Aspects of network coding - Part I

O. Geil, Aalborg University

S³cm: Soria Summer School on Computational Mathematics, Universidad de Valladolid, Soria July 12-16 2010

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

Terminology

Definition: Given a finite set *V* and a map $\epsilon : \{1, ..., n\} \rightarrow V \times V$. Let $E = \{(1, \epsilon(1)), ..., (n, \epsilon(n))\}$. Then G = (V, E) is called a directed graph.

Elements in V are vertices and elements in E are edges.

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のので

When the edge map ϵ is known we write *i* instead of (i, (u, v)). That is $E = \{1, ..., n\}$. When it does not lead to confusion we may also write (u, v) instead of (i, (u, v))

Definition: Given $v \in V$ define

• in(
$$v$$
) = { $i \in E | \epsilon(i) = (w, v)$ for some w}

•
$$\operatorname{out}(v) = \{i \in E \mid \epsilon(i) = (v, w) \text{ for some } w\}$$

Given $j \in E$ write $\epsilon(j) = (u, v)$ and define

•
$$in(j) = in(u)$$

- tail(j) = u
- $\operatorname{out}(j) = \operatorname{out}(v)$
- ▶ head(j) = v

Path

Definition: A path in G = (V, E) is a sequence of edges $\mathcal{P} = (i_1, \ldots, i_k)$ such that $head(i_s) = tail(i_{s+1})$ for $s = 1, \ldots, k-1$.

When the graph has not multiple edges we can write this as $\mathcal{P} = ((u_0, u_1), (u_1, u_2), \dots, (u_{n-1}, u_n)).$

In this mini course we shall always assume that our (directed) graph are CYCLE FREE.

This by definition means that there does not exist a path \mathcal{P} in which a vertex *u* appears more than once.

(日) (日) (日) (日) (日) (日) (日) (日)

In particular we do not allow loops.

First communication problem

Sender *s* wants to send two messages $a, b \in \mathbf{F}_2$ to both receivers r_1 and r_2 simultaneously.

Concentrating on r₁

Flow of size 2 to r_1 : $F_1 = \{(1,5), (2,4,6,8)\}$

Send *a* along edge 1 and *b* along edge 2 and let them propagate.

Concentrating on r_2 Flow of size 2 to r_2 : $F_2 = \{(1,3,6,9), (2,7)\}$ Send *a* along edge 1 and *b* along edge 2 and let them propagate.

Two partial solutions

The flow system is $\mathcal{F} = \{F_1, F_2\}$ $F_1 = \{(1,5), (2,4,6,8)\}, F_2 = \{(1,3,6,9), (2,7)\}$

A solution

Routing is insufficient, but problem is solvable

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のので

Receiver r_1 can reconstruct b as a + (a + b)Receiver r_2 can reconstruct a as (a + b) + b The assumption that G is cycle free implies that we can order E by an ancestral ordering.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

An ancestral ordering on *E* is a total ordering such that i < j implies there is not path with *i* visited before *j*.

Similarly, ancestral orderings on V.

The general problem

$$egin{aligned} G &= (V, E) \ S &= \{s_1, \dots, s_{|S|}\} \subseteq V ext{ called senders} \ R &= \{r_1, \dots, r_{|\mathcal{R}|}\} \subseteq V ext{ called receivers} \end{aligned}$$

Message vector $\vec{X} = (X_1, ..., X_h)$. The messages X_i takes on values in A (an abelian group)

$$K : \{X_1, \ldots, X_h\} \to S$$
 a surjective map

If $K(X_i) = s_i$ then we say that message X_i is generated at s_i .

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

 $D(r_l) = (X_{i_1}, \dots, X_{i_{|D(r_l)|}})$ which is called demand.

General set-up

Encoding functions;

For every edge *j* we define a variable Y(j) that takes on values in A.

Visiting the edges by an ancestral ordering we define relations

$$Y(j) = f_j \Big((Y(i) \mid i \in in(j)),$$

 $(X_k \mid X_k \text{ is generated at tail}(j))$

If argument empty Y(j) always takes on the value 0.

General set-up cont.

For every receiver r_l we define variables $Z_1^{(r_l)}, \dots, Z_{|D(r_l)|}^{(r_l)}$. $Z_j^{(r_l)} = d_j^{(r_l)} \Big((Y(i) \mid i \in in(r_l)), (X_k \mid X_k \text{ is generated at } r_l) \Big)$

Network coding problem: Choose if possible f_j , d_j such that $(Z_1^{(r_l)}, \ldots, Z_{|D(r_l)|}^{(r_l)}) = D(r_l).$

Linear network coding

We often assume $R \cap S = \emptyset$

Scenarios

► Unicast. $R = \{r_1\}$. $D(r_1) = (X_1, ..., X_h)$. (Classical theory)

- Multicast. More receivers. Every receiver demands everything. (Recent theory)
- General situation. More receivers, different demands. (Rather open)

We concentrate mainly on multicast.

Definition: Given a multicast problem a flow (of size *h*) to receiver *r* is a set of *h* edge disjoint paths from $S = \{s_1, \ldots, s_{|S|}\}$ to *r* such that the number of paths starting in s_i equals the number of messages generated in s_i

Note, a flow is NOT a sub graph.

Unicast:

Existence of a flow is necessary and a sufficient condition for solvability.

(日) (日) (日) (日) (日) (日) (日) (日)

 X_1 is generated at s_1 and X_2 , X_3 are generated at s_2 .

Add s' and edges e_1, \ldots, e_h from s' to $S = \{s_1, \ldots, s_{|S|}\}$. Number of edges from s' to s_i is number of messages generated at s_i .

Consider all possible $V_1, V_2, V_1 \cap V_2 = \emptyset, V_1 \cup V_2 = V \cup \{s'\}, s' \in V_1, r \in V_2.$

 $\operatorname{cut}(V_1, V_2)$ is the edges FROM V_1 TO V_2 .

min cut = max flow

Flow necessary and sufficient (use routing) condition

Multicast

corresponds to set of unicast problems.

Flow system (of size h)

 $\mathcal{F} = (F_1, \ldots, F_{|R|})$

 F_l is a flow (of size h) from S to r_l .

Existence of a flow system i necessary.

Surprisingly also sufficient (Ahlswede, Cai, Li and Yeung, 2000).

Actually when solvable; linear network coding is enough!

Matrices

$$\begin{array}{l} A \text{ is } h \times |E| \\ A_{i,j} = a_{i,j} \text{ if } \mathcal{K}(X_i) = \text{tail}(j) \\ A_{i,j} = 0 \text{ else} \end{array}$$

$$F \text{ is } |E| \times |E|$$

$$F_{i,j} = f_{i,j} \text{ if } i \in \text{in}(j)$$

$$F_{i,j} = 0 \text{ else}$$

For
$$I = 1, ..., |R|$$

$$egin{array}{l} {\cal B}^{(r_l)} \ {
m is} \ |{\cal E}| imes h \ {\cal B}^{(r_l)}_{i,j} = {\cal b}^{(r_l)}_{i,j} \ {
m if} \ i \in {
m in}(r_l) \ {\cal B}^{(r_l)}_{i,j} = 0 \ {
m else} \end{array}$$

The $F_{i,j}$ "holds" information on all paths of length 2 starting in edge *i* and ending in edge *j*.

The (i, j)th entry of F^n "holds" information on all paths of length n + 1 starting in edge *i* and ending in edge *j*.

$$(F^{n})_{i,j} = \sum_{\substack{(i = j_{0}, j_{1}, \dots, j_{n} = j \\ a \text{ path} \\ \text{in } G}} f_{i=j_{0},j_{1}} f_{j_{1},j_{2}} \cdots f_{j_{n-1},j_{n}=j}$$

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ● ● ● ●

This in particular holds for F^0 .

G being cycle free $F^N = 0$ for some big enough *N*.

 $I + F + \cdots + F^{N-1}$ holds information on all paths of any length.

Modification of network. In original network two sources at s_1 and one source at s_2 .

In modified network the $a_{i,j}$'s and the $b_{i,j}^{(r_i)}$'s from the original network plays the same role as the $f_{i,j}$'s

(日)

Lemma: $M^{(r_l)} = A(I + F + \dots + F^{N-1})B^{(r_l)}$ holds information on all paths from *s'* to $\{r_1^{(l)}, \dots, r_h^{(l)}\}$

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のので

From this we derive: **Theorem:** $(X_1, ..., X_h)M^{(r_l)} = (Z_1^{(r_l)}, ..., Z_h^{(r_l)})$

 $M^{(r_l)}$ is called the transfer matrix for r_l

Note
$$(I + F + \dots + F^{N-1})(I - F) = I$$

 $M^{(r_l)} = A(I - F)^{-1}B^{(r_l)}$

For successful encoding/decoding we require $M^{(r_1)} = \cdots = M^{(r_{|R|})} = I$

Relaxed requirement: $det(M^{(r_l)}) \neq 0$ for l = 1, ..., |R|.

Success iff $\prod_{l=1,...,|R|} \det(M^{(r_l)}) \neq 0$

Considered as a polynomial in the $a_{i,j}$'s, $f_{i,j}$'s and $b_{i,j}^{(r_i)}$'s this product is called the transfer polynomial.

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のので

Proposition:

$$ert \det(M^{(r_l)}) ert = ert \det(E^{(r_l)}) ert$$
 where $E^{(r_l)}) = egin{bmatrix} A & 0 \ I - F & B^{(r_l)} \end{bmatrix}$

Theorem: The permanent $per(M^{(r_i)})$ is the sum of all monomial expressions in the $a_{i,j}$'s, $f_{i,j}$'s and $b_{i,j}^{(r_i)}$'s which correspond to a flow of size *h* from *s'* to $\{r_1^{(l)}, \ldots, r_h^{(l)}\}$ in the modified graph.

Proof: Apply the lemma carefully.

As a consequence det($M^{(r_l)}$) is a linear combination of the expressions corresponding to flows. The coefficients being 1 or -1.

In the transfer polynomial $\prod_{l=1,...,|R|} \det(M^{(r_l)})$ every monomial corresponds to a flow system.

Coefficients are integers which in \mathbf{F}_q becomes elements in \mathbf{F}_p , *p* being the characteristic.

Indeed terms may cancel out when taking the product of the $det(M^{(r_l)})$'s (See Example 1.1)

However, clearly if all det($M^{(r_l)}$)'s are different from 0 so is the transfer polynomial.

Theorem 1.1+1.2: A multicast problem is solvable iff the graph contains a flow system of size *h*. If solvable then solvable with linear network coding whenever $q \ge |R|$.

Proof: Necessity follows from unicast considerations. Assume a flow system exists. The transfer polynomial is non-zero and no indeterminate appears in power exceeding |R|. Therefore if q > |R| then over \mathbf{F}_q a non-zero solution exists (here we used the Schwarts-Zippel bound).

We shall later see that $q \ge |R|$ is enough.

NP-complete problem to find smallest feasible fields size.

To check if \mathbf{F}_q works reduce the transfer polynomial modulo $X^q - X$ where X run through the variables $a_{i,j}$ and $f_{i,j}$.

Easy replacement operation.

Must imply that transfer polynomial can sometimes have exponential many terms.

In linear network coding we always have $Y(i) = c_1 X_1 + \cdots + c_h X_h$ for some $c_1, \ldots, c_h \in \mathbf{F}_q$.

We shall call $d_c(i) = (c_1, ..., c_h)$ the global coding vector for edge *i*.

A receiver that does not know how encoding was done can learn how to decode (if possible) as follows.

Senders inject into the system *h* message vectors $(1, 0, \dots, 0), (0, 1, 0, \dots, 0), \dots, (0, \dots, 0, 1)$.

These generate the global coding vectors at each edge including the in edges of r_l .

If the received global coding vectors span \mathbf{F}_q^h then proper $b_{i,j}^{(r_i)}$'s can be found.

Jaggi-Sanders algorithm

Jaggi-Sanders algorithm take as input a solvable multicast problem.

It add a new source s' and moves all processes to this point and add edges e_1, \ldots, e_h from s' to S.

In the extended graph a flow system is found.

The algorithm for every receiver keeps a list of edges corresponding to a cut.

Also it updates along the way encoding coefficients in such a way that the global coding vectors corresponding to any of the |R| cuts at any time span the whole of \mathbf{F}_{a}^{h} .

Edges in the flow system are visited according to an ancestral ordering.

In every update at most one edge is replaced in a given cut.

The Jaggi-Sanders algorithm cont.

Lemma 1.1: Given a basis $\{\vec{b}_1, \ldots, \vec{b}_h\}$ for \mathbf{F}_q^h and $\vec{c} \in \mathbf{F}_q^h$, there is exactly one choice of $a \in \mathbf{F}_q$ such that $\vec{c} + a\vec{b}_h \in \operatorname{span}_{\mathbf{f}_q}\{\vec{b}_1, \ldots, \vec{b}_{h-1}\}.$

Proof. Expand \vec{c} over $\{\vec{b}_1, \ldots, \vec{b}_h\}$.

$q \ge |R|$ is enough

Given *j* let $R_{\mathcal{F}}(j)$ be the number of B_l 's being updated and let $k = \text{in'}(j) \cap \mathcal{F}$. Clearly, $k \leq R_{\mathcal{F}}(j) \leq |\mathbf{R}|$

Out of the q^k choices of encoding coefficients in worst case when one B_{l_t} fails to span \mathbf{F}_q^h all others do.

Hence at most $R_{\mathcal{F}}(j)q^{k-1}$ choices of $(f_{i_1,j},\ldots,f_{i_k,j})$ fails.

But $f_{i_1,j} = \cdots = f_{i_k,j} = 0$ has ben counted R_F times. So at most $R_F(j)q^{k-1} - (R_F - 1)$ choices fails.

Probability of success in one step is at least

$$\frac{q^k-R_{\mathcal{F}}q^{k-1}+(R_{\mathcal{F}}-1)}{q^k}$$

which is > 0 if $q \ge |R|$.