Generalizations of the Reed-Solomon Codes Via Gröbner Basis Theory

Olav Geil

Department of Mathematical Sciences Aalborg University Denmark

Tokyo Institute of Technology, August 8, 2006

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Thanks to

Professor Tomohiko Uyematsu and Professor Ryutaroh Matsumoto

for invitation and for great hospitality

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへぐ

Outline

The parameters n,k and d

The Reed-Solomon codes

Some Gröbner basis theoretical tools

Reed-Solomon codes revisited

Generalized Reed-Muller codes and hyperbolic codes

(ロ) (同) (三) (三) (三) (○) (○)

Codes from the Hermitian curve

Order domains

Computer experiments

Model

$$ec{m}$$
 $ec{c}$ $ec{r} = ec{c} + ec{e}$ $ec{m'}$
 $ightarrow$ Encoder $ightarrow$ Channel $ightarrow$ Decoder $ightarrow$
 $ec{e}$

$$ec{m} = (m_1, \dots, m_k) \in \mathbb{F}_q^k, \, k < n, \, ec{c} = (c_1, \dots, c_n) \in \mathbb{F}_q^n \ ec{e} = (e_1, \dots, e_n) \in \mathbb{F}_q^n, \, ec{m}' \in \mathbb{F}_q^k$$

 $P_i(e_i = 0) = p$ is large, $P_i(e_i = \alpha) = (1 - P)/(1 - q)$ for $\alpha \neq 0$ and P_i, P_j are independent

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Linear code

A (linear) code C is a subspace $C \subseteq \mathbb{F}_q^n$ $k = \dim(C), \ C \simeq \mathbb{F}_q^k.$

Encoding:

Choose basis $\{\vec{g}_1, \ldots, \vec{g}_k\}$ for *C*. The generator matrix is

$$G = \left[egin{array}{c} ec{g_1} \ dots \ ec{g_k} \ ec{g_k} \end{array}
ight]$$

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Encode by $\vec{c} = \vec{m}G$.

Minimum distance

$$w_H((w_1,\ldots,w_n)) = \#\{i \mid w_i \neq 0\}$$

 $dist_H(\vec{w}_1, \vec{w}_2) = w_H(\vec{w}_1 - \vec{w}_2)$

$$d = \min\{\operatorname{dist}_{H}(\vec{c}_{1},\vec{c}_{2}) \mid \vec{c}_{1},\vec{c}_{2} \in C, \vec{c}_{1} \neq \vec{c}_{2}\}$$

Within the distance $\lfloor \frac{d-1}{2} \rfloor$ of a word \vec{w} there can be at most one codeword.

If at most $\lfloor \frac{d-1}{2} \rfloor$ errors occurs we can correct them by choosing the nearest code word to the received word.

$$d = \min\{w_H(\vec{c}) \mid \vec{c} \in C, \vec{c} \neq \vec{0}\}.$$

- The length n, the dimension k and the minimum distance d. [n, k, d]
- If $\frac{k}{n}$ is high then fast transmission.
- If $\frac{d}{n}$ is high then good protection against noise.

The challenge is to get $\frac{k}{n}$ as well as $\frac{d}{n}$ high simultaneously.

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Reed-Solomon code - generator matrix description

$$\mathsf{RS}_q(k)$$
 over $\mathbb{F}_q = \{P_1, P_2, \dots, P_q\}.$

$$G = \left[\begin{array}{ccccc} 1 & 1 & \cdots & 1 \\ P_1 & P_2 & \cdots & P_q \\ P_1^2 & P_2^2 & \cdots & P_q^2 \\ \vdots & \vdots & \ddots & \cdots \\ P_1^{k-1} & P_2^{k-1} & \cdots & P_q^{k-1} \end{array} \right]$$

 $\mathsf{RS}_q(k)$ consists of the code words $\vec{c} = \vec{i}G$, where $\vec{i} = (i_0, \dots, i_{k-1}) \in \mathbb{F}_q^k$.

 $\mathsf{RS}_q(k) = \{(f(P_1), f(P_2), \dots, f(P_q)) \mid \deg(f) < k\}.$

(日) (日) (日) (日) (日) (日) (日)

Parameters of Reed-Solomon code

Length: n = q.

Key observation 1:

d = n - (k - 1) = n - k + 1 as a polynomial of degree at most k - 1 can have at most k - 1 zeros.

Key observation 2:

$$(1, 1, \dots, 1), (P_1, P_2, \dots, P_n), \dots, (P_1^{n-1}, P_2^{n-1}, \dots, P_n^{n-1})$$

(日) (日) (日) (日) (日) (日) (日)

are linearly independent. Hence, for k < q we have $\dim(RS_q(k)) = k$.

$$RS_q(k)$$
 is $[n = q, k, d = n - k + 1]$.

Some properties of the Reed-Solomon code

Advantages:

- Large minimum distance
- A lot of structure
- More efficient decoding algorithms including list decoding

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Useful as outer code in concatenated codes

Disadvantage:

... but very short

Want to construct long codes with a lot of structure and with high minimum distance.

Strategy:

Reed-Solomon like generator matrices that support generalizations of Key observation 1 and Key observation 2.

(ロ) (同) (三) (三) (三) (○) (○)

Mathematical language (theory)

Traditional: Algebraic geometry or function field theory. In particular the Riemann-Roch Theorem.

(ロ) (同) (三) (三) (三) (○) (○)

More recent: Gröbner basis theory (much simpler)

Monomials and polynomials

One variable:

$$\mathcal{M}(X) = \{1, X, X^2, X^3, \ldots\} = \{X^i \mid i \in \mathbb{N}_0\}$$

Two variables:

$$\mathcal{M}(\boldsymbol{X}, \boldsymbol{Y}) = \{ \boldsymbol{X}^{i} \boldsymbol{Y}^{j} \mid i, j \in \mathbb{N}_{0} \}$$

Example: $X^3 Y^4$

More variables:

$$\mathcal{M}(X_1, X_2, \dots, X_m) = \{X_1^{i_1} X_2^{i_2} \cdots X_m^{i_m} \mid i_1, i_2, \dots, i_m \in \mathbb{N}_0\}$$

Polynomial is linear combination of monomials.

Example: $F(X, Y) = X^{3}Y + 2XY + 1$

Monomial orderings

One variable:

 $1 < X < X^2 < X^3 < \cdots$

More variables:

 \prec is a monomial ordering on $\mathcal{M}(X_1,X_2,\ldots,X_m)$ if the following hold

- 1. If $K \prec M$ and $M \prec N$ then also $K \prec N$.
- 2. If $K \prec M$ then also $KN \prec MN$.
- 3. Any set of monomials in $\mathcal{M}(X_1, X_2, \ldots, X_m)$ has a (unique) smallest element.

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

Monomial orderings - continued

The lexicographic ordering:

 $X_1^{i_1} \cdots X_m^{i_m} \prec_{lex} X_1^{j_1} \cdots X_m^{j_m}$ if leftmost nonzero entry of $(j_1 - i_1, \dots, j_m - i_m)$ is positive.

Example: $X_1X_2^4 \prec_{lex} X_1^2X_2$ as (2, 1) - (1, 4) = (1, -3) has leftmost nonzero entry positive. If we choose $X_1 = X$ and $X_2 = Y$ then $XY^4 \prec_{lex} X^2Y$. If we choose $X_1 = Y$ and $X_2 = X$ then $X^2Y \prec_{lex} XY^4$.

(日) (日) (日) (日) (日) (日) (日)

Monomial orderings - continued

The graded lexicographic ordering: $X_1^{i_1} \cdots X_m^{i_m} \prec_{deg} X_1^{j_1} \cdots X_m^{j_m}$ if either (1) or (2) below holds:

$$(1) \quad i_1 + \cdots + i_m < j_1 + \cdots + j_m$$

(2)
$$i_1 + \cdots + i_m = j_1 + \cdots + j_m$$

and leftmost nonzero entry of $(j_1 - i_1, \dots, j_m - i_m)$
is positive

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Example: $X^2 YZ^2 \prec_{deg} X^4 YZ$ and $X^3 Y^2Z \prec_{deg} X^4 YZ$

Monomomial orderings - continued

The weighted graded lexicographic ordering: Given $w_1, \ldots, w_m \in \mathbb{R}_+$ then $X_1^{i_1} \cdots X_m^{i_m} \prec_w X_1^{j_1} \cdots X_m^{j_m}$ if either (1) or (2) below holds:

(1)
$$w_1i_1 + \cdots + w_mi_m < w_1j_1 + \cdots + w_mj_m$$

(2)
$$w_1 i_1 + \cdots + w_m i_m = w_1 j_1 + \cdots + w_m j_m$$

and leftmost nonzero entry of $(j_1 - i_1, \dots, j_m - i_m)$
is positive

Example:
$$w_1 = w(X) = 2$$
 and $w_2 = w(Y) = 3$.
 $X^4 Y \prec_w Y^4$ as $w(X^4 Y) = 11 < 12 = w(Y^4)$
 $X_1 = Y$ and $X_2 = X$ gives $X^3 \prec_w Y^2$ as $w(X^3) = w(Y^2) = 6$
and $(2, 0) - (0, 3) = (2, -3)$.

◆□ ▶ ◆□ ▶ ◆三 ▶ ◆□ ▶ ◆□ ●

Zeros of a polynomial

One variable:

 $2 \in \mathbb{Z}_5 = \mathbb{F}_5$ is a zero of $F(X) = X^2 + X + 4$ as $2^2 + 2 + 4 \equiv 0 \mod 5$

More variables:

 $(2,3) \in \mathbb{Z}_5 \times \mathbb{Z}_5$ is a zero of F(X, Y) = XY + X + 3Y + 3 as $2 \cdot 3 + 2 + 3 \cdot 3 + 3 \equiv 0 \mod 5$.

Main question:

How do we estimate how many zeros a given polynomial in more variables can have?

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

Zeros of a polynomial - continued

Example:

 $X^3 - Y^2 - Y$ has infinitely many zeros in $\mathbb{R} \times \mathbb{R}$. For every choice of *b* let $\sqrt[3]{b^2 + b}$ then (a, b) is a zero.

Example: $X^3 - Y^2 - Y$ and $Y^4 - Y$ has only finitely many zeros in common in $\mathbb{R} \times \mathbb{R}$.

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

The footprint bound

One variable case:

 $F(X) = X^3 + X + 7$ has at most 3 zeros as deg(F) = 3. Note that Im(F) = X^3 and that also number of *'s is 3.

* * *
$$\square$$
 · · · ·
1 X X² X³ X⁴ X⁵ X⁶

To deal with more variables and more polynomials we will draw pictures as above.

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Example:

We look for solutions (a, b) to $X^2Y - XY$ in $\mathbb{F}_3 \times \mathbb{F}_3$. If $(a, b) \in \mathbb{F}_3 \times \mathbb{F}_3$ then solution to $X^3 - X$ and $Y^3 - Y$ as well. We have the zeros

(0, 0), (0, 1), (0, 2), (1, 0), (1, 1), (1, 2), (2, 0).

Consider the lexicographic ordering. We have the leading monomials $Im(X^2Y - XY) = X^2Y$, $Im(X^3 - X) = X^3$ and $Im(Y^3 - Y) = Y^3$ giving us the picture

Certainly, # zeros equals # of *'s.

Example: By inspection $X^3 - Y^2 - Y$ has 8 zeros in $\mathbb{F}_4 \times \mathbb{F}_4$. Consider the weighted graded lexicographic ordering \prec_w with w(X) = 2 and w(Y) = 3 and $X_1 = X$ and $X_2 = Y$. We have the leading monomials $lm(X^3 - Y^2 - Y) = X^3$, $lm(X^4 - X) = X^4$ and $lm(Y^4 - Y) = Y^4$ giving us the picture

... Ups... now more *'s than zeros. What is wrong?

If (a, b) is a common zero of $X^3 - Y^2 - Y, X^4 - X, Y^4 - Y$ then certainly also a zero of

$$X(X^3 - Y^2 - Y) + (X^4 - X) = XY^2 + XY + X.$$

This polynomial has leading monomial XY^2 .

Now, # zeros equals # *'s.

Conclusion: we need to consider not only polynomials but also their consequences.

Definition: Let F_1, F_2, \ldots, F_s be polynomials. The set

 $\{K_1F_1 + K_2F_2 + \dots + K_sF_s \mid K_1, K_2, \dots, K_s \text{ are polynomials } \}$

is called the ideal generated by F_1, F_2, \ldots, F_s . It is denoted $\langle F_1, F_2, \ldots, F_s \rangle$.

Example: $XY^2 + XY + X = X(X^3 - Y^2 - Y) + (X^4 - X) \in \langle X^3 - Y^2 - Y, X^4 - X, Y^4 - Y \rangle = \langle X^3 - Y^2 - Y, X^4 - X, Y^4 - Y, XY^2 + XY + X \rangle.$

Conclusion: The concept of an ideal plays a central role for estimating zeros.

Definition:

Given an ideal $I = \langle F_1, F_2, \dots, F_s \rangle$ and a monomial ordering the footprint of *I* is:

 $\Delta_{\prec}(I) = \{M \text{ is a monomial } | M \text{ can not be found as}$ the leading monomial of any polynomial in $I\}$

Buchberger's algorithm add more polynomials (consequences) to the list $\{F_1, \ldots, F_s\}$ so that the footprint can be easily read of. Such an enlarged set is called a Gröbner basis.

Example: $I = \langle X^3 - Y^2 - Y, X^4 - X, Y^4 - Y \rangle$ has as leading monomials

$$Im(X^{i}Y^{j}(X^{3} - Y^{2} - Y)) = X^{3+i}Y^{j},$$

$$Im(X^{i}Y^{j}(X^{4} - X)) = X^{4+i},$$

$$Im(X^{i}Y^{j}(Y^{4} - Y)) = X^{i}Y^{4+j} \text{ and}$$

$$Im(X^{i}Y^{j}(XY^{2} + XY + X)) = X^{i+1}Y^{2+j}$$

where (i, j) runs through all possibilities.

Example: As seen $X^3 - Y^2 - Y$ has 8 zeros in $\mathbb{F}_4 \times \mathbb{F}_4$. Consider weighted graded lexicographic ordering with w(X) = 2, w(Y) = 3 and $X_1 = Y$, $X_2 = X$. The leading monomials with respect to \prec_w are: $Im(X^4 - X) = X^4$, $Im(Y^4 - Y) = Y^4$ and $Im(X^3 - Y^2 - Y) = Y^2$.

zeros equals #*'s.

Key observation 1 generalized

Theorem (The footprint bound):

The number of common zeros of F_1, F_2, \ldots, F_s is at most equal to $\#\Delta_{\prec}(\langle F_1, F_2, \ldots, F_s \rangle)$. (If $X_1^q - X_1, X_2^q - X_2, \ldots, X_m^q - X_m$ are among F_1, F_2, \ldots, F_s then equality holds.)

Hence, if $\{P_1, \ldots, P_n\}$ is the common zeros of F_1, \ldots, F_s and G is a polynomial then $w_H((G(P_1), \ldots, G(P_n)))$ is at least equal to $n - \# \Delta_{\prec}(\langle G, F_1, \ldots, F_s \rangle).$

(日) (日) (日) (日) (日) (日) (日)

Key observation 2 generalized

Theorem: Assume $X_1^q - X_1, X_2^q - X_2, \dots, X_m^q - X_m$ are among F_1, F_2, \dots, F_s . Let P_1, P_2, \dots, P_n be the common zeros of F_1, F_2, \dots, F_s . The set

 $\{(M(P_1), M(P_2), \ldots, M(P_n)) \mid M \in \Delta_{\prec}(\langle F_1, F_2, \ldots, F_s \rangle)\}$

(日) (日) (日) (日) (日) (日) (日)

constitutes a basis for \mathbb{F}_{q}^{n} as a vectorspace over \mathbb{F}_{q} .

Key observation 2 - continued

Example:

The common solutions of $X^2 Y - XY$, $X^3 - X$ and $Y^3 - Y$ are

$$P_1 = (0,0), P_2 = (0,1), P_3 = (0,2), P_4 = (1,0),$$

$$P_5 = (1, 1), P_6 = (1, 2), P_7 = (2, 0).$$

And the footprint (corresponding to the lexicographic ordering) is

Hence,

 $\{(M(P_1), M(P_2), \dots, M(P_7)) \mid M \in \{1, X, X^2, Y, XY, Y^2, XY^2\}\}$ is a basis for \mathbb{F}_3^7 .

Reed-Solomon codes revisited

 P_1, P_2, \ldots, P_{16} the zeros of $X^{16} - X$ (the elements of \mathbb{F}_{16}). Footprint: $\Delta_{<}(\langle X^{16} - X \rangle) = \{1, X, X^2, \ldots, X^{15}\}$. Hence,

$$\{M(P_1), M(P_2), \ldots, M(P_{16})) \mid M \in \Delta_{<}(\langle X^{16} - X \rangle)\}$$

constitutes a basis for \mathbb{F}_{16}^{16} .

$$\begin{array}{rcl} & \Delta_{<}(\langle X^{16} - X \rangle) & & \#\Delta_{<}(\langle X^{i}, X^{16} \rangle) \\ 1 & X & X^2 & \cdots & X^{14} & X^{15} & & 0 & 1 & 2 & \cdots & 14 & 15 \end{array}$$

For *F* with $Im(F) = X^i$ we have

$$\Delta_{<}(\langle F, X^{16} - X \rangle) \subseteq \Delta_{<}(\langle X^{i}, X^{16} \rangle).$$

By Key observation 1,

 $w_H((F(P_1), F(P_2), \dots, F(P_1))) = 16 - \#\Delta_{<}(\langle F, X^{16} - X \rangle) \ge 16 - i.$ We have shown dim(RS₁₆(*k*)) = *k* for *k* < 16 and $d(RS_{16}(k)) \ge 16 - (k - 1) = 16 - k + 1.$ Generalized Reed-Muller codes and hyperbolic codes

Let P_1, P_2, \ldots, P_{25} be the common zeros of $X^5 - X, Y^5 - Y$. We consider words of the form $(F(P_1), F(P_2), \ldots, F(P_{25}))$. Let \prec be any monomial ordering.

$$\Delta_{\prec}(\langle X^5 - X, Y^5 - Y \rangle) \qquad \qquad \# \Delta_{\prec}(\langle X^5, Y^5, X^i Y^j \rangle)$$

Y ⁴	XY^4	$X^2 Y^4$	$X^3 Y^4$	$X^4 Y^4$	20	21	22	23	24
Y ³	XY ³	$X^2 Y^3$	X ³ Y ³	$X^4 Y^3$	15	17	19	21	23
Y ²	XY^2	$X^2 Y^2$	$X^3 Y^2$	$X^4 Y^2$	10	13	16	19	22
Y	XY	X ² Y	<i>X</i> ³ Y	$X^4 Y$	5	9	13	17	21
1	Х	X^2	X^3	X^4	0	5	10	15	20

$$G(X, Y) = XY + aX^2 + bY + cX + d$$

$\Delta_{\prec}(\langle X^5 - X, Y^5 - Y, G(X, Y) \rangle) \le #\Delta_{\prec}(\langle X^5, Y^5, XY \rangle \le 9$
 $w_H(G(P_1), G(P_2), \dots, G(P_{25})) \ge 25 - 9 = 16$

Generalized Reed-Muller codes

New notation: $\varphi(G) = (G(P_1), G(P_2), \dots, G(P_{25})).$ $\mathsf{RM}_5(4, 2) = \mathsf{Span}_{\mathbb{F}_5}\{\varphi(X^i Y^j) \mid i+j \le 4\}$

$$\Delta_{\prec}(\langle X^5 - X, Y^5 - Y \rangle) \qquad \#\Delta_{\prec}(\langle X^5, Y^5, X^i Y^j \rangle)$$

Y^4	*	*	*	*	20	*	*	*	*
Y ⁴	XY ³	*	*	*	15	17	*	*	*
Y ²	XY^2	$X^2 Y^2$	*	*	10	13	16	*	*
Y	XY	X ² Y	<i>X</i> ³ <i>Y</i>	*	5	9	13	17	*
1	X	X ²	X^3	X^4	0	5	10	15	20

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Worst case code word: $Im = Y^4$ or $Im = X^4$ $w_H(Y^4 + \cdots) \ge 25 - 20 = 5$ [n, k, d] = [25, 15, 5]

Hyperbolic codes

Choose $X^i Y^j$'s with $#\Delta(\langle X^5, Y^5, X^i Y^j \rangle)$ small.

[25, 17, 5]						[25, 15, 6]					
20	*	*	*	*		*	*	*	*	*	
15	17	19	*	*		15	17	19	*	*	
10	13	16	19	*		10	13	16	19	*	
5	9	13	17	*		5	9	13	17	*	
0	5	10	15	20		0	5	10	15	*	

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへぐ

 P_1, P_2, \ldots, P_{64} the common zeros of $X^8 - X, Y^8 - Y$

57	58	59	60	61	62	63
50	52	54	56	58	60	62
43	46	49	52	55	58	61
36	40	44	48	52	56	60
29	34	39	44	49	54	59
22	28	34	40	46	52	58
15	22	29	36	43	50	57
8	16	24	32	40	48	56
	57 50 43 36 29 22 15 8	 57 58 50 52 43 46 36 40 29 34 22 28 15 22 8 16 	57585950525443464936404429343922283415222981624	575859605052545643464952364044482934394422283440152229368162432	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	57585960616250525456586043464952555836404448525629343944495422283440465215222936435081624324048

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

RM₈(7,2) is [64,36,8]

Hyperbolic codes with [64, 48, 8 = 64 - 56] and [64, 37, 14 = 64 - 50]

Generalized Reed-Muller codes and Hyperbolic codes $\{P_1, \ldots, P_{q^m}\}$ the common zeros of $X_1^q - X_1, \ldots, X_m^q - X_m$.

If $G(X_1, \ldots, X_m)$ has leading monomial $X_1^{i_1} \cdots X_m^{i_m}$ then

$$egin{aligned} & \mathsf{w}_{H}\left(G(P_{1}),\ldots,G(P_{q^{m}})
ight) &= q^{m}-\#\Delta_{\prec}(\langle G,X_{1}^{q}-X_{1},\ldots,X_{m}^{q}-X_{m}
angle) \ & \geq q^{m}-\#\left(\Delta_{\prec}(\langle X_{1}^{i_{1}}\cdots X^{i_{m}}
angle)\cap \ & \Delta_{\prec\prec}(\langle X_{1}^{q}-X_{1},\ldots,X_{m}^{q}-X_{m}
angle)) \end{aligned}$$

For
$$X_1^{i_1} \cdots X_m^{i_m} \in \Delta_{\prec}(\langle X_1^q - X_1, \dots, X_m^q - X_m \rangle)$$
 define
 $D(X_1^{i_1} \cdots X_m^{i_m}) = \#\Delta_{\prec}(\langle X_1^{i_1} \cdots X_m^{i_m}, X_1^q, \dots, X_m^q \rangle)$
 $= \#\left(\Delta_{\prec}(\langle X_1^{i_1} \cdots X_m^{i_m} \rangle) \cap \Delta_{\prec}(I)\right)$
 $= q^m - \prod_{s=1}^m (q - i_s)$

・ロト・西ト・ヨト・ヨー シタぐ

Generalized Reed-Muller codes and hyperbolic codes

If
$$\operatorname{Im}(F(X_1,\ldots,X_m)) = X_1^{i_1}\cdots X_m^{i_m}$$
 then

$$w_H(\varphi(F)) \ge q^m - D(X_1^{i_1} \cdots X_m^{i_m}) = \prod_{s=1}^m (q - i_s)$$

The polynomial $\prod_{t=1}^{m} \prod_{s=1}^{l_t} (X_t - P_s)$ has leading monomial equal to $X_1^{i_1} \cdots X_m^{i_m}$ (for ANY ordering) and has $D(X_1^{i_1} \cdots X_m^{i_m})$ zeros.

General constructions of generalized Reed-Muller codes and hyperbolic codes along the lines in above examples.

(日) (日) (日) (日) (日) (日) (日)

Codes from Hermitian curve

$$J = \langle X^{q+1} - Y^q - Y, X^{q^2} - X, Y^{q^2} - Y \rangle$$
. Common zeros are $\{P_1, \dots, P_{q^3}\}$.

Let $w(X^i Y^j) = iq + j(q+1)$ and define \prec_w by: $X^{\alpha} Y^{\beta} \prec_w X^{\gamma} Y^{\delta}$ if (1) or (2) holds

(1)
$$w(X^{\alpha}Y^{\beta}) < w(X^{\gamma}Y^{\beta})$$

(2) $w(X^{\alpha}Y^{\beta}) = w(X^{\gamma}Y^{\beta})$ and $\beta < \delta$

To estimate $w_H((F(P_1), \ldots, F(P_{q^3})))$ we consider

$$\begin{split} & \#(\Delta_{\prec_w}(\langle F(X,Y),X^{q+1}-Y^q-Y,X^{q^2}-X,Y^{q^2}-Y\rangle)) \\ \leq & \#\left(\Delta_{\prec_w}(\langle X^{q+1}-Y^q-Y,F(X,Y)\rangle)\cap\Delta_{\prec_w}(J)\right) \end{split}$$

Codes from hermitian curve

We can show:

$$\begin{split} &\#\left(\Delta_{\prec_w}(\langle X^{q+1}-\mathsf{Y}^q-\mathsf{Y},\mathsf{F}(X,\mathsf{Y})\rangle)\cap\Delta_{\prec_w}(J)\right)\\ &\leq &\#\left(\Delta_{\prec_w}(\langle X^{q+1}-\mathsf{Y}^q,\mathsf{Im}(\mathsf{F}(X,\mathsf{Y}))\rangle)\cap\Delta_{\prec_w}(J)\right) \end{split}$$

Proof relies on the fact that $X^{q+1} - Y^q - Y$ has precisely two monomials of highest weight and that $F \in \text{Span}_{\mathbb{F}_{q^2}}(J)$ has no two monomials of same weight.

(Run Buchberger's algorithm simultaneously for $\{X^{q+1} - Y^q, Im(F(X, Y))\}$ and $\{X^{q+1} - Y^q - Y, F(X, Y)\}$.)

(日) (日) (日) (日) (日) (日) (日)

 $D(X^i Y^j)$

For
$$X^i Y^j \in \Delta_{\prec_w}(J)$$
 define
 $D(X_1^{i_1} \cdots X_m^{i_m}) = \# \left(\Delta_{\prec_w}(\langle X^{q+1} - Y^q, \operatorname{Im}(F(X, Y)) \rangle) \cap \Delta_{\prec_w}(J) \right)$
We have shown $w_H(\varphi(F)) \ge n - D(\operatorname{Im}(F))$, where
 $\varphi(F) = (F(P_1), \dots, F(P_{q^3})).$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ◆□▶

$$J = \langle X^3 - Y^2 - Y, X^4 - X, Y^4 - Y
angle$$

The zeros are $\{P_1, \ldots, P_8\}$.

$$\begin{array}{cccccccc} w(X^i Y^j) & D(X^i Y^j) \\ 3 & 5 & 7 & 9 & 3 & 5 & 6 & 7 \\ 0 & 2 & 4 & 6 & 0 & 2 & 4 & 6 \end{array}$$

Let F(X, Y) = Y + aX + b then $w_H(\varphi(F)) \ge 8 - 3 = 5$.

$$\begin{split} E(s) &= \operatorname{Span}_{\mathbb{F}_4}\{\varphi(X^i Y^j) \mid w(X^i Y^j) \leq s, X^i Y^j \in \Delta_{\prec_w}(J)\} \\ &= \operatorname{Span}_{\mathbb{F}_4}\{\varphi(X^i Y^j) \mid w(X^i Y^j) \leq s\} \end{split}$$

$$\tilde{\textit{\textit{E}}}(s) \hspace{0.1 in} = \hspace{0.1 in} \text{Span}_{\mathbb{F}_{4}}\{\varphi(\textit{X}^{i}\textit{Y}^{j}) \mid \textit{n}-\textit{\textit{D}}(\textit{X}^{i}\textit{Y}^{j}) \geq \textit{s},\textit{X}^{i}\textit{Y}^{j} \in \Delta_{\prec_{w}}(\textit{J})\}$$

E(0) is [8,1,8], *E*(2) is [8,2,6],...,*E*(6) is [8,6,2], *E*(7) is [8,7,2] and *E*(9] is [8,8,1]

..., $\tilde{E}(5)$ is [8,3,5], $\tilde{E}(2)$ is [8,7,2], ...

Some observations on $D(X^i Y^j)$ Observation 1:

$$w(X^{i}Y^{j}) \qquad D(X^{i}Y^{j}) \\ 3 5 7 9 \qquad 3 5 6 7 \\ 0 2 4 6 \qquad 0 2 4 6 \\ w(X^{i}Y^{j}) \ge D(X^{i}Y^{j})$$

Observation 2:

 $n - D(X^i Y^j)$ counts what $w(X^i Y^j)$ can hit. Meaning that:

8 - D(Y) = 5 as 3 + 0 = 3, 3 + 2 = 5, 3 + 3 = 6, 3 + 4 = 7 and 3 + 6 = 9

$$8 - D(XY) = 3 \text{ as } 5 + 0 = 0, 5 + 2 = 7 \text{ and } 5 + 4 = 9 \text{ for all } 0 < 0$$

Some observations on $D(X^i Y^j)$ - continued

Observation 1: $w(X^i Y^j) \ge D(X^i Y^j)$

Observation 2:

 $n - D(X^i Y^j)$ counts what $w(X^i Y^j)$ can hit.

These observations can be shown to hold for general $I = \langle X^{q+1} - Y^q - Y, X^{q^2} - X, Y^{q^2} - Y \rangle$ as a consequence of the following facts:

Fact 1:

The polynomial $\{X^{q+1} - Y^q - Y\}$ has precisely two monomials of highest weight.

Fact 2: In $\Delta_{\prec_w}(\langle X^{q+1} - Y^q - Y, X^{q^2} - X, Y^{q^2} - Y \rangle)$ there are no two monomials of the same weight.

$$J = \langle X^9 - X, Y^9 - Y, X^4 - Y^3 - Y \rangle$$
 has 27 common points.
 $w(X) = 3, w(Y) = 4$

- 23 26 22 25 15 18

E(23) is [27, 21, 4] but $\tilde{E}(4)$ is [27, 22, 4]

・ロン ・四 と ・ ヨ と ・ ヨ と

Our method gives true minimum distance for all codes $\tilde{E}(s)$ and all codes $\tilde{E}(s)$ coming from the Hermitian curve.

The estimations are even tight in general case of norm-trace curves.

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Generalized RM codes and hyperbolic codes revisited

 $w(X^i Y^j) = (i, j) \in \mathbb{N}_0^2$. Choose some monomial ordering $\prec_{\mathbb{N}_0^2}$ on \mathbb{N}_0^2 . Choose some monomial ordering $\prec_{\mathcal{M}}$ on $\mathcal{M}(X, Y)$ and define \prec_w by: $X^{\alpha} Y^{\beta} \prec_w X^{\gamma} Y^{\delta}$ if (1) or (2) holds

(1)
$$w(X^{\alpha}Y^{\beta}) \prec_{\mathbb{N}_{0}^{2}} w(X^{\gamma}Y^{\beta})$$

(2) $w(X^{\alpha}Y^{\beta}) = w(X^{\gamma}Y^{\beta})$ and $X^{\alpha}Y^{\beta} \prec_{\mathcal{M}} X^{\gamma}Y^{\delta}$

 $w(X^i, Y^j) \qquad \qquad \# \Delta_{\prec}(\langle X^5, Y^5, X^i Y^j \rangle)$

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

 $25 - \#\Delta(\langle X^5, Y^5, X^3 Y^3 \rangle) = \\ \#\{(3,3) + (0,0), (3,3) + (1,0), (3,3) + (0,1), (3,3) + (1,1)\}$

Generalized RM codes and hyperbolic codes revisited

 $w(X^i Y^j) = (i, j) \in \mathbb{N}_0^2$. Choose some monomial ordering $\prec_{\mathbb{N}_0^2}$ on \mathbb{N}_0^2 . Choose some monomial ordering $\prec_{\mathcal{M}}$ on $\mathcal{M}(X, Y)$ and define \prec_w by: $X^{\alpha} Y^{\beta} \prec_w X^{\gamma} Y^{\delta}$ if (1) or (2) holds

(1)
$$w(X^{\alpha}Y^{\beta}) \prec_{\mathbb{N}_{0}^{2}} w(X^{\gamma}Y^{\beta})$$

(2) $w(X^{\alpha}Y^{\beta}) = w(X^{\gamma}Y^{\beta})$ and $X^{\alpha}Y^{\beta} \prec_{\mathcal{M}} X^{\gamma}Y^{\delta}$

$$w(X^{i}, Y^{j}) \qquad \qquad \#\Delta_{\prec}(\langle X^{5}, Y^{5}, X^{i}Y^{j}\rangle)$$

うつん 川 ・ ・ 川 ・ ・ 一 ・ うめる

 $\begin{array}{l} 25 - \#\Delta(\langle X^5, Y^5, X^3 Y^3 \rangle) = \\ \#\{(3,3) + (0,0), (3,3) + (1,0), (3,3) + (0,1), (3,3) + (1,1)\} \end{array}$

Forgetting about the $X^q - X$, $Y^q - Y$ -part. $J = \langle X^q - X, Y^q - Y \rangle$ and $I = \langle \rangle$

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ● ● ●

Forgetting about the $X^q - X$, $Y^q - Y$ -part. $J = \langle X^3 - Y^2 - Y, X^q - X, Y^q - Y \rangle$ and $I = \langle X^3 - Y^2 - Y \rangle$

Forgetting about the $X_1^q - X_1, \ldots, X_m^q - X_m$

- Ø is a Gröbner basis for ⟨0⟩ and {X^{q+1} − Y^q − Y} is a Gröbner basis for ⟨X^{q+1} − Y^q − Y⟩. Both with respect to some weighted degree monomial ordering.
- In examples so far the set of defining polynomials are Ø respectively {X^{q+1} − Y^q − Y}. "All" defining polynomials have exactly two monomials of the same highest weight.
- Monomials in the big footprint are of different weights implying that so are the monomials in the small footprint.
- ▶ F_q[X, Y] and F_{q²}[X, Y]/⟨X^{q+1} Y^q Y⟩ are examples of order domains.

Definition:

 $w(X_1), \ldots, w(X_m) \in \mathbb{N}_0^r \setminus \{\vec{0}\}, \prec_{\mathbb{N}_0^r}$ a monomial ordering on \mathbb{N}_0^r , $\prec_{\mathcal{M}}$ a monomial ordering on $\mathcal{M}(X_1, \ldots, X_m)$. The generalized weighted degree ordering \prec_w is given by: $M_1 \prec_w M_2$ if and only if one of the following two conditions holds:

(1) $w(M_1) \prec_{\mathbb{N}_0^r} w(M_2)$ (2) $w(M_1) = w(M_2) \text{ and } M_1 \prec_{\mathcal{M}} M_2.$ $wdeg(F) = \max_{\prec_{\mathbb{N}_0^r}} \{w(M) \mid M \in Sup(F)\}$

Order domain assumptions:

Given \prec_w , $I \subset \mathbb{F}[X_1, X_2, ..., X_m]$ and corresponding Gröbner basis \mathcal{G} . Suppose that the elements of the footprint $\Delta_{\prec_w}(I)$ have mutually distinct weights and that every element of \mathcal{G} has exactly two monomials of highest weight in its support.

(ロ) (同) (三) (三) (三) (○) (○)

Another example

Let
$$I = \langle X^5 + Y^4 + Y, Y^5 + Z^4 + Z \rangle \subseteq \mathbb{F}_{16}[X, Y, Z].$$

Definition of \prec_w : w(X) = 16, w(Y) = 20, $w(Z) = 25 \in \mathbb{N}_0$. $\prec_{\mathbb{N}_0} = <$ (the usual (and unique) monomial ordering on \mathbb{N}_0). $\prec_{\mathcal{M}}$ the lexicographic ordering with $X \prec_{\mathcal{M}} Y \prec_{\mathcal{M}} Z$.

 $\{X^5 + Y^4 + Y, Y^5 + Z^4 + Z\}$ is a Gröbner basis w.r.t. \prec_w . Every defining monomial has precisely two monomials of highest weight. Monomials in footprint $\Delta_{\prec}(I) = \{X^i Y^j Z^I \mid j < 4, I < 4\}$ is of

different weights.

The order domain assumption is satisfied.

$$D(X_1^{i_1}\cdots X_m^{i_m})$$

Assume

$$I = \langle F_1, \dots, F_s \rangle \subseteq \mathbb{F}_q[X_1, \dots, X_m]$$

satisfy the order domain assumption and define

$$J = \langle F_1, \ldots, F_s, X_1^q - X_1, \ldots, X_m^q - X_m \rangle$$

Let B_1, \ldots, B_s be binomials, B_i being the difference of the two monomials of highest weight in F_s

Given
$$F \in \text{Span}\{M \mid M \in \Delta_{\prec_w}(J)\}$$
 with $\text{Im}(F) = N$ we have
 $\Delta_{\prec_w}(\langle N, B_1, \dots, B_s \rangle) \supseteq \Delta_{\prec_w}(\langle F, F_1, \dots, F_s \rangle)$

Define

$$D(N) = \# (\Delta_{\prec_w}(\langle N, B_1, \ldots, B_s \rangle) \cap \Delta_{\prec_w}(J)).$$

We conclude

$$w_H((F(P_1),\ldots,F(P_n))) \ge n - D(N).$$

Some nice results

Result 1:

$$\begin{array}{ll} n-D(X_1^{i_1}\cdots X_m^{i_m}) & = & \#\{s\in w(\Delta_{\prec_w}(J))\mid \\ & s-w(X_1^{i_1}\cdots X_m^{i_m})\in w(\Delta_{\prec_w}(J))\} \end{array}$$

(we count what can be "hit")

Result 2: If weights are numerical, then

$$D(X_1^{i_1}\cdots X_m^{i_m}) \leq w(X_1^{i_1}\cdots X_m^{i_m}).$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Code constructions

E(s) and $\tilde{E}(s)$ codes along the lines of above examples.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへぐ

Time does not permit to go in deeper detail here.

Some features of the theory

- Works for any one-point geometric Goppa code
- Gives improved one-point geometric Goppa codes
- Generalizations of one-point geometric Goppa codes to surfaces
- Easily extended to deal with generalized Hamming weights

(ロ) (同) (三) (三) (三) (○) (○)

- Connects nicely to Shibuya and Sakaniwa's nice theory
- Theory can be reformulated directly in "code-domain". Doing this allows for even more codes to be treated.
- Strong connection to Feng-Rao theory

Feng-Rao theory

Are concerned with *H* instead of *G* (dual description).

Feng-Rao counts what can hit the weight under consideration. We count what the weight under consideration can hit. Feng-Rao investigate weights not used in code construction We investigate weights used in code construction

When $\Delta_{\prec_w}(J)$ has the shape of a box (in some dimension) the two methods produce same estimates for the two classes of codes under consideration.

When not form of a box we get typically not similar estimates as Feng-Rao.

$$I = \langle X^{(q^r-1)/(q-1)} - Y^{q^{r-1}} - Y^{q^{r-2}} - \dots - Y \rangle \subseteq \mathbb{F}_{q^r}[X, Y]$$

Alphabet= $\mathbb{F}_{q^r} = \mathbb{F}_{2^7}$, $n = 2^{13}$ Improved versus non-improved.

▲□▶▲□▶▲□▶▲□▶ □ のへで

$$I = \langle X^{(q^r-1)/(q-1)} - Y^{q^{r-1}} - Y^{q^{r-2}} - \dots - Y \rangle \subseteq \mathbb{F}_{q^r}[X, Y]$$

Alphabet= $\mathbb{F}_{q^r} = \mathbb{F}_{4^3}$, $n = 4^5$ Improved versus non-improved.

・ロット (雪) (日) (日)

- 3

$$I = \langle X^{(q^r-1)/(q-1)} - Y^{q^{r-1}} - Y^{q^{r-2}} - \dots - Y \rangle \subseteq \mathbb{F}_{q^r}[X, Y]$$

Alphabet= \mathbb{F}_{64} . From above: $64 = 8^2$ gives $n = 2^9$, $64 = 4^3$ gives $n = 2^{10}$, $64 = 2^6$ gives $n = 2^{11}$, Hyp₆₄(*s*, 2) gives $n = 2^{12}$

$$\begin{split} \mathbb{I} = & \langle x^{5}, Y^{4}, Y, Y^{5}, \mathbb{Z}^{4}, \mathbb{Z} \rangle \subseteq \mathbb{F}_{16}[X, Y, \mathbb{Z}] \\ & \omega(X) = 16 \ , \ \omega(Y) = 20 \ , \ \omega(\mathbb{Z}) = 25 \end{split}$$

 $alphabet = IF_{16}$, n = 256

 $I = \langle x^5 - y^4 - y, y^5 - z^4 - z, z^5 - U^4 - u^2 \rangle \subseteq H_6[x, y, z, U]$ $\omega(x) = 64, \ \omega(Y) = 80, \ \omega(z) = 100, \ \omega(U) = 125$

alphabet=TF16, n=512

Tensor product of *m* Hermitian order domains involves weights in \mathbb{N}_0^m .

Alphabet= \mathbb{F}_{256} . From above: Hyp₂₅₆(*s*, 2) of length *n* = 65536, Herm₂₅₆(*s*, 2) of length *n* = 16777216, Hyp₂₅₆(*s*, 3) of length *n* = 16777216, Herm₂₅₆(*s*, 3) of length *n* = 68719476736.

0.2 0.4 0.6 0.8 k n alphabet = 1764 , n=262144

< 🗇 ▶

Т

ò

- H. E. Andersen, O. Geil, The Missing Evaluation Codes from Order Domain Theory, (2004), submitted.
- O. Geil, On Codes From Norm-Trace Curves, *Finite Fields and their Applications*, **9**, (2003), 351-371.
- O. Geil and T. Høholdt, On Hyperbolic Codes, Proc.
 AAECC-14, *Lecture Notes in Comput. Sci. 2227*, (S. Bozta, I. Sphparlinski, Eds.), Springer, Berlin, 2001, 159-171.
- O. Geil and R. Pellikaan, On the Structure of Order Domains, *Finite Fields and their Applications*, 8, (2002), 369-396.
- T. Høholdt, J. van Lint and R. Pellikaan, Algebraic Geometry Codes, Chapter 10 in "Handbook of Coding Theory," (V.S. Pless and W.C. Huffman, Eds.), vol. 1, Elsevier, Amsterdam, 1998, 871-961.

(ロ) (同) (三) (三) (三) (○) (○)

- S. Miura, Ph.D. thesis, Univ. Tokyo, May 1997.
- S. Miura, Linear Codes on Affine Algebraic Varieties, *Trans. IEICE*, **J81-A**, no. 10 (1998), 1386-1397.
- S. Miura, Linear Codes on Affine Algebraic Curves, *Trans. IEICE*, **J81-A**, no. 10 (1998), 1398-1421.
- T. Shibuya and K. Sakaniwa, A Dual of Well-Behaving Type Designed Minimum Distance, *IEICE Trans. Fund.*, **E84-A**, (2001), 647-652.

A D F A 同 F A E F A E F A Q A