
History

Fathers of evolutionary computing

PSE (I17) Evolutionary computing 1 / 53



History

Automated problem solving
Nature has always served as a source of inspiration for engineers and
scientists.

Powerfull problem solvers known in nature is:

The human brain that created "the wheel, New York, wars and so on"
(after Douglas Adams Hitch-Hikers Guide)

The evolution mechanism that created the human brain (after
Darwins Origin of Species)

Automated problem solvers (algorithms):

Neurocomputing

Evolutionary computing (EC)
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History Turing

Alan Turing
Alan Turing in his 1948 paper "Intelligent Machinery":
"There is the genetical or evolutionary search by which a combination of
genes is looked for, the criterion being the survival value".

In his 1950 paper "Computing Machinery and Intelligence":
We cannot expect to �nd a good child-machine at the �rst attempt. One
must experiment with teaching one such machine and see how well it
learns. One can then try another and see if it is better or worse. There is
an obvious connection between this process and evolution, by the
identi�cations

Structure of the child machine = Hereditary material

Changes of the child machine = Mutations

Natural selection = Judgment of the experimenter
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History EC dialects

History- founding the dialects of EC
1962, Bremermann: optimization through evolution and
recombination

1964, Rechenberg introduces evolution strategies (ES)

1965, L. Fogel, Owens and Walsh introduce evolutionary
programming (EP)

1975, Holland introduces genetic algorithms (GA)

1992, Koza introduces genetic programming (GP)
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History EC dialects

EC in the early 21st Century
3 major EC conferences, about 10 small related ones

3 scienti�c core EC journals

1000+ EC-related papers published in 2005 (estimate)

EvoNet has over 150 member institutes
- outdated by 2007

uncountable (meaning: many) applications

uncountable (meaning: ?) consultancy and R&D �rms

Reference: A.E. Eiben and J.E. Smith (2007) Introduction to Evolutionary
Computing, Springer, Natural Computing Series.
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Natural genetics

Genotype/phenotype
The information required to build a
living organism is coded in the DNA of
that organism. The information may
vary giving rise to di�erent genotypes.

Genotype determines phenotype (hair
color, blood type, etc.)

Genotype ! phenotypic traits is a
complex mapping
I One genotype may a�ect many traits

(pleiotropy)
I Many genotypes may a�ect one trait

(polygeny)

Changes in the genotype may lead to
changes in the organism (e.g., height,
hair colour)
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Natural genetics

chromosomes
Genes are encoded in strands of DNA called chromosomes

In most cells, there are two copies of each chromosome (diploidy)

Human DNA is organised into 23 pairs of chromosomes which
together de�ne the physical attributes of the individual

Gametes (sperm and egg cells) contain 23 individual chromosomes
rather than 23 pairs

Gametes are formed by a special form of cell splitting called meiosis
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Natural genetics Recombination

Crossing over during meiosis
Chromosome pairs align and duplicate

Inner pairs link at a centromere and swap parts of themselves

Outcome is one copy of maternal/paternal chromosome plus two
entirely new combinations

After crossing-over one of each pair goes into each gamete
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Natural genetics Mutation

Mutation
Occasionally some of the genetic material changes very slightly during
meiosis(replication error)

This means that the child might have genetic material information
not inherited from either parent
This can be
I catastrophic: o�spring in not viable (most likely)
I neutral: new feature not in
uencing �tness
I advantageous: strong new feature occurs

Redundancy in the genetic code forms a good way of error checking
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Evolutionary algorithm

Pseudocode of an evolutionary algorithm(EA)
BEGIN

INITIALIZE population with random candidate solutions;

EVALUATE each candidate;

REPEAT

1. SELECT parents;

2. RECOMBINE pairs of parents;

3. MUTATE the resulting offspring;

4. EVALUATE the new candidates;

5. SELECT individuals for the next generation;

UNTIL TERMINATION CONDITION is satisfied

END.
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Evolutionary algorithm

EA diagram

Survivor selection

Population

Offspring

ParentsInitialisation

Termination

Parent selection

Recombinarion

Mutation
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Evolutionary algorithm Problem types

Optimization
We have a model of our system and seek inputs that give us a
speci�ed goal

e.g.
I time tables for university, call center, or hospital
I design speci�cations, etc etc
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Evolutionary algorithm Problem types

Example: Satellite structure

Optimised satellite designs
for NASA to maximize
vibration isolation

Evolving: design structures

Fitness: vibration resistance
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Evolutionary algorithm Problem types

Modelling
We have corresponding sets of inputs & outputs and seek model that
delivers correct output for every known input

Evolutionary machine learning
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Evolutionary algorithm Problem types

Simulation
We have a given model and wish to know the outputs that arise
under di�erent input conditions

Often used to answer "what-if" questions in evolving dynamic
environments

e.g. Evolutionary economics, Arti�cial Life

PSE (I17) Evolutionary computing 15 / 53



Evolutionary algorithm Combinatorial examples

Example: the 8 queens problem
Place 8 queens on an 8x8 chessboard in such a way that they cannot
check each other.

Representation

Phenotype: A board
con�guration

Genotype: A permutation
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Evolutionary algorithm Combinatorial examples

The 8 queens problem

Fitness evaluation
Penalty of one queen: the number of queens she can check.

Penalty of a con�guration: the sum of the penalties of all queens.

Note: penalty is to be minimized

Fitness of a con�guration: inverse penalty to be maximized

Mutation
swapping values of two randomly chosen positions, or inverting a
randomly chosen segment
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Evolutionary algorithm Combinatorial examples

The 8 queens problem

Recombination
Combining two permutations into two new permutations:

choose random crossover point

copy �rst parts into children

create second part by inserting values from other parent:
I in the order they appear there
I beginning after crossover point
I skipping values already in child
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Evolutionary algorithm Combinatorial examples

The 8 queens problem

Selection
Parent selection:
Roulette wheel selection, for instance

Survivor selection (replacement)
When inserting a new child into the population, choose an existing
member to replace by:
I sorting the whole population by decreasing �tness
I enumerating this list from high to low
I replacing the �rst with a �tness lower than the given child
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Evolutionary algorithm Combinatorial examples

Magic squares

Given a 10x10 grid with a small 3x3 square in it.
Problem: arrange the numbers 1-100 on the grid such that

all horizontal, vertical, diagonal sums are equal (505)

a small 3x3 square forms a solution for 1-9

Evolutionary approach to solving this puzzle:

Creating random begin arrangement

Making N mutants of given arrangement

Keeping the mutant (child) with the least error

Stopping when error is zero

Software by M. Herdy, TU Berlin. Interesting parameters:

Step1: small mutation, slow & hits the optimum

Step10: large mutation, fast & misses ("jumps over" optimum)

Mstep: mutation step size modi�ed on-line, fast & hits optimum
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Evolutionary algorithm EA dialects

Overview of dialects
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Genetic algorithms

GA quick overview
Developed: USA in the 1970s

Early names: J. Holland, K. DeJong, D. Goldberg

Typically applied to:
I discrete optimization

Attributed features:
I not too fast
I good heuristic for combinatorial problems

Special Features:
I Traditionally emphasizes combining information from good parents

(crossover)
I many variants, e.g., reproduction models, operators
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Genetic algorithms Hollands simple GA

Overview
Representation Binary strings
Recombination N-point or uniform
Mutation Bitwise bit-
ipping with �xed probability
Parent selection Fitness-Proportionate
Survivor selection All children replace parents
Speciality Emphasis on crossover

Reproduction cycle
1 Select with replacement parents for the mating pool (size of mating
pool = population size)

2 Shu�e the mating pool. For each consecutive pair apply crossover
with probability pc , otherwise copy parents

3 For each o�spring apply mutation (bit-
ip with probability pm
independently for each bit)

4 Replace the whole population with the resulting o�spring
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Genetic algorithms Hollands simple GA

SGA operators: 1-point crossover
Recombination with probability pc typically in range (0.6, 0.9)

Choose a random point on the two parents

Split parents at this crossover point

Create children by exchanging tails
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Genetic algorithms Hollands simple GA

SGA operators: mutation
Alter each gene independently with a probability pm

pm is called the mutation rate - typically between 1/popSize and
1/chromosomeLength
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Genetic algorithms Hollands simple GA

SGA operators: Selection
Main idea: better individuals get higher chance

Chances proportional to �tness

Implementation: roulette wheel technique

Assign to each individual a part of the roulette wheel

Spin the wheel n times to select n individuals
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Genetic algorithms Hollands simple GA

An example after Goldberg(1989)

Simple problem: max x2 over f0; : : : ; 31g
GA approach:
I Representation: binary code, e.g. 01101$ 13
I Population size: 4
I 1-point xover, bitwise mutation
I Roulette wheel
I Random initialisation

We show one generational cycle done by hand
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Genetic algorithms Hollands simple GA

x
2 example: selection
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Genetic algorithms Hollands simple GA

x
2 example: crossover
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Genetic algorithms Hollands simple GA

x
2 example: mutation
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Genetic algorithms Hollands simple GA

Gray coding of integers
Gray coding is a mapping that means that small changes in the genotype
cause small changes in the phenotype (unlike binary coding).

The binary-re
ected Gray code for n bits can be generated recursively:

list bits in reverse order and
concatenate the reverse list onto
the original list

pre�x the original bits with a
binary 0 and pre�x the re
ected
bits with a binary 1.
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Genetic algorithms Holland's schema theorem

Example Schemata
A schema (pl. schemata) is a string in a ternary alphabet ( 0,1,# =
"dont care") representing a hyperplane within the solution space.
E.g. H1 = 0001##1##0# and H2 = ##1##0##, etc.

Two values can be used to describe schemata, the Order (number of
de�ned positions), o(H1) = 6; o(H2) = 2.
The De�ning Length - length of sub-string between outmost de�ned
positions, d(H1) = 9; d(H2) = 3.
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Genetic algorithms Holland's schema theorem

Fitness proportionate selection
At generation t let

hf ; ti be the average �tness of the population
f (H; t) be the average �tness of the schema H

m(H; t) be the proportion of individuals in schema H

With Fitness Proportionate Selection, the next parent pool is expected to
have a proportion of individuals in schema H given by

~m(H; t + 1) =
m(H; t)f (H; t)

hf ; ti
Some of these may be disrupted by crossover/mutation and some new may
be added. Hence, if pd(H) is the probability of disruption

m(H; t + 1) � m(H; t)f (H; t)(1� pd(H))

hf ; ti
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Genetic algorithms Holland's schema theorem

Schema theorem
Probability of disruption by mutation, when probability of allele mutation
is pm:

Pd(H;mutation) = 1� (1� pm)
o(H) � o(H)pm

Probability of disruption by one-point crossover(1X), when probability of
crossover is pc and length of gene is l :

Pd(H; 1X ) � pc
d(H)

l � 1

yielding Holland's schema theorem:

m(H; t + 1) � m(H; t)
f (H; t)

hf ; ti (1� pc
d(H)

l � 1
)(1� o(H)pm)

This means that short, low order, above average schemata receive
exponentially increasing trials in subsequent generations of the classic
genetic algorithm and below average schemata receive exponentially
decreasing trials.
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Genetic algorithms Markov chain analysis

Markov chains
In general GA can be considered as simulating a Markov chain with state
space being the genes of a population. HUGE dimension of state space.
If Xt represents the generation at time t we clearly have

Xt has a �nite number of states

The probability of being in any state at time t + 1 depends only on
the state at time t and is independent of t.

Has been used to provide convergence proofs, e.g. Eiben et al 1989
(almost sure convergence of GAs):

IF the space is connected via variation operators AND

IF selection is elitist AND

2 "trivial condition"

THEN for some n

P(generation(n) contains an optimum) = 1

Elitist selection: The most �tted individual is ensured to survive.
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Genetic Programming

GP overview
Developed: USA in the 1990s

Early names: J. Koza

Typically applied to:
I machine learning tasks (prediction, classi�cation)

Attributed features:
I competes with neural nets and alike
I needs huge populations (thousands)
I slow

Special:
I non-linear chromosomes: trees, graphs
I mutation possible but not necessary (disputed!)
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Genetic Programming

Example: credit scoring
Bank wants to distinguish good from bad loan applicants

Model needed that matches historical data

ID No of children Salary Marital status OK?

ID-1 2 90000 Married 0
ID-2 0 60000 Single 1
ID-3 1 80000 Divorced 1
...

A possible model:
IF (NOC = 2) AND (S > 80000) THEN good ELSE bad

Our search space (phenotypes) is the set of formulas

Natural �tness of a formula: percentage of well classi�ed cases of the
model it stands for

Natural representation of formulas (genotypes) is: parse trees
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Genetic Programming

Tree based representation

Logical expression:

Arithmetic expression:
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Genetic Programming Example: Symbolic regression

Symbolic regression

Given some points in R2: (x1; y1); : : : ; (xn; yn).
Find function f (x) s.t. for i = 1; : : : ; n f (xi ) = yi .
Possible GP solution:

Representation by trees involving e.g
I Function set F = f+;�; =; �; sin; cosg for inner nodes
I Terminal set T = R [ x for terminal nodes

Fitness is inverse to the squared error
Pn

1(yi � f (xi )
2.

PSE (I17) Evolutionary computing 39 / 53



Genetic Programming Creating o�springs

O�spring creation scheme
GA GP
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Genetic Programming Creating o�springs

Mutation
Most common mutation: replace randomly chosen subtree by randomly
generated tree.

2� + ((x + 3)� y

5 + 1
)! 2� + ((x + 3)� y)
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Genetic Programming Creating o�springs

Crossover

Most common recom-
bination: exchange
two randomly chosen
subtrees among the
parents.

2� + ((x + 3)� y
5+1) & 3a(3 + (y + 12)) !

2� + ((x + 3)� 3a) & y
5+1(3 + (y + 12))

PSE (I17) Evolutionary computing 42 / 53



Genetic Programming Creating o�springs

Selection
Parent selection typically �tness proportionate

Over-selection in very large populations
I rank population by �tness and divide it into two groups:
I group 1: best x% of population, group 2 other (100-x)%
I 80% of selection operations chooses from group 1, 20% from group 2
I for pop. size = 1000, 2000, 4000, 8000 x = 32%, 16%, 8%, 4%
I motivation: to increase e�ciency, %'s come from rule of thumb

Bloat
Bloat = "survival of the fattest", i.e., the tree sizes in the population
are increasing over time

Needs countermeasures, e.g.
I Prohibiting variation operators that would deliver "too big" children
I Parsimony pressure: penalty for being oversized
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Evolution Strategies

ES quick overview
Developed: Germany in the 1970s

Early names: I. Rechenberg, H.-P. Schwefel

Typically applied to: numerical optimisation

Attributed features:
I fast
I good optimizer for real-valued optimisation
I relatively much theory

Representation Real-valued vectors

Recombination Discrete or intermediary

Mutation Gaussian perturbation

Parent selection Uniform random

Survivor selection (�; �) or (�+ �)

Specialty Self-adaptation of mutation step sizes
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Evolution Strategies Simple example

Example
Task: minimimise f : Rn ! R

Algorithm: "two-membered ES" using
I Vectors from R

n directly as chromosomes
I Population size 1
I Only mutation creating one child
I Greedy selection

Pseudocode

Set t = 0

Create initial point x t = (x t1; : : : ; x
t
n)

REPEAT UNTIL (TERMIN.COND satis�ed)
I Draw zi from a normal distr. for all i = 1; : : : ; n
I y t

i = x t
i + zi

I IF f (x t) < f (y t) THEN x t+1 = x t ELSE x t+1 = y t

I Set t = t + 1
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Evolution Strategies Simple example

Example - mutation
z values drawn from normal distribution N(0; �)

variation � is called mutation step size

� is varied on the 
y by the "1/5 success rule".

This rule resets � after every k iterations by
I � = �=c if ps > 1=5 � = �c if ps < 1=5 � = � if ps = 1=5

where ps is the % of successful mutations, 0:8 <� c � 1.
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Evolution Strategies Jet nozzle example

A historical example: The jet nozzle experiment

Lets see the movie
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Evolution Strategies Variational operators

Correlated mutations
Chromosomes: hx1; : : : ; xn; �1; : : : ; �n; �1; : : : ; �ki where
k = n(n � 1)=2

The covariance matrix C is de�ned as:
I cii = �2i
I cij = 0 if i and j are not correlated
I cij =

1

2
(�2i � �2j )tan(2�ij) if i and j are correlated

Note the numbering/indices of the �s.

The mutation mechanism is then:

�0

i = �i exp(�
0N(0; 1) + �Ni (0; 1))

�0

j = �j + �N(0; 1)

x 0 = x + N(0;C 0) where C 0 is the permuted covariance matrix

� 0 � 1=
p
2n, � � 1=

p
2
p
n and � � 5�

�0

i < �0 ) �0

i = �0 and j�0

j j > � ) �0

j = �0

j � 2�sign(�0

j)
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Evolution Strategies Variational operators

Recombination
Creates one child

Acts per variable / position by either
I Averaging parental values, or
I Selecting one of the parental values

From two or more parents by either:
I Using two selected parents to make a child
I Selecting two parents for each position anew

Parent selection
Parents are selected by uniform random distribution whenever an
operator needs one/some

Thus: ES parent selection is unbiased - every individual has the same
probability to be selected
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Evolution Strategies Variational operators

Survivor selection
Applied after creating � children from the � parents by mutation and
recombination

Deterministically chops o� the "bad stu�"

Selective pressure in ES is very high (� � 7� is the common setting)

Basis of selection is either:

The set of parents and children: (�+ �)-selection, which is is an
elitist strategy

The set of children only: (�; �)-selection, which is often preferred for:
I Better in leaving local optima
I Better in following moving optima
I Using the + strategy bad � values can survive too long if their host x

is very �t
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Evolution Strategies Theory

Convergence - runtime
ES is a zero'th order method for optimization - also called
derivative-free or direct search method

Opposed to �rst order methods, which utilize the gradient of the
objective function - e.g. quasi-Newton, steepest descent, and
conjugate gradient methods

Second order methods, which utilize the gradient and the Hessian -
e.g. Newtons method.

Runtime result for the simple ES(1 + 1):

isotropically gaussian distributed mutation vectors

1/5-rule used for their adaptation

objective function is unimodal and monotone with respect to the
euclidian distance from the minimum.

ensures asymptotically optimal runtime, �(n) steps/function evaluations
are necessary and su�cient to halve the approximation error.
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No free lunch

No Free Lunch Theorems
No free lunch (NFL) Theorems apply to EC algorithms
I Theorems imply there can be no universally e�cient EC algorithm
I Performance of one algorithm when averaged over all problems is

identical to that of any other algorithm

Suppose EC algorithm A applied to loss L
I Let Ln denote lowest loss value from most recent N population

elements after n � N unique function evaluations

Consider the probability that Ln = � after n unique evaluations of the
loss:

P(Ln = �jL;A)

NFL theorems state that the mean of above probabilities

over all loss functions is independent of A
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No free lunch

Wiki comment on NFL
Intelligent design and the NFL theorem. See also: Neo-creationism

The folkloric NFL theorem is often invoked by intelligent design
proponents Robert J. Marks II and William Dembski as supporting
intelligent design and Dembski's concept of speci�ed complexity
which he alleges is evidence of design.

The scienti�c community has rejected both the notions of speci�ed
complexity and that the no free lunch theorem supports intelligent
design.

Absolutely main reference
A.E. Eiben and J.E. Smith (2007) Introduction to Evolutionary
Computing, Springer, Natural Computing Series.
With a lot of material "stolen" from
http://www.cs.vu.nl/ gusz/ecbook/ecbook-slides.html
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