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We will present material from the seminal paper:

“Coding for Errors and Erasures in Random Network Coding”

by Ralf Kötter and Frank R. Kschischang,



Recall that in the error free case we have success if the global
coding vectors on the in-edges of every receiver span the
whole of Fh

q.

Idea: Given a collection of messages, identify each of them
with a vector space. For a concrete message m inject into the
system a (possible overcomplete) basis of the corresponding
vector space V (m).

The receiver collects a set of vectors which span some vector
space U.

The receiver knows the code (the set of vector spaces that
corresponds to messages).

If U = V (m) then easy. Else we need some kind of decoding
algorithm.



Kötter, Kschischang:
I introduced subspace codes
I described proper code parameters, and minimum distance

decoding
I gave upper and lower bounds
I introduced the important Kötter-Kschischang codes

(KK-codes)
I gave decoding algorithm for KK-codes

Recently Hessam Mahdavifar and Alexander Vardy modified
KK-codes and presented a list decoding algorithm.



Codes

Given a so-called ambient (vector) space W of dimension N by
P(W ) we denote the set of all linear subspaces of W .

A code C is a collection of subspaces of W . That is C ⊆ P(W ).

A code can be used to transmit |C| different messages.



Channel model
We do not assume knowledge about the network.

I No information about min cut numbers
I No information about number of malicious messages and

where they are injected into the system
I Encoding coefficients in network can be assumed to be

chosen by random. Decoding coefficients are absent.

Always assume one sender. Input/output alphabet is P(W ).

Assume V was send and U is received. We can write

U = (V ∩ U)⊕ E

where E ∈ P(W )

The number of erasures is ρ = dim(V )− dim(V ∩ U).

The number of errors is t = dim(E)



The subspace distance

d : P(W ) × P(W ) → N
d(A,B) = dim(A + B)− dim(A ∩ B)

Since dim(A + B) = dim(A) + dim(B)− dim(A ∩ B) we get

d(A,B) = dim(A) + dim(B)− 2 dim(A ∩ B)

= 2 dim(A + B)− dim(A)− dim(B)

Note that if U = (U ∩ V )⊕ E and ρ = dim(V )− dim(U ∩ V ) and
t = dim(E) then
d(U,V ) = dim(U) + dim(V )− 2 dim(U ∩ V ) = t + ρ



Lemma 1: d(A,B) is a metric on P(W )

Proof:
(i): d(A,B) ≥ 0 with equality iff A = B is OK

(ii): d(A,B) = d(B,A) is OK

(iii): d(A,B) ≤ d(A,X ) + d(X ,B) is shown on next slide



Proof of (iii)

1
2

(

d(A,B)− d(A,X )− d(X ,B)
)

=
1
2

(

dim(A) + dim(B)− 2 dim(A ∩ B)

− dim(A)− dim(X ) + 2 dim(A ∩ X )

− dim(X )− dim(B) + 2 dim(B ∩ X )
)

= dim(A ∩ X ) + dim(B ∩ X )− dim(A ∩ B)− dim(X )

= dim(A ∩ X ∩ B) + dim(A ∩ X + B ∩ X )− dim(A ∩ B)− dim(X )

= dim(A ∩ X + B ∩ X )− dim(X ) + dim(A ∩ X ∩ B)− dim(A ∩ B)

≤ 0 + 0 = 0



Dual code

U⊥ = {v ∈ W | ~u · ~v = 0 ∀ u ∈ U}

dim(U) = k ⇒ dim(U⊥) = N − k

We have (U⊥)⊥ = U, (U + V )⊥ = U⊥ ∩ V⊥ and
(U ∩ V )⊥ = U⊥ + V⊥

We get

d(U⊥,V⊥)

= dim(U⊥ + V⊥)− dim(U⊥ ∩ V⊥)

= dim((U ∩ V )⊥)− dim((U + V )⊥)

= N − dim(U ∩ V )− (N − dim(U + V ))

= dim(U + V )− dim(U ∩ V )

= d(U,V )



Codes
C ⊆ P(W )

D(C) = min{d(X ,Y ) | X ,Y ∈ C,X 6= Y}

Maximum dimension of C is
l(C) = max{dim(X ) | X ∈ C}.

If all codewords are of the same dimension then constant
dimension code

Parameters [N, l(C), logq(|C|),D(C)].

N : how many symbols per vector
l(C) : how many vectors are needed
logq(|C|) : how big is message space
D(C) : error and erasure correction ability...



Minimum distance decoding

Given (received) word U a minimum distance decoder finds a
codeword satisfying d(V ,U) < D(C)/2 if such a word exists.

Theorem 2: Given U ⊆ W and V ∈ C. If d(U,V ) < D(C)/2
then the minimum distance decoder applied to U will return V .
Proof: Let T be any other codeword

D(C) ≤ d(V ,T ) ≤ d(V ,U) + d(U,T )

but then

d(U,T ) ≥ D(C)− d(V ,U) > D(C)/2

(See also page 7 of Silva, Kschischang, Kötter, “A Rank Metric
Approach...”)



Constant dimension codes

Denote by P(W , l) the set of subspaces of W of dimension l .

A code is said to be constant dimensional if C ⊆ P(W , l).

In the following ALL CODES ARE CONSTANT DIMENSIONAL



q-ary Gaussian coefficients

For l ≤ n

[

n
l

]

q
=

(qn − 1)(qn−1 − 1) · · · (qnl+1 − 1)
(q l − 1)(q l−1 − 1) · · · (q − 1)

Fact:
[

n
l

]

q
is the number of distinct l-dimensional subspaces

of an n-dimensional vector space over Fq.

Fact: q l(n−l) <

[

n
l

]

q
< 4q l(n−l)



Singleton bound

Theorem 9: A q-ary code C ⊆ P(W , l) of type
[N, l , logq(|C|),D] must satisfy

|C| ≤

[

N − (D − 2)/2
max{l ,N − l}

]

q

To prepare for the proof we define a puncturing operation on C.

Recall, dim(W ) = N. Let W ′ ⊆ W be of dimension N − 1.

The punctured code C′ = C|W ′ is found by replacing each
V ∈ C with V ′ where V ′ = V ∩ W ′ in case this is of dimension
l − 1.
Otherwise we choose V ′ to be any subspace of V = V ∩ W ′ of
dimension l − 1.



Lemma (Theorem 8): Consider D with D > 2. C′ = C|W ′ is a
code of type [N − 1, l − 1, logq(|C|),D′] with D′ ≥ D − 2.

Proof: Given U,V ∈ C consider U ′,V ′.
By construction (U ′ ∩ V ′) ⊆ U ∩ V
and therefore 2 dim(U ′ ∩ V ′) ≤ 2 dim(U ∩ V ).
But D ≤ d(U,V ) = 2l − 2 dim(U ∩ V ).
Hence, −2 dim(U ′ ∩ V ′) ≥ D − 2l
and therefore

d(U ′,V ′) = 2(l − 1)− 2 dim(U ′ ∩ V ′)

≥ 2l − 2 + (D − 2l) = D − 2

In particular no two different codewords U,V are mapped to the
same codeword in C′.



Proof of Singleton bound

We can puncture the code C at least (D − 2)/2 times without
changing the code size (no collapsing).

After these puncturings all codewords are subspaces of a
space W ′′···′ = W (D−2)/2 which is of dimension N − (D − 2)/2.

The number of subspaces of W (D−2)/2 of size N − l equals
[

N − (D − 2)/2
l − (D − 2)/2

]

q
=

[

N − (D − 2)/2
N − l

]

q

The “other result” comes by considering dual codes.



Linearized Polynomials

Let F = Fqm . A linearized polynomial over F is a polynomial

L(X ) =
∑d

i=0 aiX qi
, ai ∈ F

L1(X ),L2(X ) linearized then also L1(X ) + L2(X ) and
L1(X )⊗ L2(X ) = L1(L2(X ))

If deg(L1) = qd1 and deg(L2) = qd2 then deg(L1 ⊗ L2) = qd1+d2 .

If β1, β2 ∈ F and λ1, λ2 ∈ Fq then
L(λ1β1 + λ2β2) = λ1L(β1) + λ2L(β2)



Lemma 11: Assume L1,L2 with deg(L1),deg(L2) < qd . If
α1, . . . , αd ∈ F = Fqm are linearly independent over Fq and
L1(αi) = L2(αi) holds for i = 1, . . . ,d , then L1 = L2.

Proof: First assumption implies that L1 − L2 cannot have more
than qd−1 zeros. Second assumption implies that L1 − L2 has
at least qd zeros.



Kötter-Kschischang codes (KK-codes)

F = Fqm can be viewed as an m-dimensional vector space over
Fq.

Let A = {α1, . . . , αl} ⊆ F be linearly independent over Fq.

Ambient space

W = 〈A〉 × F

= {(α, β) | α ∈ 〈A〉, β ∈ F}

is of dimension l + m



Encoding

Message ~u = (uo, . . . ,uk−1) ∈ Fk

(this corresponds to qmk symbols in Fq!)

f (X ) =

k−1
∑

i=0

uiX
qi

V = 〈(α1, f (α1)), . . . , (αl , f (αl))〉 ⊆ W

Fact: If |A| ≥ k then no two different messages give the same
space.

Assume therefore always l ≥ k

So far N = l + m, l(C) = l = constant , logq(C) = mk . What
about D?



Lemma 13: If {(α′

1, f (α
′

1)), . . . , (α
′
r , f (α

′
r ))} ⊆ W is linearly

independent for some linearized polynomial f over F then
{α′

1, . . . , α
′
r} is also linearly independent (over Fq)

Proof: Assume γ1, . . . , γr ∈ Fq and γ1α
′

1 + · · ·+ γrα
′
r = 0.

Then in W , we have

r
∑

i=1

γi(α
′

i , f (α
′

i)) = (0,
r

∑

i=1

γi f (α
′

i))

= (0, f
(

r
∑

i1

γiα
′

i)
)

= (0, f (0)) = (0,0)

By the assumption in the lemma we conclude γ1 = · · · = γr = 0



The minimum distance

Theorem 14: D = 2(l − k + 1)

Proof: Given f ,g linearized and of degree at most qk−1 the
codewords are

U = 〈(α1, f (α1)), · · · , (αl , f (αl))〉

V = 〈(α1,g(α1)), · · · , (αl ,g(αl))〉

Let r = dim(U ∩ V ). Then we can find r linearly independent
elements

(α′

1, β
′

1), . . . , (α
′

r , β
′

r )

such that f (α′

i) = g(α′

i) for i = 1, . . . , r (they span U ∩ V ).



Proof cont.

It follows from Lemma 13 that α′

1, . . . , α
′
r are linearly

independent.

As f and g linearized polynomials, all linear combinations of
α′

1, . . . , α
′
r are zeros of f − g.

But deg(f − g) ≤ qk−1 and our first conclussion is

r ≤ k − 1

Recall d(U,V ) = 2l − 2 dim(U ∩ V ).

In conclusion

D ≥ 2l − 2(k − 1) = 2(l − k + 1)



According to the Singleton bound a code with N = mk , l = l ,
and D = 2(l − k + 1) can have at most size

|C| ≤

[

N − (D − 2)/2
l − (D − 2)/2

]

q
=

[

m + k
k

]

q
< 4qmk

So KK codes are nearly optimal.



Decoding

Assume V = 〈(α1, f (α1)), . . . , (αl , f (αl))〉 is transmitted and U is
received with
dim(U ∩ V ) = l − ρ and U = (U ∩ V )⊕ E , where t = dim(E).

Write r = dim(U) = l − ρ+ t .

Let {(x1, y1), . . . , (xr , yr )} be a basis for U.

Assume

ρ+ t < D/2 = l − k + 1 (1)

Whether or not (1) holds, the receiver knows r and k and can
calculate

τ = d(r + k)/2e



Decoding cont.

Assumption (1) implies l − ρ ≥ t + k . Therefore

r + k = (l − ρ+ t) + k = (l − ρ) + (t + k) ≤ 2(l − ρ)

Hence,

r < 2τ − k + 1 (2)

and under assumption (1) also

τ ≤ l − ρ (3)



Decoding algorithm

When U is received the receiver determines τ .
Then the receiver finds

Q(X ,Y ) = QX (X ) + QY (Y )

such that

1. QX is linearized of degree at most qτ−1

2. QY is linearized of degree at most qτ−k

3. Q(xi , yi) = 0 for all i = 1, . . . , r

This is doable as the number of variables is 2τ − k + 1 which
by (2) exceeds the number of equations.



Decoding algorithm cont.

Let {(a1,b1), . . . , (al−ρ,bl−ρ)} be a basis for U ∩ V .

Since all elements of U are zeros of Q(X ,Y )
and bi = f (ai), i = 1, . . . , l − ρ we have

Q(ai ,bi) = Q(ai , f (ai)), i = 1, . . . , l − ρ.

Q(X , f (X )) = QX (X ) + QY (X )⊗ f (X )
is linearized of degree at most qτ−1 having at least q l−ρ zeros.
By (3) this implies

QX (X ) + QY )X )⊗ f (X ) = 0.

Kötter, Kschischang give a (non commutative) division
algorithm to divide QX (X ) with QY (X ) to obtain f (X )


