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The footprint

Let M(X1, . . . ,Xm) be the set of monomials in X1, . . . ,Xm.

Definition: A monomial ordering ≺ on M(X1, . . . ,Xm) is a total
ordering such that

I every subset has a smallest element
I if M ≺ N then KM ≺ KN holds for all

M,N ∈ M(X1, . . . ,Xm) and all K ∈ M(X1, . . . ,Xm)\{0}.

One example is the lexicographic ordering, but there are
infinitely many.

Definition: Given an ideal I ⊆ k [X1, . . . ,Xm] and a monomial
ordering ≺ the footprint is
∆≺(I) = {M ∈ M(X1, . . . ,Xm) | M /∈ lm(I)}.



Theorem:
{M + I | M ∈ ∆≺(I)} is a basis for k [X1, . . . ,Xm]/I as a vector
space.

I ⊆ I(Vk (I)) ⇒ ∆≺(I(Vk (I))) ⊆ ∆≺(I)

Assume Vk (I) is finite. Say Vk (I) = {P1, . . . ,Pn}.

Let ϕ : k [X1, . . . ,Xm]/I(Vk (I)) → kn be given by
ϕ(f + I(Vk(I))) = (f (P1), . . . , f (Pn)).

Lagrange interpolation tells us that surjective.

If f + I(Vk(I)) 6= g + I(Vk(I)) then cannot be identical under ϕ
as this would imply f − g ∈ I(Vk(I)).

Hence, ϕ is a vector space isomorphism.



The footprint bound

Combining:
I ϕ : k [X1, . . . ,Xm]/I(Vk (I)) → kn is an isomorphism
I {M + I(Vk(I)) | M ∈ ∆≺(I(Vk(I))} is a basis for

k [X1, . . . ,Xm]/I(Vk (I)
I n = #Vk (I) = #Vk(I(Vk (I)))
I #∆≺(I(Vk(I))) ≤ #∆≺(I)

we get

Proposition 1.2: #Vk (I) ≤ #∆≺(I)



Corollary 1.1: Let k be any field containing Fq. Let
F (X1, . . . ,Xm) ∈ k [X1, . . . ,Xm] with lm(F ) = X i1

1 · · ·X im
m . The

number of non-zeros in Fm
q of F is at least (q − i1) · · · (q − im).

Proof: The number of zeros in Fm
q is at most the size of

∆≺(〈F (X1, . . . ,Xm),X
q
1 − X1, . . . ,X

q
m − Xm〉).

This footprint is contained in ∆≺(〈X
i1
1 · · ·X im

m ,X q
1 , . . . ,X

q
m〉). The

latter footprint is of size qm − (q − i1) · · · (q − im).



Linear multicast
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Consider the ai ,j , j ∈ out(K (Xi)) and
the fi ,j , j ∈ out(i) as variables that can
take on values in Fq.

Recall that we also have decod-
ing variables b(rl)

i ,j .

The transfer polynomial which is
∏

r∈R det(M(r)) can be considered as

a polynomial in Fq(b
(r)
i ,j

′
s)[ai ,j

′s, fi ,j
′s].



Recall from yesterday that receivers do not need to know the
encoding functions.

Rather X1 sends (1,0, . . . ,0), X2 sends (0,1,0, . . . ,0), ..., Xh

sends (0, . . . ,0,1)

Receiver rl observes the global coding vectors arriving on the
in-coming edges.

If they span Fh
q then proper b(rl)

i ,j

′
s can be determined by linear

algebra.



Random network coding

In random network coding a (possible empty) subset of the
ai ,j

′s, fi ,j
′s are chosen apriori in such a way that the resulting

network coding problem is still solvable.

Remaining encoding coefficients are chosen in a distributed
manner.
They are chosen independently by uniform distribution.

As a consequence the vector of randomly chosen coefficients
are chosen also from a uniform distribution.

The transfer polynomial with the apriori chosen coefficients
plugged in considered as a polynomial with coefficients in

Fq(b
(r)
i ,j

′
s), is called the apriori transfer polynomial.

Research problem: What is the success probability Psucc?



Assume the apriori transfer polynomial F is non-zero.

Let X i1
1 · · ·X im

m be it leading monomial with respect to ≺.
The number of combinations of ai ,j

′s, fi ,j
′s that plugged into F

give a non-zero element in Fq(b
(r)
i ,j

′
s) is at least

(q − i1) · · · (q − im)

If q is big enough this is a possitive number.

Recall, b(rl)
i ,j appears in power at most 1.

Applying the footprint bound again we see that for each of the
above solutions b(rl )

i ,j can be chosen such that F evaluates to
non-zero in Fq.

In conclussion
Psucc ≥ (q − i1) · · · (q − im) = PFP2



Any monomial in transfer polynomial corresponds to a flow
system

Psucc ≥ min{(q − i1) · · · (q − im) | X i1
1 · · ·X im

m corresponds

to a flow system in G}

= PFP1

Note
I not all flow systems need to appear in transfer polynomial
I not all monomials can be chosen as leading



Lemma 1.2: Let F ∈ k [X1, . . . ,Xm]\{0} where k is a field
containing Fq. Assume all monomials X i1

1 · · ·X im
m in the support

of F satisfies

1. j1, . . . , jm ≤ d , where d is some fixed number d ≤ q.

2. j1 + · · · + jm ≤ dN for some fixed integer N with N ≤ m

The probability that F evaluates to a non-zero value when
(X1, . . . ,Xm) ∈ Fm

q is chosen by random (uniformly) and is
plugged into F is at least

(

q − d
q

)N



Proof of lemma

With Corollary 1.1 in mind we want to establish

∏m
t=1(q − jt)

qm ≥

(

q − d
d

)N

(1)

for all j1, . . . , jm satisfying cond. 1 and cond. 2. Let j1, . . . jm be
such that lhs. of (1) is minimal. Wlog. assume j1 ≥ · · · jm. We
have equality in cond. 2.
Observe that if x ≥ y then

(q − x)(q − y) > (q − (x + 1))(q − (y − 1))

Hence, j1 = · · · = jN = d , jN+1 = · · · jm = 0.
This gives rhs. of (1)



Every monomial in transfer polynomial comes from a flow
system F = (F1, . . . ,F|R|). Consider all possibe flows (not
systems).

Let η′ be the maximal number of encoding coefficients not
chosen apriori. Then for all monomials we have cond. 1 and
cond. 2 with

d = |R| and N = η′

We get

Psucc ≥

(

q − |R|

q

)

η
′

= PHo2

Clearly η′ ≤ |E | which gives

Psucc ≥

(

q − |R|

q

)|E|

= PHo1



PHo1 ≤ PHo2 ≤ PFP1 ≤ PFP2

Go to Example 1.2 and Example 1.3 in paper....



Jaggi-Sanders algorithm
s′
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Initialization: Add s′ and e1, . . . ,eh.

Set C1 = · · ·C|R| = (e1, . . . ,eh) and
B1 = · · · = B|R| =
((1,0, . . . ,0), . . . , (0, . . . ,0,1)).

Find F = (F1, . . . ,F|R|)

Update: Consider next edge j ac-
córding to ancestral ordering.

If i ∈ in(j) ∩ Fl then replace i with j
in Cl .

Find encoding coefficients such that
global coding vectors for all updated cuts
do still span Fh

q.



Ancestral ordering 1 ≺ 2 ≺ · · · ≺ 9.
F = (F1 = ((1,5), (2,4,6,8)),F2 = ((1,3,6,9), (2,7)))

j = 1:
C1 = C2 = (1,e2),
a1,1 = 1, a2,1 = 0
B1 = B2 = ((1,0), (0,1))

j = 3:
C1 is unchanged.
C2 = (3,2), f1,3 = 1
B2 = ((1,0), (0,1))

j = 5:
C2 is unchanged.
C1 = (5,4), f1,5 = 1
B1 = ((1,0), (0,1))

j = 2:
C1 = C2 = (1,2),
a1,2 = 0, a2,2 = 1
B1 = B2 = ((1,0), (0,1))

j = 4:
C2 is unchanged.
C1 = (1,4), f2,4 = 1
B1 = ((1,0), (0,1))

j = 6:
C1 = (5,6), C2 = (6,2)
f3,6 = 1, f4,6 = 1
B1 = ((1,0), (1,1))
B2 = ((1,1), (0,1))



Modified Jaggi-Sanders algorithm

Assume ALL encoding coefficients are chosen by random
(uniformly, independently)

Initialization part is kept.

Ín updating part we still update the cuts.
For every updated cut we CHECK if already chosen coefficients
gives a full basis of global coding vectors. If not return “failure”
and abort.

If visited all edges in flow system and having not returned
“failure” then return “success”.

Situation is changed as we now get information from outside
the flow system.



Lemma 1.1: Given a basis {~b1, . . . , ~bh} for Fh
q and ~c ∈ Fh

q.
There is exactly one choice of a ∈ Fq such that
~c + a~bh ∈ spanFq

{~b1, . . . , ~bh−1}.

Given the algorithm arrived at j the probabiliy that it does not
return “failure” in this step is at least:

q − k
q

+
k − 1

q|in′
(j)|

where k is the number of receivers that uses edge j in F .

Let RF (e) be number of receivers that use edge e in F .

Psucc ≥ PFB2 =
∏

j∈F

(

q − RF (j)
q

+
RF (j)− 1

q|in′
(j)|

)

≥ PFB1 =
∏

j∈F

q − RF (j)
q



It is possible to improve upon PFB1 and PFB2 by noting that if
Cl1\{i1} = Cl2\{i2} and i1 respectively i2 is replaced with j then
in this step we have
success for rl1 iff success for rl2 .

These improvements rely on the chosen ancestral ordering.

See possibly Example 1.6



Combinatorial approach by Balli, Yan and Zhang

Network being cycle free also means that we can order
VERTICES by ancestral ordering.

Further modified Jaggi-Sanders algorithm is derived.

Initialization part unchanged.

Update: Visit vertices in flow system according to ancestral
ordering.
Update the cuts by replacing for every receiver rl the edges in
in′(w) ∩ Fl with the edges in out(w) ∩ Fl .

Check if each of the corresponding sets Bl of global coding
vectors do still span the whole of Fh

q.
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F = (F1 = ((1,3), (2,4), (7)),
F2 = ((1,5), (2,6), (8)))

Initialization:
C1 = C2 = (e1,e2,e3)
B1 = B2 = ((1,0,0), (0,1,0), (0,0,1))

Update:
Consider s:
I1 = I2 = {e1,e2,e3}
J1 = {1,2,7}, J2 = {1,2,8}
C1 = (1,2,7), C2 = (1,2,8)

Consider v1:
I1 = I2 = {1,2}
J1 = {3,4}, J2 = {5,6}
C1 = (3,4,7), C2 = (5,6,8)
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At v1 we need to “choose” encoding coefficients such that:
I gc(3) is lin. indep. of {gc(7)}
I gc(4) is lin. indep. of {gc(3),gc(7)}

and such that
I gc(5) is lin. indep. of {gc(8)}
I gc(6) is lin. indep. of {gc(5),gc(8)}



Lemma 1.3: Consider integers k ,h, µ with 1 ≤ k < h and
k + µ < h. Let {~b1, . . . , ~bh} be a basis for Fh

q and let
~b′

k+1, . . . ,
~b′

k+µ
be such that

V = spanFq
{~b1, . . . , ~bk , ~b

′
k+1, . . . ,

~b′
k+µ

}

is of dimension k + µ.
Given ~c ∈ Fh

q the number of choices of (ak+1, . . . ,ah), ai ∈ Fq

such that
~c + ak+1

~bk+1 + · · ·+ ah
~bh ∈ V

equals qµ.



Let Il = in′(w) ∩ Fl and Jl = in′(w) ∩ Fl .
Note, |Il | = |Jl |.

Consider the edges in Jl one by one.

Check if the global coding vector of the first edge in Jl is linearly
independent from Bl\cg(Il).
This happens with probability (q|Jl | − 1)/q|Jl |.
If OK name it ~b′

k+1 and add it to Bl\cg(Il).

Continuing this way we get...
The probability that the algortihm does not declare “failure”
when rl is checked at w

≥

|Jl |
∏

i=1

q|Jl | − q i−1

q|Jl |

=

|Jl |
∏

i=1

(

1 −
1

q|Jl |−i+1

)

≥ 1 −
1

q − 1



The probability of success at w is at least

1 −
ρ(w)

q − 1

where ρ(w) is the number of receivers using w in F .

Writing I = {w ∈ V | out(w) ∩ F 6= ∅}
we get

Psucc ≥ PBalli2 =
∏

w∈I

(

1 − ρ(w)

q − 1

)

≥ PBalli1 =

(

1 −
|R|

q − 1

)I



We gained something in the probability estimations by allowing
actually the flow system to change.

We paid some price when summing up error probabilities
(assuming the worst cases).

It seems that Balli, Yan and Zhang’s bound are often better than
the flow bounds.

However, we have examples where the opposite holds.



General communication situation

Demands D(r1), . . . ,D(r|R|) need not be the same.

[x1, . . . , xh]
[

M(r1), · · · ,M(r|R|)
]

=
[

z(r1)
1 , . . . z(r1)

|D(r1)|
, . . . , z

(r|R|)

1 , . . . , z
(r|R|)

|D(r|R|)|

]

Note, that M(rl ) is only quadratic if rl demands all informations.
Rather it is an h × |D(rl)| matrix.

Let D(rl) = (X
i (l)1
, . . . ,X

i (l)
|D(rl )|

) for l = 1, . . . , |R|.

Success full coding:

I the sub matrix of M(rl ) consisting of rows i(l)1 , . . . , i(l)|D(rl )|
has

a non-zero determinant for i = 1, . . . , |R|

I remaining entries in M(rl ) are all zero to not disturb.



So we have say k polynomials f1, . . . , fk that must evaluate to
zero plus a polynomial say F (the product of the determinants)
which must evaluate to non-zero.

Introducing a new variable ε we consider

VFq(〈f1, . . . , fk ,1 − εF 〉).

Dougherty, Freiling and Zeger showed that any set of
polynomial equations with INTEGER coefficients corresponds
to a linear network coding problem in the following sense. The
set of polynomials have a commen non-zero over Fq iff the
network coding problem has a linear solution.


