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Terminology
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Definition: Given a finite set V and
a map ε : {1, . . . ,n} → V × V . Let
E = {(1, ε(1)), . . . , (n, ε(n))}. Then
G = (V ,E) is called a directed graph.

Elements in V are vertices and
elements in E are edges.



When the edge map ε is known we write i instead of (i , (u, v)).
That is E = {1, . . . ,n}.
When it does not lead to confusion we may also write (u, v)
instead of (i , (u, v))

Definition: Given v ∈ V define
I in(v) = {i ∈ E | ε(i) = (w , v) for some w}

I out(v) = {i ∈ E | ε(i) = (v ,w) for some w}

Given j ∈ E write ε(j) = (u, v) and define
I in(j) = in(u)
I tail(j) = u
I out(j) = out(v)
I head(j) = v



Path

Definition: A path in G = (V ,E) is a sequence of edges
P = (i1, . . . , ik ) such that
head(is) = tail(is+1) for s = 1, . . . , k − 1.

When the graph has not multiple edges we can write this as
P =

(

(u0,u1), (u1,u2), . . . , (un−1,un)
)

.

In this mini course we shall always assume that our (directed)
graph are CYCLE FREE.

This by definition means that there does not exist a path P in
which a vertex u appears more than once.

In particular we do not allow loops.



First communication problem
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Sender s wants to send two messages
a,b ∈ F2 to both receivers r1 and r2

simultaneously.

Concentrating on r1

Flow of size 2 to r1: F1 =
{(1,5), (2,4,6,8)}
Send a along edge 1 and b along
edge 2 and let them propagate.

Concentrating on r2

Flow of size 2 to r2: F2 =
{(1,3,6,9), (2,7)}
Send a along edge 1 and b along
edge 2 and let them propagate.



Two partial solutions
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The network Flow F1 Flow F2

The flow system is F = {F1,F2}
F1 = {(1,5), (2,4,6,8)},F2 = {(1,3,6,9), (2,7)}



A solution

Routing is insufficient, but problem is solvable
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ba + b

a + b a + b

Receiver r1 can reconstruct b as a + (a + b)
Receiver r2 can reconstruct a as (a + b) + b



Ancestral orderings

The assumption that G is cycle free implies that we can order E
by an ancestral ordering.

An ancestral ordering on E is a total ordering such that i < j
implies there is not path with i visited before j .

Similarly, ancestral orderings on V .



The general problem

G = (V ,E)
S = {s1, . . . , s|S|} ⊆ V called senders
R = {r1, . . . , r|R|} ⊆ V called receivers

Message vector ~X = (X1, . . . ,Xh). The messages Xi takes on
values in A (an abelian group)

K : {X1, . . . ,Xh} → S a surjective map

If K (Xi) = sj then we say that message Xi is generated at sj .

D(rl) = (Xi1 , . . . ,Xi|D(rl )|
) which is called demand.



General set-up
·
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Encoding functions;

For every edge j we define a vari-
able Y (j) that takes on values in A.

Visiting the edges by an ancestral
ordering we define relations

Y (j) = fj

(

(

Y (i) | i ∈ in(j)
)

,

(

Xk | Xk is generated at tail(j)
)

)

If argument empty Y (j) always takes on
the value 0.



General set-up cont.
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Decoding functions:

For every receiver rl we define variables
Z (rl)

1 , . . . ,Z (rl )
|D(rl )|

.

Z (rl)
j = d (rl)

j

(

(

Y (i) | i ∈ in(rl)
)

,

(

Xk | Xk is generated at rl
)

)

Network coding problem:
Choose if possible fj , dj such that

(Z (rl )
1 , . . . ,Z (rl )

|D(rl)|
) = D(rl).



Linear network coding
·

s

v1 v3

v2

v4

r1 r2

· ·

X1 X2

Y (1) Y (2)

Y (3)

Y (5)

Y (4)

Y (7)Y (6)

Y (8) Y (9)

Z (1)
1 Z (1)

2 Z (2)
1 Z (2)

2

Alphabet now is Fq and coefficients below
belong to Fq.

Y (j) =
∑

i∈in(j)

fi ,jY (i) +
∑

K (Xi )=tail(j)
ai ,jXi

Z (rl)
j =

∑

i∈in(rl )

b(rl)
i ,j Y (i) +

∑

K (Xi )=rl

b̃(rl)
i ,j Xi

We often assume R ∩ S = ∅



Scenarios

I Unicast. R = {r1}. D(r1) = (X1, . . . ,Xh). (Classical theory)
I Multicast. More receivers. Every receiver demands

everything. (Recent theory)
I General situation. More receivers, different demands.

(Rather open)

We concentrate mainly on multicast.



Definition: Given a multicast problem a flow (of size h) to
receiver r is a set of h edge disjoint paths from
S = {s1, . . . , s|S|} to r such that the number of paths starting in
si equals the number of messages generated in si

Note, a flow is NOT a sub graph.

Unicast:
Existence of a flow is necessary and a sufficient condition for
solvability.



s′
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X1 is generated at s1 and
X2,X3 are generated at s2.

Add s′ and edges e1, . . . ,eh

from s′ to S = {s1, . . . , s|S|}.
Number of edges from s′ to
si is number of messages
generated at si .

Consider all possible
V1,V2, V1 ∩ V2 = ∅,
V1 ∪ V2 = V ∪ {s′}, s′ ∈ V1,
r ∈ V2.

cut(V1,V2) is the edges
FROM V1 TO V2.

min cut = max flow

Flow necessary and suf-
ficient (use routing) condition



Multicast

corresponds to set of unicast problems.

Flow system (of size h)

F = (F1, . . . ,F|R|)

Fl is a flow (of size h) from S to rl .

Existence of a flow system i necessary.

Surprisingly also sufficient (Ahlswede, Cai, Li and Yeung,
2000).

Actually when solvable; linear network coding is enough!



Matrices

A is h × |E |
Ai ,j = ai ,j if K (Xi) = tail(j)
Ai ,j = 0 else

F is |E | × |E |
Fi ,j = fi ,j if i ∈ in(j)
Fi ,j = 0 else

For l = 1, . . . , |R|

B(rl ) is |E | × h
B(rl )

i ,j = b(rl)
i ,j if i ∈ in(rl)

B(rl )
i ,j = 0 else



The Fi ,j “holds” information on all paths of length 2 starting in
edge i and ending in edge j .

The (i , j)th entry of F n “holds” information on all paths of length
n + 1 starting in edge i and ending in edge j .

(

F n)

i ,j =
∑

(i = j0, j1, . . . , jn = j
a path
in G

fi=j0,j1 fj1,j2 · · · fjn−1,jn=j

This in particular holds for F 0.

G being cycle free F N = 0 for some big enough N.

I + F + · · · + F N−1

holds information on all paths of any length.
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Modification of network. In original network two sources at s1

and one source at s2.

In modified network the ai ,j ’s and the b(rl)
i ,j ’s from the original

network plays the same role as the fi ,j ’s



Lemma:
M(rl ) = A(I + F + · · ·+ F N−1)B(rl )

holds information on all paths from s′ to {r (l)1 , . . . , r (l)h }

From this we derive: Theorem:
(X1, . . . ,Xh)M(rl ) = (Z (rl )

1 , . . .Z (rl )
h )

M(rl ) is called the transfer matrix for rl

Note (I + F + · · ·+ F N−1)(I − F ) = I

M(rl ) = A(I − F )−1B(rl )



For successful encoding/decoding we require
M(r1) = · · · = M(r|R|) = I

Relaxed requirement:
det(M(rl )) 6= 0 for l = 1, . . . , |R|.

Success iff
∏

l=1,...,|R| det(M(rl )) 6= 0

Considered as a polynomial in the ai ,j ’s, fi ,j ’s and b(rl)
i ,j ’s this

product is called the transfer polynomial.

Proposition:
|det(M(rl ))| = |det(E (rl))| where

E (rl)) =

[

A 0
I − F B(rl )

]



Theorem: The permanent per(M(rl )) is the sum of all monomial
expressions in the ai ,j ’s, fi ,j ’s and b(rl)

i ,j ’s which correspond to a

flow of size h from s′ to {r (l)1 , . . . , r (l)h } in the modified graph.

Proof: Apply the lemma carefully.

As a consequence det(M(rl )) is a linear combination of the
expressions corresponding to flows. The coefficients being 1 or
−1.

In the transfer polynomial
∏

l=1,...,|R| det(M(rl )) every monomial
corresponds to a flow system.

Coefficients are integers
which in Fq becomes elements in Fp, p being the characteristic.



Indeed terms may cancel out when taking the product of the
det(M(rl ))’s (See Example 1.1)

However, clearly if all det(M(rl ))’s are different from 0 so is the
transfer polynomial.

Theorem 1.1+1.2: A multicast problem is solvable iff the graph
contains a flow system of size h. If solvable then solvable with
linear network coding whenever q ≥ |R|.

Proof: Necessity follows from unicast considerations. Assume
a flow system exists. The transfer polynomial is non-zero and
no indeterminate appears in power exceeding |R|. Therefore if
q > |R| then over Fq a non-zero solution exists (here we used
the Schwarts-Zippel bound).
We shall later see that q ≥ |R| is enough.



Minimal field size

NP-complete problem to find smallest feasible fields size.

To check if Fq works reduce the transfer polynomial modulo
X q − X where X run through the variables ai ,j and fi ,j .

Easy replacement operation.

Must imply that transfer polynomial can sometimes have
exponential many terms.



In linear network coding we always have
Y (i) = c1X1 + · · ·+ chXh for some c1, . . . , ch ∈ Fq.

We shall call dc(i) = (c1, . . . , ch) the global coding vector for
edge i .

A receiver that does not know how encoding was done can
learn how to decode (if possible) as follows.

Senders inject into the system h message vectors
(1,0, · · · ,0), (0,1,0 . . . ,0), . . . , (0, . . . ,0,1).

These generate the global coding vectors at each edge
including the in edges of rl .

If the received global coding vectors span Fh
q then proper b(rl)

i ,j ’s
can be found.



Jaggi-Sanders algorithm
Jaggi-Sanders algorithm take as input a solvable multicast
problem.
It add a new source s′ and moves all processes to this point
and add edges e1, . . . ,eh from s′ to S.

In the extended graph a flow system is found.

The algorithm for every receiver keeps a list of edges
corresponding to a cut.

Also it updates along the way encoding coefficients in such a
way that the global coding vectors corresponding to any of the
|R| cuts at any time span the whole of Fh

q.

Edges in the flow system are visited according to an ancestral
ordering.

In every update at most one edge is replaced in a given cut.



The Jaggi-Sanders algorithm cont.

Lemma 1.1: Given a basis {~b1, . . . ,
~bh} for Fh

q

and ~c ∈ Fh
q,

there is exactly one choice of a ∈ Fq such that
~c + a~bh ∈ spanfq

{~b1, . . . ,
~bh−1}.

Proof. Expand ~c over {~b1, . . . ,
~bh}.



q ≥ |R| is enough
Given j let RF (j) be the number of Bl ’s being updated and let
k = in’(j) ∩ F .
Clearly, k ≤ RF(j) ≤ |R|

Out of the qk choices of encoding coefficients in worst case
when one Blt fails to span Fh

q all others do.

Hence at most RF(j)qk−1 choices of (fi1,j , . . . , fik ,j) fails.

But fi1,j = · · · = fik ,j = 0 has ben counted RF times. So at most
RF (j)qk−1 − (RF − 1) choices fails.

Probability of success in one step is at least

qk − RFqk−1 + (RF − 1)
qk

which is > 0 if q ≥ |R|.


