia-Stichtenoth’s second tower.



More examples

A=(8,9,200 g=20

q

3 4 8

9

16

bounds

17/9

25/16 | 33/25 | 65/65

73/73

129/129

Nq(9)

19-21

30—-34|40—-45| 76 — 83

70 —-91

127 — 139

A= (13,15,24,31) g —38

q

3 4 8

9

16

bounds

27/13

40/28 | 53/40 | 105/97

118/112

209/207

Nq(9)

30 - 33

* 64 —74 | 129 — 135

105 — 149

193 — 233




. and still more examples

A= (13,14,20) g =42
q 2 3 4 8 9 16
bounds | 27/9 | 40/17 | 53/33 | 105/95 | 118/102 | 209/195
Nq(9) |[33—35|52—59 | 75— 80 | 129 — 147 | 122 — 161 | 209 — 254
A= (10,11,20,22) g =45
q 2 3 4 8 9 16
bounds | 21/5 | 31/10 | 41/17 | 81/65 91/82 | 161/141
Ng(9) || 33— 37 | 54— 62 | 80 — 84 | 144 — 156 | 136 — 170 | 242 — 268




All semigroups of genus 8

N»(8) = 11: Excluded 13/33
N3(8) € {17,18}: Assuming 18, excluded 26/31
N4(8) € {21,22,23,24}: Assuming 24, excluded 26/31

Semigroup g=2(gq=3|q=4
(2,17) 5/5 7/7 9/9
(3,10,17) 7/6 |10/10 | 13/13
(3,11, 16) 7/7 |10/10 | 13/13
(3,13,14) 7/7 |10/10 | 13/13
(4,6,13) 9/9 |13/13|17/17
(4,6,15,17) 9/9 |13/13 | 17/17
(4,7,17) 9/6 |13/11|17/17
(4,9,10) 9/9 |13/12|17/17
(4,9,1
(4,9,1
(4,1
(4,1
(4,1

1) 9/7 |13/13|17/17
,14,15) | 9/8 | 9/9 |17/17
0,11,17) | 9/9 |13/13|17/17
0,13,15) | 9/9 |13/13 |17/17
1,13,14) | 9/9 |13/13|17/17




All semigroups of genus 8 - cont.

N»(8) = 11: Excluded 13/33
N3(8) € {17,18}: Assuming 18, excluded 26/31
N4(8) € {21,22,23,24}: Assuming 24, excluded 26/31

Semigroup g=2|q=3|qg=4
(5,6,13) 11/7 | 16/12 | 21/18
(5,6,14) 11/7 | 16/12 | 21/19
(5,7,9) 11/7 | 16/13 | 21/19
(5,7,11) 11/9 | 16/14 | 21/19
(5,7,13,16) 11/8 | 16/14 | 21/20
(5,8,9) 11/9 | 16/15| 21/20
(5,8,11,12) 11/9 | 16/14 | 21/21
(5,8,11,14,17) 11/9 | 16/15 | 21/20
(5,8,12,14) 11/9 | 16/15| 21/21
(5,9,11,12) 11/9 | 16/16 | 21/21
(5,9,11,13,17) 11/9 | 16/15| 21/21
(5,9,12,13,16) | 11/10 | 16/16 | 21/21
(5,11,12,13,14) | 11/11 | 16/16 | 21/21




All semigroups of genus 8 - cont.
N»(8) = 11: Excluded 13/33
N3(8) € {17,18}: Assuming 18, excluded 26/31
N4(8) € {21,22,23,24}: Assuming 24, excluded 26/31

Semigroup g=2|q=3|qg=4
(6,7,8,17) 13/8 | 19/15| 25/22
(6,7,9,17) 13/10 | 19/17 | 25/22
<6,7,1O 11) 13/11 | 19/16 | 25/21
(6,7,10, 15) 13/10 | 19/17 | 25/23
(6,7,11,15,16) 13/9 | 19/16 | 25/23
(6,8,11,13,15) 13/11 | 19/19 | 25/25
(6,8,10,13,15,17) | 13/12 | 19/19 | 25/25
(6,8,10,11,15) 13/12 | 19/19 | 25/25
(6,8,10,11,13) 13/11 | 19/18 | 25/25
(6,8,9,10) 13/11 | 19/19 | 25/25
(6,8,9,11) 13/10 | 19/19 | 25/25
(6,8,9,13) 13/11 | 19/19 | 25/25
(6,9,10,11,14) 13/12 | 19/19 | 25/25
(6,9,10,11,13) 13/11 | 19/19 | 25/25




All semigroups of genus 8 - cont.

N»(8) = 11: Excluded 13/33
N3(8) € {17,18}: Assuming 18, excluded 26/31
N4(8) € {21,22,23,24}: Assuming 24, excluded 26/31

Semigroup g=2|q=3|9g=4
(6,9,10,13,14,17) | 13/12 | 19/19 | 25/25
(6,9,11,13,14,16) | 13/12 | 19/19 | 25/25
(6,10,11,13,14,15) | 13/12 | 19/19 | 25/25
(7,8,9,10,11) 15/10 | 22/18 | 29/26
(7,8,9,10,12) 15/10 | 22/18 | 29/26
(7,8,9,10,13) 15/10 | 22/18 | 29/26
(7,8,9,11,12) 15/11 | 22/18 | 29/27
(7,8,9,11,13) 15/11 | 22/18 | 28/27
(7,8,9,12,13) 15/11 | 22/18 | 29/27
(7,8,10,12,13> 15/12 | 22/19 | 29/27
(7,8,10,11,12) 15/11 | 22/19 | 29/29
(7,8,10,11,13) 15/11 | 22/19 | 29/27
(7,8,11,12,13,17) | 15/12 | 22/20 | 29/28




All semigroups of genus 8 - cont.

N»(8) = 11: Excluded 13/33
N3(8) € {17,18}: Assuming 18, excluded 26/31
N4(8) € {21,22,23,24}: Assuming 24, excluded 26/31

Semigroup g=2|q=3|9g=4
(7,9,10,11,12,13) 15/11 | 22/20 | 29/27
(7,9,10,11,13,15) 15/11 | 22/20 | 29/28
(7,9,10,12,13,15) 15/12 | 22/21 | 29/28
(7,9,11,12,13,15,17) 15/12 | 22/21 | 29/28
(7,10,11,12,13,15,16) 15/13 | 22/21 | 29/29
(8,9,10,11, 12 13, 14) 17/13 | 25/22 | 33/31
(8,9,10,11,12,13,15) 17/13 | 25/22 | 33/31
(8,9,10,11,12,14,15) 17/13 | 25/22 | 33/31
(8,9,10,11,13,14,15) 17/13 | 25/22 | 33/31
(8,9, 10, 12,13,14,15) 17/14 | 25/22 | 33/32
(8,9,11,12,13,14,15) 17/14 | 25/24 | 33/32
(8,10,11,12,13,14,15,17) 17/15 | 25/23 | 33/33
(9,10,11,12,13,14,15,16,17) | 19/15 | 28/26 | 37/35




An estimation of the new upper bound

Corollary
Define

t=#{AeA|AeM+1 M+ [A/q] — 1]}

We have
N(F) <gip —t+ 1.

Example

Consider the extreme case \y =g+1,A={0,9+1,9+2,...}.

We gett = [(g +1)/q] — 1, and therefore

N(F)<a(g+1)+2-[(g+1)/q]

For this particular semigroup:

H#A\(UZ (N +A) =gl -t + 1.



Bounds on Ng(9)

Proposition
Na(@) < (@~ )a+a+2- .
Consequently,
NAG) < 159+3;
Ni(g) < 229+ 42
Ni(g) < 30945,

whereas Serre’s upper bound states
N2(9) < 29+3

N3(g) < 3g+4
Na(g) < 49+5



Towers of function fields

Corollary _
Assume a tower of function fields is given with g{) — oo for

i — 0o and liminfi_.o(8G) = x> 0. Let (P@W, @, .. be any
sequence such that P(1) is a rational place of F () for
i=12,.... Let )\g') be the multiplicity of the Weierstrass

semigroup related to () and let m; be the number of
generators in some description of A(). We have

liminf; (A /g®) > /q (1)

m; — oo for i — oo

Proof: Follows from Lewittes’ bound.



Towers of function fields

Garcia-Stichtenoth’s second tower:
1im (A\/g®) = 1/q.
|—00

Above corollary reads

1-1/q
TR

iminf(A{’/g") > (q - 1)/a? =

Corollary : One cannot construct asymptotically good towers
of function fields having telescopic Weierstrass semigroups.



Sketch of a proof

Step 1:

Use order domain theory to describe Uy®_,£(mP) as a factor
ring Fq[X1,...,Xm]/I where | is a certain type of ideal.

Step 2:

Observe, that the rational places except P corresponds to the
elements in Vg, (1).

Step 3:

Apply Grébner basis techniques to the problem of estimating
the size of V(1)

NOTE: we do not assume to know | but only assume to know A.



Definition Given wy,...,wn € N define

W(X{t - X5m) = agWy + - - - + amWm. Given further a fixed
monomial ordering < on M(Xg, ..., Xn) the weighted graded
ordering <w on M(Xg, ..., Xm) is given by

X[t Xm™ <w Xlﬁ1 .- X if one of the following two
conditions holds:

(1) WXt Xam) < w(X[r .. X
(2) W(X{* - Xam) = w(Xt - Xgm)
and Xt X@m < XP. L xpm



Definition

Denote by M(Xy, ..., Xm) the set of monomials in Xq, ..., Xn.
Given a monomial ordering < on M(Xg, ..., Xn) and an ideal
I C k[X4,...,Xm] the footprint of | is the set

A()={M e M(Xq,...,Xm) | M is not
a leading monomial of any polynomial in I}.



Main example of numerical weight function

Main example of numerical weight function:
P Unm_oL(MP) — =AU {—o0}

given by p(f) = —vp(f).



A result from order domain theory

Theorem
Let | be an ideal in k[Xy,...,Xn] and assume
» G ={F1(X1,.--,Xm), ..., Fs(Xq,...,Xm)} is a Grobner
basis for | with respect to a weighted degree ordering <.

» The elements of A, (1) have mutually distinct weights

» Every element of G has exactly two monomials of highest
weight in its support.

Write A = {w(M) | M € AL, ()}. Forf e k[Xy,...,Xm]/I
denote by F the (unique) remainder of any polynomial in f after
division with G. Then R = k[X4,...,Xn]/I is an order domain
with a numerical weight function p : R — AU {—oc} defined by
p(0) = —oo and p(f) = max{w(M) | M € Supp(F)} for f # 0.
On the other hand let R be an order domain with a numerical
weight function p: R — AU {—oco} where A = (A1,..., Am).
Then there exists a description as above with
W(Xl) = )\1, - ,W(Xm) = Am.



Lemma
Let Ure_,£(mP) be described as a factor ring as in previous

Theorem. The number of rational places of F equals
#Vr, (1) + 1 = #Vg,(lg) + 1 where

lg = (X{ = X1, ... Xm—=Xm, F1 (X1, -, Xm)s - - -, Fs (X1, . .., Xm))-



How to count

Proposition

LetJ C Fq[Xy,...,Xm] be an ideal such that

X{ = X1,...,Xm — Xm € J. Let < be any monomial ordering on
M(Xq,...,Xm). The footprint AL(J) is finite and

#V, (3) = #A(3) holds.



Lemma Given description as in above theorem. Assume that
G(Xy,...,Xm) has precisely one monomial of highest weight in
its support. Denote this highest weight by w(G(Xy, ..., Xm)).
The polynomial

also has precisely one monomial of highest weight in its
support and this weight equals w(G(Xy, ..., Xm)).

Apply Lemma to (X2 - - X5m) (X — X;) for all choices of
ag,...,am,l.
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