Aspects of network coding - Part I

O. Geil, Aalborg University

$S^{3} \mathrm{~cm}$: Soria Summer School on Computational Mathematics,
Universidad de Valladolid, Soria
July 12-16 2010

Terminology

Definition: Given a finite set V and a map $\epsilon:\{1, \ldots, n\} \rightarrow V \times V$. Let $E=\{(1, \epsilon(1)), \ldots,(n, \epsilon(n))\}$. Then $G=(V, E)$ is called a directed graph.

Elements in V are vertices and elements in E are edges.

When the edge map ϵ is known we write i instead of $(i,(u, v))$.
That is $E=\{1, \ldots, n\}$.
When it does not lead to confusion we may also write (u, v) instead of $(i,(u, v))$

Definition: Given $v \in V$ define

- $\operatorname{in}(v)=\{i \in E \mid \epsilon(i)=(w, v)$ for some $w\}$
- out $(v)=\{i \in E \mid \epsilon(i)=(v, w)$ for some $w\}$

Given $j \in E$ write $\epsilon(j)=(u, v)$ and define

- $\operatorname{in}(j)=\operatorname{in}(u)$
- tail $(j)=u$
- out $(j)=\operatorname{out}(v)$
- head $(j)=v$

Path

Definition: A path in $G=(V, E)$ is a sequence of edges
$\mathcal{P}=\left(i_{1}, \ldots, i_{k}\right)$ such that
$\operatorname{head}\left(i_{s}\right)=\operatorname{tail}\left(i_{s+1}\right)$ for $s=1, \ldots, k-1$.
When the graph has not multiple edges we can write this as $\mathcal{P}=\left(\left(u_{0}, u_{1}\right),\left(u_{1}, u_{2}\right), \ldots,\left(u_{n-1}, u_{n}\right)\right)$.

In this mini course we shall always assume that our (directed) graph are CYCLE FREE.

This by definition means that there does not exist a path \mathcal{P} in which a vertex u appears more than once.

In particular we do not allow loops.

First communication problem

Sender s wants to send two messages $a, b \in F_{2}$ to both receivers r_{1} and r_{2} simultaneously.

Concentrating on r_{1}
Flow of size 2 to r_{1} : $F_{1}=$ $\{(1,5),(2,4,6,8)\}$
Send a along edge 1 and b along edge 2 and let them propagate.

Concentrating on r_{2}
Flow of size 2 to r_{2} : $F_{2}=$ $\{(1,3,6,9),(2,7)\}$
Send a along edge 1 and b along edge 2 and let them propagate.

Two partial solutions

The network

Flow F_{1}

Flow F_{2}

The flow system is $\mathcal{F}=\left\{F_{1}, F_{2}\right\}$ $F_{1}=\{(1,5),(2,4,6,8)\}, F_{2}=\{(1,3,6,9),(2,7)\}$

A solution

Routing is insufficient, but problem is solvable

Receiver r_{1} can reconstruct b as $a+(a+b)$
Receiver r_{2} can reconstruct a as $(a+b)+b$

Ancestral orderings

The assumption that G is cycle free implies that we can order E by an ancestral ordering.

An ancestral ordering on E is a total ordering such that $i<j$ implies there is not path with i visited before j.

Similarly, ancestral orderings on V.

The general problem

$G=(V, E)$
$S=\left\{s_{1}, \ldots, s_{|S|}\right\} \subseteq V$ called senders
$R=\left\{r_{1}, \ldots, r_{|R|}\right\} \subseteq V$ called receivers
Message vector $\vec{X}=\left(X_{1}, \ldots, X_{h}\right)$. The messages X_{i} takes on values in \mathcal{A} (an abelian group)
$K:\left\{X_{1}, \ldots, X_{h}\right\} \rightarrow S$ a surjective map
If $K\left(X_{i}\right)=s_{j}$ then we say that message X_{i} is generated at s_{j}.
$D\left(r_{1}\right)=\left(X_{i_{1}}, \ldots, X_{i D\left(r_{r}\right) \mid}\right)$ which is called demand.

General set-up

Encoding functions;

For every edge j we define a variable $Y(j)$ that takes on values in \mathcal{A}.

Visiting the edges by an ancestral ordering we define relations
$Y(j)=f_{j}((Y(i) \mid i \in \operatorname{in}(j))$,
$\left(X_{k} \mid X_{k}\right.$ is generated at tail $\left.\left.(j)\right)\right)$
If argument empty $Y(j)$ always takes on the value 0 .

General set-up cont.

Decoding functions:

For every receiver r_{l}, we define variables $Z_{1}^{\left(r_{1}\right)}, \ldots, Z_{\left|D\left(r_{1}\right)\right|}^{\left(r_{1}\right)}$.

$$
Z_{j}^{\left(r_{l}\right)}=d_{j}^{\left(r_{l}\right)}\left(\left(Y(i) \mid i \in \operatorname{in}\left(r_{l}\right)\right)\right.
$$

$\left(X_{k} \mid X_{k}\right.$ is generated at $\left.\left.r_{l}\right)\right)$

Network coding
problem:
Choose if possible f_{j}, d_{j} such that $\left(Z_{1}^{\left(r_{1}\right)}, \ldots, Z_{\left|D\left(r_{1}\right)\right|}^{\left(r_{1}\right)}\right)=D\left(r_{l}\right)$.

Linear network coding

Alphabet now is \mathbf{F}_{q} and coefficients below belong to \mathbf{F}_{q}.

$$
Y(j)=\sum_{i \in \operatorname{in}(j)} f_{i, j} Y(i)+\sum_{K\left(X_{i}\right)=\operatorname{tail}(j)} a_{i, j} X_{i}
$$

$$
Z_{j}^{\left(r_{l}\right)}=\sum_{i \in \operatorname{in}\left(r_{1}\right)} b_{i, j}^{\left(r_{l}\right)} Y(i)+\sum_{K\left(X_{i}\right)=r_{l}} \tilde{b}_{i, j}^{\left(r_{l}\right)} X_{i}
$$

We often assume $R \cap S=\emptyset$

Scenarios

- Unicast. $R=\left\{r_{1}\right\} . D\left(r_{1}\right)=\left(X_{1}, \ldots, X_{h}\right)$. (Classical theory)
- Multicast. More receivers. Every receiver demands everything. (Recent theory)
- General situation. More receivers, different demands. (Rather open)

We concentrate mainly on multicast.

Definition: Given a multicast problem a flow (of size h) to receiver r is a set of h edge disjoint paths from
$S=\left\{s_{1}, \ldots, s_{|S|}\right\}$ to r such that the number of paths starting in s_{i} equals the number of messages generated in s_{i}

Note, a flow is NOT a sub graph.
Unicast:
Existence of a flow is necessary and a sufficient condition for solvability.

Add s^{\prime} and edges e_{1}, \ldots, e_{h} from s^{\prime} to $S=\left\{s_{1}, \ldots, s_{|S|}\right\}$. Number of edges from s^{\prime} to s_{i} is number of messages generated at s_{i}.

Consider all possible $V_{1}, V_{2}, \quad V_{1} \cap V_{2}=\emptyset$, $V_{1} \cup V_{2}=V \cup\left\{s^{\prime}\right\}, s^{\prime} \in V_{1}$, $r \in V_{2}$.
$\operatorname{cut}\left(V_{1}, V_{2}\right)$ is the edges FROM V_{1} TO V_{2}.
X_{1} is generated at s_{1} and X_{2}, X_{3} are generated at s_{2}.
min cut $=$ max flow

Flow necessary and sufficient (use routing) condition

Multicast

corresponds to set of unicast problems.
Flow system (of size h)
$\mathcal{F}=\left(F_{1}, \ldots, F_{|R|}\right)$
F_{l} is a flow (of size h) from S to r_{l}.
Existence of a flow system i necessary.
Surprisingly also sufficient (Ahlswede, Cai, Li and Yeung, 2000).

Actually when solvable; linear network coding is enough!

Matrices

A is $h \times|E|$
$A_{i, j}=a_{i, j}$ if $K\left(X_{i}\right)=\operatorname{tail}(j)$
$A_{i, j}=0$ else
F is $|E| \times|E|$
$F_{i, j}=f_{i, j}$ if $i \in \operatorname{in}(j)$
$F_{i, j}=0$ else

For $I=1, \ldots,|R|$
$B^{\left(r_{1}\right)}$ is $|E| \times h$
$B_{i, j}^{\left(r_{I}\right)}=b_{i, j}^{\left(r_{l}\right)}$ if $i \in \operatorname{in}\left(r_{l}\right)$
$B_{i, j}^{\left(r_{1}\right)}=0$ else

The $F_{i, j}$ "holds" information on all paths of length 2 starting in edge i and ending in edge j.

The (i, j)th entry of F^{n} "holds" information on all paths of length $n+1$ starting in edge i and ending in edge j.

$$
\left(F^{n}\right)_{i, j}=\sum_{\substack{\left(i=j_{0}, j_{1}, \ldots, j_{n}=j \\ \text { a path } \\ \text { in } G\right.}} f_{i=j_{0}, j_{1}} f_{j_{1}, j_{2}} \cdots f_{j_{n-1}, j_{n}=j}
$$

This in particular holds for F^{0}.
G being cycle free $F^{N}=0$ for some big enough N.
$I+F+\cdots+F^{N-1}$
holds information on all paths of any length.

Modification of network. In original network two sources at s_{1} and one source at s_{2}.

In modified network the $a_{i, j}$'s and the $b_{i, j}^{\left(r_{1}\right) \text {,s }}$ from the original network plays the same role as the $f_{i, j}$'s

Lemma:

$M^{\left(r_{1}\right)}=A\left(I+F+\cdots+F^{N-1}\right) B^{\left(r_{1}\right)}$
holds information on all paths from s^{\prime} to $\left\{r_{1}^{(/)}, \ldots, r_{h}^{(/)}\right\}$

From this we derive: Theorem:
$\left(X_{1}, \ldots, X_{h}\right) M^{\left(r_{l}\right)}=\left(Z_{1}^{\left(r_{1}\right)}, \ldots Z_{h}^{\left(r_{l}\right)}\right)$
$M^{\left(r_{l}\right)}$ is called the transfer matrix for r_{l}
Note $\left(I+F+\cdots+F^{N-1}\right)(I-F)=I$
$M^{\left(r_{I}\right)}=A(I-F)^{-1} B^{\left(r_{I}\right)}$

For successful encoding/decoding we require $M^{\left(r_{1}\right)}=\cdots=M^{\left(r_{|R|}\right)}=I$

Relaxed requirement:
$\operatorname{det}\left(M^{\left(r_{1}\right)}\right) \neq 0$ for $I=1, \ldots,|R|$.
Success iff
$\prod_{l=1, \ldots,|R|} \operatorname{det}\left(M^{\left(r_{l}\right)}\right) \neq 0$
Considered as a polynomial in the $a_{i, j}$'s, $f_{i, j}$'s and $b_{i, j}^{\left(r_{j}\right)}$'s this product is called the transfer polynomial.

Proposition:

$\left|\operatorname{det}\left(M^{\left(r_{1}\right)}\right)\right|=\left|\operatorname{det}\left(E^{\left(r_{1}\right)}\right)\right|$ where
$\left.E^{\left(r_{1}\right)}\right)=\left[\begin{array}{cc}A & 0 \\ I-F & B^{\left(r_{1}\right)}\end{array}\right]$

Theorem: The permanent $\operatorname{per}\left(M^{\left(r_{1}\right)}\right)$ is the sum of all monomial expressions in the $a_{i, j}$'s, $f_{i, j}$'s and $b_{i, j}^{(r i)}$'s which correspond to a flow of size h from s^{\prime} to $\left\{r_{1}^{(1)}, \ldots, r_{h}^{(l)}\right\}$ in the modified graph.

Proof: Apply the lemma carefully.

As a consequence $\operatorname{det}\left(M^{\left(r_{1}\right)}\right)$ is a linear combination of the expressions corresponding to flows. The coefficients being 1 or -1 .

In the transfer polynomial $\prod_{l=1, \ldots,|R|} \operatorname{det}\left(M^{\left(r_{1}\right)}\right)$ every monomial corresponds to a flow system.

Coefficients are integers which in \mathbf{F}_{q} becomes elements in \mathbf{F}_{p}, p being the characteristic.

Indeed terms may cancel out when taking the product of the $\operatorname{det}\left(M^{\left(r_{I}\right)}\right)$'s (See Example 1.1)

However, clearly if all $\operatorname{det}\left(M^{\left(r_{1}\right)}\right)$'s are different from 0 so is the transfer polynomial.

Theorem 1.1+1.2: A multicast problem is solvable iff the graph contains a flow system of size h. If solvable then solvable with linear network coding whenever $q \geq|R|$.

Proof: Necessity follows from unicast considerations. Assume a flow system exists. The transfer polynomial is non-zero and no indeterminate appears in power exceeding $|R|$. Therefore if $q>|R|$ then over F_{q} a non-zero solution exists (here we used the Schwarts-Zippel bound).
We shall later see that $q \geq|R|$ is enough.

Minimal field size

NP-complete problem to find smallest feasible fields size.
To check if \mathbf{F}_{q} works reduce the transfer polynomial modulo $X^{q}-X$ where X run through the variables $a_{i, j}$ and $f_{i, j}$.

Easy replacement operation.
Must imply that transfer polynomial can sometimes have exponential many terms.

In linear network coding we always have
$Y(i)=c_{1} X_{1}+\cdots+c_{h} X_{h}$ for some $c_{1}, \ldots, c_{h} \in \mathbf{F}_{q}$.
We shall call $d_{c}(i)=\left(c_{1}, \ldots, c_{h}\right)$ the global coding vector for edge i.

A receiver that does not know how encoding was done can learn how to decode (if possible) as follows.

Senders inject into the system h message vectors $(1,0, \cdots, 0),(0,1,0 \ldots, 0), \ldots,(0, \ldots, 0,1)$.

These generate the global coding vectors at each edge including the in edges of r_{l}.

If the received global coding vectors span \mathbf{F}_{q}^{h} then proper $b_{i, j}^{\left(r_{1}\right)}$,s can be found.

Jaggi-Sanders algorithm

Jaggi-Sanders algorithm take as input a solvable multicast problem.
It add a new source s^{\prime} and moves all processes to this point and add edges e_{1}, \ldots, e_{h} from s^{\prime} to S.
In the extended graph a flow system is found.
The algorithm for every receiver keeps a list of edges corresponding to a cut.

Also it updates along the way encoding coefficients in such a way that the global coding vectors corresponding to any of the $|R|$ cuts at any time span the whole of \mathbf{F}_{q}^{h}.

Edges in the flow system are visited according to an ancestral ordering.

In every update at most one edge is replaced in a given cut.

The Jaggi-Sanders algorithm cont.

Lemma 1.1: Given a basis $\left\{\vec{b}_{1}, \ldots, \vec{b}_{h}\right\}$ for \mathbf{F}_{q}^{h} and $\vec{c} \in \mathbf{F}_{q}^{h}$,
there is exactly one choice of $a \in \mathbf{F}_{q}$ such that $\vec{c}+a \vec{b}_{h} \in \operatorname{span}_{\mathbf{f}_{q}}\left\{\vec{b}_{1}, \ldots, \vec{b}_{h-1}\right\}$.

Proof. Expand \vec{c} over $\left\{\vec{b}_{1}, \ldots, \vec{b}_{h}\right\}$.

$q \geq|R|$ is enough

Given j let $R_{\mathcal{F}}(j)$ be the number of B 's being updated and let $k=$ in' $(j) \cap \mathcal{F}$.
Clearly, $k \leq R_{\mathcal{F}}(j) \leq|R|$
Out of the q^{k} choices of encoding coefficients in worst case when one $B_{l_{t}}$ fails to span F_{q}^{h} all others do.

Hence at most $R_{\mathcal{F}}(j) q^{k-1}$ choices of $\left(f_{i_{1}, j}, \ldots, f_{i_{k}, j}\right)$ fails.
But $f_{f_{1}, j}=\cdots=f_{i_{k}, j}=0$ has ben counted $R_{\mathcal{F}}$ times. So at most $R_{\mathcal{F}}(j) q^{k-1}-\left(R_{\mathcal{F}}-1\right)$ choices fails.

Probability of success in one step is at least

$$
\frac{q^{k}-R_{\mathcal{F}} q^{k-1}+\left(R_{\mathcal{F}}-1\right)}{q^{k}}
$$

which is >0 if $q \geq|R|$.

