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Abstract: Evaluation codes (also called order domain codes) are tradi-
tionally introduced as generalized one-point geometric Goppa codes. In
the present paper we will give a new point of view on evaluation codes
by introducing them instead as particular nice examples of affine vari-
ety codes. Our study includes a reformulation of the usual methods to
estimate the minimum distances of evaluation codes into the setting of
affine variety codes. Finally we describe the connection to the theory of
one-point geometric Goppa codes.

1 Introduction

Over the years the theory of geometric Goppa codes has produced many
interesting results. The only drawback is that the codes are often described
theoretically and that concrete generator matrices or parity check matrices
are often not rendered. As an attempt to simplify the description of one-
point geometric Goppa codes and to support an easy generalization of such
codes to higher dimensional objects than curves, Høholdt, van Lint, and
Pellikaan founded the theory of order domains in [20]. You may say that
order domains are manufactured to simplify the concrete code constructions.
That is, generator matrices and parity check matrices are easily described.
The codes defined from order domains are often called evaluation codes or
order domain codes. The minimum distance and in larger generality the
generalized Hamming weights of evaluation codes can be found by applying
one of two bounds that rely only on some relatively simple theory. For a
parity check matrix description one applies the order bound [20], [19] and [18].
This bound is an incidence of the Feng-Rao bound [11], [12], [29]. If instead
a generator matrix description is given then one uses the bound in [2] which
relies on the same notion as does the more well-known order bound.
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Although evaluation codes have their origin in the study of geometric
Goppa codes in the present paper we will turn things upside down and in-
troduce them as particular nice examples of affine variety codes. This adds
a new perspective to the theory of evaluation codes as well as to the theory
of affine variety codes. We reformulate the Feng-Rao bound and the bound
from [2] into the setting of affine variety codes. Having done this we see
that the affine variety codes for which we get maximal information from the
above two bounds are the affine variety codes related to order domains. We
conclude the paper by describing the connection to the theory of one-point
geometric Goppa codes.

2 Affine variety codes

Affine variety codes were introduced by Fitzgerald and Lax in [13]. The
definition of the codes calls for an ideal I ⊆ Fq[X1, . . . , Xm] from which we
start by defining

Iq = I + 〈Xq
1 −X1, . . . , X

q
m −Xm〉 (1)

Rq = Fq[X1, . . . , Xm]/Iq. (2)

Let
V = {P1, . . . , Pn} = VFq(Iq) = VF̄q

(Iq)

be the variety of Iq. Here, k̄ means the algebraic closure of the field k and
Pi 6= Pj for i 6= j. Define an Fq linear map ev : Rq → Fn

q by

ev(F + Iq) = (F (P1), . . . , F (Pn)).

We will call this map an evaluation map. Writing Pj = (P
(1)
j , . . . , P

(m)
j ) for

j = 1, . . . , n we see that the i-th entry of

ev

(( ∏
s=1,...,m

∏
j = 1, . . . , n

P
(s)
j 6= P

(s)
i

(Xs − P
(s)
j )

)
+ Iq

)

is nonzero whereas all other entries equal zero. Therefore, the map ev is
surjective. We next show that ev is also injective. To this end we first recall
from [4, Pro. 8.14] that if J is an ideal in a polynomialring k[X1, . . . , Xm]
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where k is perfect and if J contains a squarefree univariate polynomial in
every variable then J is a radical ideal. This clearly makes Iq radical. Next
we recall from The Strong Nullstellensatz [7, Th. 6, Sec. 4.2] that if an ideal
J ⊆ k̄[X1, . . . , Xm] is radical then the vanishing ideal of the variety Vk̄(J) is
J itself. This implies that the vanishing ideal in Fq[X1, . . . , Xm] of V equals
Iq and therefore the map ev is injective. We have shown that ev is a vector
space isomorphism. We can now define the affine variety codes.
Definition 1 Let Iq and Rq be as in (1) and (2) and assume that L is an
Fq-vector subspace of Rq. Define the affine variety code C(I, L) = ev(L), and
the affine variety code C(I, L)⊥ to be the orthogonal complement of C(I, L)
with respect to the usual inner product on Fn

q . That is,

C(I, L)⊥ = {~c | ~c · ev(F + Iq) = 0 for all F + Iq ∈ L}

where ~f · ~h denotes the inner product of ~f and ~h.

3 Some Gröbner basis theoretical tools

In this section we present some Gröbner basis theoretical tools that will
be very useful in the construction of affine variety codes. The tools will also
help us to estimate the parameters of the codes. We start by recalling the
concept of a footprint.
Definition 2 Let J ⊆ k[X1, . . . , Xm] be an ideal and let ≺ be a fixed mono-
mial ordering. Denote by M(X1, . . . , Xm) the monomials in the variables
X1, . . . , Xm. The footprint of J with respect to ≺ is the set

∆≺(J) = {M ∈M(X1, . . . , Xm) | M is not the leading monomial

of any polynomial in J}.

Given a basis for the ideal J it may indeed not be obvious at a first glance
what is the footprint. However, every polynomial ideal possesses a particular
type of basis from which the footprint can be easily read off. These are the
Gröbner bases.

Definition 3 Let J ⊆ k[X1, . . . , Xm] be an ideal and ≺ a monomial order-
ing. A finite subset G of J is called a Gröbner basis (with respect to ≺) if
for every polynomial P (X1, . . . , Xm) ∈ J there exists a G ∈ G such that the
leading monomial of G divides the leading monomial of P .
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One of the main results in Gröbner basis theory is that a Gröbner basis G for
J is indeed a basis for J . Given a basis for J we can extend it to a Gröbner
basis by applying Buchberger’s algorithm. Hence, there is a method to detect
the footprint ∆≺(J).

The next couple of results explain our interest in the footprint. From [7,
Pro. 4, Sec. 5.3] we have the following proposition.

Proposition 1 Let the notation be as in Definition 2. The set

{M + J | M ∈ ∆≺(J)} (3)

constitutes a basis for k[X1, . . . , Xm]/J as a vector space over k.

Throughout this paper we will make extensively use of the division al-
gorithm for multivariate polynomials [7, Sec. 2.3] with which we will as-
sume the reader to be familiar. Given a monomial ordering, a polynomial
H and an ordered list of polynomials (G1, . . . , Gr) the algorithm calcu-
lates the remainder of H modulo (G1, . . . , Gr). This remainder is written
H rem (G1, . . . , Gr). When G = {G1, . . . , Gs} constitutes a Gröbner basis
(for the ideal 〈G1, . . . , Gr〉) the remainder does not depend on how we or-
der the elements in the list (G1, . . . , Gr) and therefore in this case we will
simply talk about the remainder modulo G. We observe that to write an
element H + J ∈ k[X1, . . . , Xm]/J as a linear combination of the elements
in (3) we need only find the remainder of H modulo the Gröbner basis G.
Moreover, as a consequence of Proposition 1 and the definition of a Gröbner
basis, H rem G are the same no matter which Gröbner basis is chosen for J
as long as ≺ is fixed.

Applying the above theory to the case Rq = Fq[X1, . . . , Xm]/Iq we see
that for every fixed choice of ≺ Proposition 1 gives us a basis {M + Iq |
M ∈ ∆≺(Iq)} for Rq. If {B1 + Iq, . . . , Bdim(L) + Iq} is a basis for a sub-
space L ⊆ Rq we may therefore without loss of generality assume that
Supp(B1), . . . , Supp(Bdim(L)) ⊆ ∆≺(Iq). Here, Supp(F ) means the support
of F . Once the variety VFq(Iq) is found we can then easily specify the gener-
ator matrix for C(I, L) as well as easily specify the parity check matrix for
C(I, L)⊥. The length of the codes clearly is

n = #VFq(Iq) = #VFq(I) = #∆≺(Iq).

As ev is an isomorphism the dimension of C(I, L) is dim(L) whereas the
dimension of C(I, L)⊥ equals n − dim(L). What remains is to estimate the
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minimum distances of the codes. This will be done in Section 4 and Section 5
below.
In Section 4 we will need the following corollary to Proposition 1. It is an
incidence of the more general footprint bound [8, Cor. 2.5, Sec. 4.2].

Corollary 1 Let F1, . . . , Fs ∈ Fq[X1, . . . , Xm]. The number of common ze-
ros of F1, . . . , Fs over Fq is #∆≺(〈F1, . . . , Fs, X

q
1 −X1, . . . , X

q
m−Xm〉) (here

≺ is any monomial ordering).

Proof: Let n be the number of common zeros. As explained in the previous
section Rq is isomorphic to Fn

q as a vector space over Fq under the isomor-
phism ev. By Proposition 1 the dimension of Rq is #∆≺(Iq). The proof is
complete.

4 A bound on the minimum distance of C(I, L)

We now estimate the minimum distance of C(I, L). The bound that we
present can be viewed as an interpretation of the bound in [2, Th. 8]. Let ≺
and I ⊆ Fq[X1, . . . Xm] be fixed and consider a subspace L ⊆ Rq. By using
Gaussian elimination any basis of L can be transformed into a basis of the
following form.
Definition 4 A basis {B1+Iq, . . . , Bdim(L)+Iq} for L ⊆ Rq where Supp(Bi) ⊆
∆≺(Iq) for i = 1, . . . , dim(L) and where lm(B1) ≺ · · · ≺ lm(Bdim(L)) is said to
be well-behaving with respect to ≺. Here, lm(F ) means the leading monomial
of F .

For fixed ≺ the sequence
(
lm(B1), . . . , lm(Bdim(L))

)
is the same for all choices

of well-behaving bases of L. Therefore the following definition makes sense.

Definition 5 Let L be a subspace of Rq and define

�≺(L) = {lm(B1), . . . , lm(Bdim(L))}

where {B1 + Iq, . . . , Bdim(L) + Iq} is any well-behaving basis of L with respect
to ≺.

Definition 6 Let G be a Gröbner basis for Iq with respect to ≺. An ordered
pair of monomials (M1, M2), M1, M2 ∈ ∆≺(Iq) is said to be one-way well-
behaving (OWB) if for all H with Supp(H) ⊆ ∆≺(Iq) and lm(H) = M1

lm(M1M2 rem G) = lm(HM2 rem G)
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holds.

As already mentioned F rem G = F rem G ′ if G and G ′ are Gröbner bases
for Iq with respect to identical ordering. Therefore the definition of OWB is
independent of which Gröbner basis G we consider as long as ≺ is fixed.

Theorem 1 Let ≺ be fixed. The minimum distance of C(I, L) is at least

min
{
#{K ∈ ∆≺(Iq) | ∃N ∈ ∆≺(Iq) such that

(P, N) is OWB and lm(PN rem G) = K}
∣∣P ∈ �≺(L)

}
.

Proof: Let ~c ∈ C(I, L). Then there exists an F such that Supp(F ) ⊆
∆≺(Iq), lm(F ) = P ∈ �≺(L) and ev(F + Iq) = ~c. By Corollary 1 the
Hamming weight of ~c is equal to n −#∆≺(Iq + 〈F 〉) and therefore we take
a closer look at ∆≺(Iq + 〈F 〉). If N, K ∈ ∆≺(Iq) satisfy that (P, N) is OWB
and lm(PN rem G) = K then

K ∈ ∆≺(Iq)\∆≺(Iq + 〈F 〉).

Hence,

#∆≺(Iq + 〈F 〉) ≤ #∆≺(Iq)−#
{
K ∈ ∆≺(Iq) | ∃N ∈ ∆≺(Iq)

such that (P, N) is OWB and lm(PN rem G) = K
}
. (4)

But n = #∆≺(Iq) and therefore the Hamming weight of ~c is at least

#
{
K ∈ ∆≺(Iq) | ∃N ∈ ∆≺(Iq)

such that (P, N) is OWB and lm(PN rem G = K
}
.

The proof is complete.

It is of course possible to apply Theorem 1 for different choices of ≺
to see which one gives the sharpest estimate. To get the full advantage of
Theorem 1 we need to have some information of the algebraic structure of
Rq. The following Corollary, however, easily applies to any affine variety
code. Also this bound could be applied for different choices of ≺ to get the
sharpest estimate.

Corollary 2 Let ≺ be fixed. The minimum distance of C(I, L) is at least

min
{
#{K ∈ ∆≺(Iq) | P divides K}

∣∣P ∈ �≺(L)}. (5)
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Proof: Let K, P be as in (5). Clearly K
P
∈ ∆≺(Iq). To see that (P, K

P
)

is OWB let H be a polynomial with lm(H) = P and Supp(H) ⊆ ∆≺(Iq).
Clearly, the leading monomial of H K

P
is equal to K. The division algorithm,

when applied to H K
P

and G, starts by moving K to the remainder. This is
due to K ∈ ∆≺(Iq). When we run the division algorithm all other terms
A are either moved to the remainder, are replaced with with polynomials S
such that lm(S) ≺ lm(A) holds, or are replaced with 0. Therefore,

lm
(
H

K

P
rem G

)
= K = lm

(
P

K

P
rem G

)
.

The proof is complete.

Remark 1 It is possible to modify Theorem 1 and Corollary 2 to also deal
with generalized Hamming weights. For the case of Theorem 1 this corre-
sponds to interpreting the bound in [2, Th. 10].

Example 1 Let I = 〈0〉 ⊆ Fq[X1, . . . , Xm]. Then

G = {Xq
1 −X1, . . . , X

q
m −Xm}

is a Gröbner basis for Iq (regardless of the ordering ≺ chosen). Hence,

∆≺(Iq) = {X i1
1 · · ·X im

m | 0 ≤ i1 < q, . . . , 0 ≤ im < q}

holds and
{X i1

1 · · ·X im
m + Iq | 0 ≤ i1 < q, . . . , 0 ≤ im < q}

is a basis for Rq = Fq[X1, . . . , Xm]/Iq as a vectorspace over Fq. It follows
that the corresponding affine variety codes are of length n = #∆≺(Iq) = qm.
Let s be an integer 0 ≤ s ≤ m(q−1). If we choose L to be the space generated
by the basis elements X i1

1 · · ·X im
m + Iq with i1 + · · ·+ im ≤ s then we get

L = {F (X1, . . . , Xm) + Iq | deg(F ) ≤ s}. (6)

Here, deg(F ) means the total degree of F . Clearly,

�≺(Iq) = {X i1
1 · · ·X im

m | 0 ≤ i1 < q, . . . , 0 ≤ im < q, i1 + · · ·+ im ≤ s}.

The code C(I, L) is known as the generalized Reed-Muller code RMq(s, m),
and Corollary 2 tells us that the minimum distance of RMq(s, m) is at least

min{(q − i1) · · · (q − im) | 0 ≤ i1 < q, . . . , 0 ≤ im < q, i1 + · · ·+ im ≤ s} (7)
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as

#{Xj1
1 · · ·Xjm

m ∈ ∆≺(Iq) | X i1
1 · · ·X im

m divides Xj1
1 · · ·Xjm

m }
= (q − i1) · · · (q − im).

Writing s = a(q − 1) + b with a, b ∈ N0 and 0 ≤ b < q − 1 the number in (7)
can be shown to be equal to (q − b)qm−a−1. Now letting Fq = {α1, . . . , αq}
and defining

F = (Xq−1
1 − 1) · · · (Xq−1

a − 1)(Xa+1 − α1) · · · (Xa+1 − αb)

we see that ev(F +Iq) ∈ C(I, L) is of Hammingweight equal to (q−b)qm−a−1.
Hence, Corollary 2 produces the correct value of the minimum distance of the
generalized Reed-Muller codes. It is interesting to observe that the minimum
distance of the generalized Reed-Muller codes was originally established using
quite different and more complicated methods [23].
If the goal is to produce codes with good parameters then there is better choice
of L than (6) namely

L = SpanFq
{X i1

1 · · ·X im
m | 0 ≤ i1 < q, . . . , 0 ≤ im, (q − i1) · · · (q − im) ≥ δ}.

(8)
Corollary 2 tells us that the corresponding code C(I, L) is of minimum dis-
tance at least δ and it is the largest code of prescribed minimum distance δ.
If actually i1, . . . , im exists with (q − i1) · · · (q − im) = δ then, as above, we
can detect a codeword of Hammingweight δ and we conclude that Corollary 2
produces the actual minimum distance in this case. The codes C(I, L) corre-
sponding to (8) are called Massey-Costello-Justesen codes [26], [22] and are
of course examples of improved generalized Reed-Muller codes.

5 The Feng-Rao bound for C(I, L)⊥

In this section we reformulate the Feng-Rao bound into the setting of
affine variety codes.
Theorem 2 Let ≺ be fixed. The minimum distance of C(I, L)⊥ is at least

min
{
#{P ∈ ∆≺(Iq) | ∃N ∈ ∆≺(Iq) such that (P, N) is OWB

and lm(PN rem G) = K}
∣∣K ∈ ∆≺(Iq)\�≺(L)

}
. (9)
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Proof: Let {B1 + Iq, . . . , Bdim(L) + Iq} be a well-behaving basis for L.

Consider ~c ∈ C(I, L)⊥\{~0}. That is, ~c satisfies ~c · ev(Bi + Iq) = 0 for
i = 1, . . . , dim(L) but

~c · ev(K + Iq) 6= 0 (10)

holds for some K ∈ ∆≺(Iq). Let K ∈ ∆≺(Iq) be smallest possible with re-
spect to ≺ such that (10) holds. By linearity of the inner product and the
minimality of K we have K /∈ �≺(L). Consider OWB pairs (P1, N1), . . . , (Pδ, Nδ),
where P1, N1, . . . , Pδ, Nδ ∈ ∆≺(Iq), P1 ≺ · · · ≺ Pδ and lm(PiNi rem G) = K
for i = 1, . . . , δ. The minimality of K and the OWB property of (Pi, Ni)
ensure that

~c · ev
(( ∑

t = 1, . . . , i
ai 6= 0

atPt

)
Ni rem G + Iq

)
6= 0 (11)

holds for any i ∈ {1, . . . , δ}. Let ∗ be the componentwise product on Fn
q

given by
(a1, . . . , an) ∗ (b1, . . . , bn) = (a1b1, . . . , anbn).

As( ∑
t = 1, . . . , i

ai 6= 0

atPt

)
Ni rem G + Iq =

( ∑
t = 1, . . . , i

ai 6= 0

atPt

)
Ni + Iq

we conclude from (11) that

~c ∗ ev

(( ∑
t = 1, . . . , i

ai 6= 0

atPt

)
+ Iq

)
6= ~0

for any i ∈ {1, . . . , δ}. Hence, ~c ∗ ~e 6= ~0 for all

~e ∈
{
ev

(( δ∑
t=1

atPt

)
+ Iq

)∣∣a1, . . . , aδ ∈ Fq, not all ai equal 0
}
. (12)

The space consisting of (12) and (0, . . . , 0) is of dimension δ and therefore
the Hamming weight of ~c needs to be at least δ. The proof is complete.
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It is of course possible to apply Theorem 2 to different choices of ≺
to see which one gives the sharpest estimate. Theorem 2 requires that we
have some information about the algebraic structure of Rq. The following
Corollary, however, easily applies to any affine variety code. Also this bound
could be applied for different choices of ≺ to get the sharpest estimate.

Corollary 3 Let the notation be as in Theorem 2. The minimum distance
of C(I, L)⊥ is at least

min
{
#{P ∈ ∆≺(Iq) | P divides K}

∣∣K ∈ ∆≺(Iq)\�≺(L)
}
.

Proof: See the proof of Corollary 2.

Remark 2 It is possible to modify Theorem 2 and Corollary 3 to also deal
with generalized Hamming weights. For the case of Theorem 2 this corre-
sponds to interpreting the last part of [18, Th. 1].

Example 2 This is a continuation of Example 1. It is well-known that the
dual code of a generalized Reed-Muller code is again a generalized Reed-Muller
code. More precisely,

RMq(s, m) = RMq((q − 1)m− 1− s, m)⊥

holds [9, Th. 2.2.1]. Applying Corollary 3 to RM((q − 1)m− 1− s, m)⊥ we
see that the minimum distance of RMq(s, m) is at least

min
{
(i1 + 1) · · · (im + 1) | 0 ≤ i1 < q, . . . , 0 ≤ im < q,

i1 + · · ·+ im ≥ (q − 1)m− s
}
. (13)

Writing again s = a(q − 1) + b with 0 ≤ b < q − 1 (13) becomes equal
to (q − b)qm−a−1 which we in Example 1 have seen to be equal to the true
minimum distance of RMq(s, m). Hence, also Corollary 3 produces the true
value of the minimum distance of generalized Reed-Muller codes. If the goal
is to produce codes C(I, L)⊥ with good parameters then choosing L to be

L = SpanFq

{
X i1

1 · · ·X im
m | 0 ≤ i1 < q, . . . , 0 ≤ im < q,

(i1 + 1) · · · (im + 1) < qm − s
}

(14)

10



would be a better choice. The codes C(I, L)⊥ corresponding to (14) are called
hyperbolic codes and are denoted Hypq(s, m) [14, Def. 6]. By [14, Th. 3]
Hypq(s, m) equals C(I, L′) where L′ is the space in (8) with r = qm − s.
That is, hyperbolic codes are the same as Massey-Costello-Justesen codes.
We showed in Example 1 that the minimum distance of C(I, L′) is at least
qm − s. Applying Corollary 3 to Hypq(s, m) also gives the result that the
minimum distance is at least qm − s. Hence, Corollary 2 and Corollary 3
produce the same results for generalized Reed-Muller codes and for Hyperbolic
codes.

6 Using weighted degree orderings

In this section we consider two examples where the monomial ordering is a
weighted degree lexicographic ordering.
Definition 7 Let w(X1), . . . , w(Xm) ∈ N and define the weight of X i1

1 · · ·X im
m

to be the number w(X i1
1 · · ·X im

m ) = i1w(X1) + · · ·+ imw(Xm). The weighted
degree lexicographic ordering onM(X1, . . . , Xm) is the ordering with X i1

1 · · ·X im
m ≺

Xj1
1 · · ·Xjm

m if either w(X i1
1 · · ·X im

m ) < w(Xj1
1 · · ·Xjm

m ) holds or w(X i1
1 · · ·X im

m ) =
w(Xj1

1 · · ·Xjm
m ) holds but X i1

1 · · ·X im
m ≺lex Xj1

1 · · ·Xjm
m . Here, ≺lex is the lex-

icographic ordering with Xm ≺lex · · · ≺lex X1.

One of the qualities of weighted degree lexicographic orderings is the following
lemma. The proof of the lemma is left for the reader.

Lemma 1 Let a weighted degree lexicographic ordering be given as in Def-
inition 7. If H has got exactly one monomial of highest weight w′ in its
support and G has exactly two monomials of highest weight in its support
then H rem (G) has exactly one monomial of highest weight in its support
and this weight is w′.

The codes C(I, L)⊥ in the next example were originally treated in [24] whereas
the codes C(I, L) are treated for the first time in the present paper.

Example 3 Consider the ideals

I = 〈X3Y + Y 3 + X〉 ⊆ F8[X, Y ]

Iq = I + 〈X8 + X, Y 8 + Y 〉 ⊆ F8[X, Y ].

11



Let ≺ be the weighted degree lexicographic ordering defined by setting w(X) =
2, w(Y ) = 3 and by interpreting X as X1 and Y as X2. Clearly, B =
{X3Y + Y 3 + X} is a Gröbner basis for I and

∆≺(I) = {X iY j | if i ≥ 3 then j = 0}

holds. Using Buchberger’s algorithm we find the following Gröbner basis for
Iq

G = {X3Y + Y 3 + X,X8 + X, XY 5 + X5 + X2Y 2 + Y, Y 7 + X7}

and therefore

∆≺(Iq) =
{
1, X, Y,X2, XY, Y 2, X3, X2Y,XY 2, X4, Y 3, X2Y 2,

X5, XY 3, Y 4, X6, X2Y 3, XY 4, X7, Y 5, X2Y 4, Y 6
}

(15)

with corresponding weights

{0, 2, 3, 4, 5, 6, 6, 7, 8, 8, 9, 10, 10, 11, 12, 12, 13, 14, 14, 15, 16, 18}.

The elements in (15) are listed in increasing order with respect to ≺. Using
Lemma 1 and some other results we can detect altogether 166 useful OWB
pairs plus a few more that we will not use. We illustrate the method used to
check for the OWB property by considering a few OWB pairs. First to see
that (X3, X) is OWB we must show that HX rem G = X3X rem G for all
H with lm(H) = X3. We have

lm
(
(a1 + a2X + a3Y + a4X

2 + a5XY + a6Y
2 + X3)X rem G

)
= X4 (16)

no matter what are a1, . . . , a6. This is because X3X = X4 ∈ ∆≺(Iq) and
therefore X4 is moved to the remainder upon division with G. The proof that
(X3, X) is OWB is complete. To see that (XY,X2) is OWB we cannot apply
the same argument as above as XY X2 = X3Y /∈ ∆≺(Iq). We have

w(1 · X2), w(X · X2), w(Y · X2), w(X2 · X2) < w(XY · X2) = 9.

That is, there is only one monomial of highest weight in (a1 + a2X + a3Y +
a4X

2+XY )X2 and this weight is 9. As X3Y +Y 3+Y has exactly two mono-
mials of highest weight in its support Lemma 1 tells us that the monomial

lm
(
(a1 + a2X + a3Y + a4X

2 + XY )X2 rem B
)

12



is also of weight 9. There is only one such monomial in ∆≺(I) namely Y 3.
As Y 3 also belongs to ∆≺(Iq) we conclude

lm
(
(a1 + a2X + a3Y + a4X

2 + XY )X2 rem G
)

= Y 3

no matter what are a1, . . . , a4. Hence, (XY,X2) is OWB. Finally, to see that
(XY,X2Y ) is OWB we start by recognizing from Lemma 1 that the weight of

lm
(
(a1 + a2X + a3Y + a4X

2 + XY )X2Y rem B
)

equals w(XY ·X2Y ) = 12. However, now there are the two possibilities X6

and Y 4 of leading monomials as both are of weight 12 and both belong to
∆≺(I). A closer analysis reveals that

lm
(
(a1 + a2X + a3Y + a4X

2 + XY )X2Y rem B
)

= Y 4.

As Y 4 also belongs to ∆≺(Iq) we conclude that

lm
(
(a1 + a2X + a3Y + a4X

2 + XY )X2Y rem G
)

= Y 4

and (XY,X2Y ) is OWB.
Observe that for fixed P and K there can exist more choices of N such that
(P, N) is OWB and lm(PN rem G) = K. As an example both (XY, Y 2) and
(XY,X3) are OWB and satisfy

lm(XY · Y 2 rem G) = lm(XY ·X3 rem G) = XY 3.

In table 1 we list some information about the OWB pairs. By σ̄(P ) we
denote the number of detected K ∈ ∆≺(Iq) such that an N ∈ ∆≺(Iq) exists
with (P, N) OWB and lm(PN rem G) = K. By µ̄(K) we denote the number
of detected P ∈ ∆≺(Iq) such that an N ∈ ∆≺(Iq) exists with (P, N) OWB
and lm(PN rem G) = K.

For the code construction C(I, L) we choose L to be spanned by the (M +
Iq)’s with M ∈ ∆≺(Iq) and σ̄(M) ≥ δ. By Theorem 1 this gives us codes of
highest possible dimension with prescribed minimum distance at least δ. For
the code construction C(I, L)⊥ we choose L to be spanned by the (M + Iq)’s
with M ∈ ∆≺(Iq) and µ̄(M) < δ. By Theorem 2 this gives codes of highest
possible dimension with prescribed minimum distance at least δ. The length
of the codes equals n = #∆≺(Iq). From (15) we therefore have n = 22.
In Table 2 we list the parameters [k, δ] that can be realized from Theorem 1

13



Table 1: Information about the OWB pairs

M 1 X Y X2 XY Y 2 X3 X2Y XY 2 X4 Y 3

σ̄(M) 22 19 14 16 12 11 5 10 9 4 8
µ̄(M) 1 2 2 3 4 3 4 6 6 5 8

M X2Y 2 X5 XY 3 Y 4 X6 X2Y 3 XY 4 X7 Y 5 X2Y 4 Y 6

σ̄(M) 7 3 6 5 2 4 3 1 2 2 1
µ̄(M) 9 6 10 11 7 12 13 8 14 15 17

Table 2: Parameters of the codes
C(I, L) [1,22] [2,19] [3,16] [4,14] [5,12] [6,11]

[7,10] [8,9] [9,8] [10,7] [11,6] [13,5]
[15,4] [17,3] [20,2] [22,1]

C(I, L)⊥ [1,17] [2,15] [3,14] [4,13] [5,12] [6,11]
[7,10] [8,9] [10,8] [11,7] [14,6] [15,5]
[17,4] [19,3] [21,2]

and Theorem 2. Here k is the dimension and δ is the prescribed minimum
distance. We conclude that although the bound in Theorem 1 relies on the
same notion as does the bound in Theorem 2 the two bounds can sometimes
produce completely different results.

In Example 3 it was quite involved to detect which pairs are OWB. This is
due to the fact that in ∆≺(I) as well as in ∆≺(Iq) there were more monomials
of the same weight. In the next example no two different monomials in ∆≺(I)
will be of the same weight. As a consequence it becomes very easy to find
OWB pairs.

Example 4 Consider the ideals

I = 〈X4 − Y 3 − Y 〉 ⊆ F9[X, Y ]

Iq = 〈X4 − Y 3 − Y, X9 −X, Y 9 − Y 〉 ⊆ F9[X, Y ].

Let ≺ be the weighted degree lexicographic ordering given by w(X) = 3,
w(Y ) = 4 and by interpreting X as X2 and Y as X1. Clearly,

B = {X4 − Y 3 − Y }

14



is a Gröbner basis for I and applying Buchberger’s algorithm we find that

G = {X4 − Y 3 − Y,X9 −X}

is a Gröbner basis for Iq. Hence,

∆≺(I) = {X iY j | 0 ≤ i, 0 ≤ j < 3}
∆≺(Iq) = {X iY j | 0 ≤ i < 9, 0 ≤ j < 3}. (17)

The map w : ∆≺(I) → 〈3, 4〉 given by w(X iY j) = i3+j4 is a bijection. Here,
〈3, 4〉 means the semigroup generated by 3 and 4. Hence, we can identify any
monomial M ∈ ∆≺(I) uniquely by its weight. Consider a polynomial F with
Supp(F ) ⊆ ∆≺(Iq) and write P = lm(F ). Let N ∈ ∆≺(Iq) be arbitrary.
By Lemma 1 the leading monomial of FN rem B is the unique monomial
K ∈ ∆≺(I) of weight equal to w(PN) = w(P ) + w(N). If K ∈ ∆≺(Iq) holds
then (P, N) is OWB. Hence, given P, N ∈ ∆≺(Iq) then (P, N) is OWB if
w(P ) + w(N) ∈ w(∆≺(Iq)). Next we show that if K ∈ ∆≺(Iq) and P, N ∈
∆≺(I) satisfy w(P ) + w(N) = w(K) then also P, N ∈ ∆≺(Iq) holds. This in
particular implies that (P, N) is OWB. Aiming for a contradiction assume
that P /∈ ∆≺(Iq). By the definition of the footprint there exists a polynomial
H ∈ Iq having P as leading monomial. As P ∈ ∆≺(I) we may without loss
of generality assume that H is reduced modulo B. That is, we may assume
that Supp(H) ⊆ ∆≺(I) holds. From H ∈ Iq we conclude that

HN rem B ∈ Iq. (18)

On the other hand the assumption Supp(H) ⊆ ∆≺(I) in combination with
Lemma 1 implies lm(HN rem B) = K. Here we used the fact that no two
monomials in ∆≺(I) are of the same weight. But K is assumed to be in
∆≺(Iq) and therefore (18) cannot be true. We have reached at a contradic-
tion. Assuming N /∈ ∆≺(Iq) would lead to a similar contradiction. The
above observations imply that to detect OWB pairs it is enough to study the
weights. For this purpose define

Γ = w(∆≺(I)) = 〈3, 4〉

and for λ ∈ w(∆≺(Iq)) let

σ(λ) = #{η ∈ w(∆≺(Iq)) | η − λ ∈ Γ}

15



and for λ ∈ Γ let
µ(λ) = #{α ∈ Γ | λ− α ∈ Γ}.

We have shown above that if P ∈ ∆≺(Iq) then there exist pairwise different el-
ements K1, . . . , Kσ(w(P )) ∈ ∆≺(Iq) and corresponding elements N1, . . . , Nσ(w(P )) ∈
∆≺(Iq) such that for i = 1, . . . , σ(w(P )) (P, Ni) is OWB with lm(PNi rem G) =
Ki. Similarly, if K ∈ ∆≺(Iq) then there exist pairwise different elements
P1, . . . , Pµ(w(K)) ∈ ∆≺(Iq) and corresponding elements N1, . . . , Nµ(w(K)) ∈
∆≺(Iq) such that (Pi, Ni) is OWB with lm(PiNi rem G) = K. In Table 4
we list σ(w) and µ(w) for all w ∈ w(∆≺(Iq)). For the purpose of the code

w 0 3 4 6 7 8 9 10 11
σ(w) 27 24 23 21 20 19 18 17 16
µ(w) 1 2 2 3 4 3 4 6 6

w 12 13 14 15 16 17 18 19 20
σ(w) 15 14 13 12 11 10 9 8 7
µ(w) 7 8 9 10 11 12 13 14 15

w 21 22 23 24 25 26 28 29 32
σ(w) 6 6 4 3 4 3 2 2 1
µ(w) 16 17 18 19 20 21 23 24 27

constructions define the following subspaces of Rq = F9[X, Y ]/Iq

L1 = SpanF9
{M + Iq | M ∈ ∆≺(Iq), w(M) ≤ s}

L2 = SpanF9
{M + Iq | M ∈ ∆≺(Iq), σ(w(M)) ≥ δ}

L3 = SpanF9
{M + Iq | M ∈ ∆≺(Iq), µ(w(M)) < δ}.

The corresponding affine variety codes are all of length n = #∆≺(Iq) = 27.
From Theorem 1 the minimum distance of C(I, L2) is at least δ and from
Theorem 2 also the minimum distance of C(I, L3)

⊥ is at least δ. The codes
C(I, L2) and C(I, L3)

⊥ respectively are so to speak the largest codes with de-
signed minimum distance δ with respect to Theorem 1 and Theorem 2 respec-
tively. Applying Theorem 1 and Theorem 2 respectively to the codes C(I, L1)
and C(I, L1)

⊥ respectively we get lower bounds on the minimum distances.
As an example choosing s = 23 the code C(I, L1) is of dimension 21 and
minimum distance at least 4. Choosing δ = 4 the code C(I, L2) is of dimen-
sion 22 and minimum distance also at least 4. As another example choosing
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s = 7 the code C(I, L1)
⊥ is of dimension 22 and of minimum distance at

least 3. Choosing δ = 4 the code C(I, L3)
⊥ is also of dimension 22 but is of

minimum distance at least 4.

7 The order domain conditions

In the previous section we demonstrated that the weighted degree lexico-
graphic ordering can sometimes be very useful when we look for OWB pairs.
In particular the task of finding OWB pairs were rather simple in Example 4
due to the fact that no two monomials in ∆≺(I) were of the same weight
and due to the fact that the defining polynomial of I possessed exactly two
monomials of highest weight in its support. In this section we generalize the
construction in Example 4. All proofs will be straightforward generalizations
of the arguments from Example 4 and so they are mostly left out. We start
by generalizing the concept of a weighted degree lexicographic ordering.

Definition 8 Let w(X1), . . . , w(Xm) ∈ Nr
0 and assume ≺Nr

0
is a monomial

ordering on Nr
0. Extend w to a monomial function on M(X1, . . . , Xm) by

w(X i1
1 · · ·X im

m ) = i1w(X1) + · · ·+ imw(Xm).

Let ≺M be a monomial ordering onM(X1, . . . , Xm). The generalized weighted
degree ordering defined from w(X1), . . . , w(Xm), ≺Nr

0
and ≺M is the ordering

≺w given by
X i1

1 · · ·X im
m ≺w Xj1

1 · · ·Xjm
m

if
w(X i1

1 · · ·X im
m ) ≺Nr

0
w(Xj1

1 · · ·Xjm
m )

holds or if
w(X i1

1 · · ·X im
m ) = w(Xj1

1 · · ·Xjm
m )

holds but
X i1

1 · · ·X im
m ≺M Xj1

1 · · ·Xjm
m .

The weighted degree of a polynomial F is wdeg(F ) = w(lm(F )).

We now state the order domain conditions which play a central role in the
present paper.
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Definition 9 Consider an ideal I ⊆ k[X1, . . . , Xm] where k is a field. Let a
generalized weighted degree ordering ≺w be given as in Definition 8. Assume
I possesses a Gröbner basis B such that any G ∈ B has exactly two monomials
of highest weight and such that no two monomials in ∆≺(I) is of the same
weight. Then we say that I and ≺w satisfy the order domain conditions.

The following lemma is an immediate generalization of Lemma 1. Again we
leave the proof for the reader.

Lemma 2 Let I, ≺w and B be as in Definition 9. Let F be a polynomial with
exactly one monomial of highest weight. Then w(lm(F )) = w(lm(F rem B)).
In particular w(lm(F )) = w(lm(F rem B)) holds for all F with Supp(F ) ⊆
∆≺w(I)}.

Remark 3 If I and ≺w satisfy the order domain conditions then any poly-
nomial G in any Gröbner basis B of I must contain exactly two monomials
of highest weight. Hence, the choice of B is of no importance in Definition 9.
This result is a consequence of Lemma 2 and the fact that the remainder is
independent of the Gröbner basis chosen.

The following proposition is an immediate generalization of similar results in
Example 4.

Proposition 2 Assume I ⊆ Fq[X1, . . . , Xm] and ≺w satisfy the order do-
main conditions. Consider Iq = I + 〈Xq

1 − X1, . . . , X
q
m − Xm〉. A pair

(P, N) where P, N ∈ ∆≺w(Iq) is OWB if w(P ) + w(N) ∈ w(∆≺w(Iq)).
If K ∈ ∆≺w(Iq) and P, N ∈ ∆≺w(I) satisfy w(P ) + w(N) = w(K), then
P, N ∈ ∆≺w(Iq), and (P, N) is OWB.

Definition 10 Assume I and ≺w satisfy the order domain conditions. Let
Γ = w(∆≺w(I)) and define for all λ ∈ w(∆≺w(Iq))

σ(λ) = #{η ∈ w(∆≺w(Iq)) | η − λ ∈ Γ}

and for all λ ∈ Γ
µ(λ) = #{α ∈ Γ | λ− α ∈ Γ}.

Applying Theorem 1 and Theorem 2 in combination with Proposition 2 we
get the following theorem.
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Theorem 3 Assume I and ≺w satisfy the order domain conditions. Let L
be a subspace of Rq = Fq[X1, . . . , Xm]/Iq and assume

{B1 + Iq, . . . , Bdim(L) + Iq}

is a well-behaving basis (Definition 4). The minimum distance of C(I, L) is
at least

min{σ(w(lm(B1))), . . . , σ(w(lm(Bdim(L))))}.

The minimum distance of C(I, L)⊥ is at least

min{µ(w(M)) | M ∈ ∆≺w(Iq)\{lm(B1), . . . , lm(Bdim(L))}
≥ min{µ(λ) | λ ∈ Γ\{w(B1), . . . , w(Bdim(L))}}.

Consider the following choices of L. Let ~s ∈ Nr
0 and δ ∈ N.

L1 = SpanFq
{M + Iq | M ∈ ∆≺w(Iq), w(M) �Nr

0
~s} (19)

L2 = SpanFq
{M + Iq | M ∈ ∆≺w(Iq), σ(w(M)) ≥ δ} (20)

L3 = SpanFq
{M + Iq | M ∈ ∆≺w(Iq), µ(w(M)) < δ}. (21)

Theorem 3 tells us that the minimum distance of C(I, L2) and C(I, L3)
⊥ is

at least δ. By construction C(I, L2) and C(I, L3)
⊥ are the largest codes with

prescribed minimum distance δ. We shall in Section 10 see that whenever the
weights are numerical, that is whenever ~s = s is an integer, then the minimum
distance of C(I, L1) is at least n− s. Here, n = #∆≺w(Iq). Similarly we will
derive in Section 10 a simple expression for a lower bound on the minimum
distance of C(I, L1)

⊥ whenever the weights are numerical.

Example 5 This is a continuation of Example 1 and Example 2. Choose
the weights w(X1) = (1, 0, . . . , 0), w(X2) = (0, 1, 0, . . . , 0), . . . , w(Xm) =
(0, . . . , 0, 1) ∈ Nm

0 . Let ≺Nm
0

be the graded ordering on Nm
0 with (1, 0, . . . , 0) ≺Nm

0

· · · ≺Nm
0

(0, . . . , 0, 1). Let ≺M be any monomial ordering on M(X1, . . . , Xm).
Using the convention that the empty set is a Gröbner basis for the ideal
I = 〈0〉 ⊆ Fq[X1, . . . , Xm] we see that the order domain conditions are triv-
ially satisfied. The code C(I, L1) with ~s = (0, . . . , 0, s) is the generalized
Reed-Muller code RMq(s, m). Similarly, the codes C(I, L2) and C(I, L3)

⊥

are the improved generalized Reed-Muller codes considered in Example 1 and
Example 2. Applying Theorem 3 we count exactly the same OWB pairs that
we count by applying Corollary 2 and Corollary 3.
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Given I and ≺w such that the order domain conditions are satisfied we might
want to construct codes by evaluating in a subset U ( VFq(I) rather than in
the entire variety VFq(I). The following remark deals with this situation

Remark 4 Assume that the pair I and ≺w satisfies the order domain con-
ditions. Let U ⊆ VFq(I). Every finite set of points is a variety and therefore
there exists polynomials H1, . . . , Hr such that the vanishing ideal of U equals

IU = Iq + 〈H1, . . . , Hr〉.

The estimates of the minimum distances of C(I, L) and C(I, L)⊥ still hold
if these codes are made by evaluating in U rather than in the entire variety
VFq(I). All we need to do is to replace Iq with IU in Definition 4, Definition 5,
Proposition 2, Definition 10 and Theorem 3.

8 Weight functions and order domains

The concept of an order function was introduced by Høholdt et al. in [20] to
simplify the treatment of one-point geometric Goppa codes and to provide
a language for easy generalization of one-point geometric Goppa codes to
objects of higher dimensions than curves. The concept was further developed
in [33] and [17]. Here, we describe some terminology from [17].

Definition 11 Let R be a k-algebra and let Γ be a subsemigroup of Nr
0 for

some r. Let ≺ be a monomial ordering on Nr
0. A surjective map ρ : R →

Γ−∞ = Γ ∪ {−∞} that satisfies the following six conditions is said to be a
weight function

(W.0) ρ(f) = −∞ if and only if f = 0
(W.1) ρ(af) = ρ(f) for all nonzero a ∈ Fq

(W.2) ρ(f + g) � max{ρ(f), ρ(g)} and equality holds when ρ(f) ≺ ρ(g)
(W.3) If ρ(f) ≺ ρ(g) and h 6= 0, then ρ(fh) ≺ ρ(gh)
(W.4) If f and g are nonzero and ρ(f) = ρ(g), then there

exists a nonzero a ∈ Fq such that ρ(f − ag) ≺ ρ(g)
(W.5) If f and g are nonzero then ρ(fg) = ρ(f) + ρ(g).

A k-algebra with a weight function is called an order domain and Γ is called
the value semigroup of ρ.

20



From [17][Th. 9.1 and Th. 10.4] we know that if the value semigroup Γ is
finitely generated then it can be described in the language of Gröbner basis
theory. We have the following result which connects Definition 11 to the
theory of the previous section.

Theorem 4 Let ≺w be a generalized weighted degree ordering onM(X1, . . . , Xm)
and let I ⊂ k[X1, X2, . . . , Xm] be an ideal. If I and ≺w satisfy the or-
der domain conditions (Definition 9) then R = k[X1, X2, . . . , Xm]/I is an
order domain with a weight function defined as follows: Given a nonzero
f ∈ k[X1, X2, . . . , Xm]/I write f = F + I where Supp(F ) ⊆ ∆≺w(I). We
have ρ(f) = wdeg(F ) and ρ(0) = −∞.
Any weight function with a finitely generated value semigroup Γ can be de-
scribed as above.

Proof: We only show the first part of the theorem. Regarding the last part
we refer to the proof in [17]. Assume I and≺w satisfy the order domain condi-
tions. The properties (W.0), (W.1), and (W.2) are obviously satisfied. Given
f = F1 +I and g = F2 +I with Supp(F1) ⊆ ∆≺w(I) and Supp(F2) ⊆ ∆≺w(I)
let b be the leading coefficient of F1 and let c be the leading coefficient of
F2. If we choose a = b/c then the result in (W.4) holds. Property (W.5) fol-
lows immediately from Lemma 2. Finally, property (W.3) is a consequence
of (W.5) (in fact (W.3) is not needed in the definition of a weight function).
The proof is complete.

As mentioned earlier the ideals and the monomial orderings considered in
Example 4 and Example 5 satisfy the order domain conditions. Therefore by
Theorem 4 the corresponding factor rings are order domains and the weights
correspond to weight functions following Theorem 4.

9 Codes form order domains

We now describe the codes related to order domains. We will need a
couple of definitions.
Definition 12 Let R be an Fq-algebra. A surjective map ϕ : R → Fn

q is
called a morphism of Fq-algebras if ϕ is Fq linear and if

ϕ(fg) = ϕ(f) ∗ ϕ(g)

for all f, g ∈ R (here ∗ is the componentwise product described in Section 5).
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Definition 13 Let ρ : R → Γ ∪ {−∞} be a weight function. A set

{fλ | ρ(fλ) = λ, λ ∈ Γ}

is called a well-behaving basis for R.

It is clear that all order domains possess well-behaving bases. Recall that we
in Definition 4 introduced the concept of a well-behaving basis for L ⊆ Rq.
The concept of a well-behaving basis for an order domain R as defined above
is not the same. However, the two concepts are closely related.

Proposition 3 Assume R is an order domain over k. If {fλ | ρ(fλ) = λ, λ ∈
Γ} is a well-behaving basis for R then it is a basis for R as a vectorspace over
k.

Proof: For the case of weight functions with finitely generated value semi-
group the result follows by combining the characterization in Theorem 4 with
the result in Proposition 1. For the general case we refer to [17, Th. Pro. 3.2
and Def. 3.1]. The proof is complete.

Remark 5 Given two well-behaving bases {fλ | ρ(fλ) = λ, λ ∈ Γ} and {gλ |
ρ(gλ) = λ, λ ∈ Γ} then for all η ∈ Γ, gη is a linear combination of the
elements in {fλ | λ � η} and the coefficients of fη in this expression is
nonzero.

It follows from Remark 5 that it is of no importance in the next definition
which well-behaving basis is considered.

Definition 14 Let R be an order domain over Fq with a weight function
ρ : R → Γ ∪ {−∞} and let {fλ | ρ(fλ) = λ, λ ∈ Γ} be a well-behaving basis.
Let ϕ : R → Fn

q be a morphism as in Definition 12. Define α(1) = 0. For
i = 2, . . . , n define recursively α(i) to be the smallest element in Γ that is
greater than α(1), . . . , α(i− 1) and satisfies

ϕ(fα(i)) /∈ SpanFq
{ϕ(fλ) | λ ≺Nr

0
α(i)}.

Write ∆(R, ρ, ϕ) = {α(1), . . . , α(n)}.
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Definition 15 For λ ∈ ∆(R, ρ, ϕ) define

σ(λ) = #{γ ∈ ∆(R, ρ, ϕ) | γ − λ ∈ Γ}.

For λ ∈ Γ define
µ(λ) = #{α ∈ Γ | λ− α ∈ Γ}.

We can now define the codes.

Definition 16 Let R be an order domain over Fq and let ϕ be a morphism as
in Definition 12. Consider a fixed well-behaving basis {fλ | ρ(fλ) = λ, λ ∈ Γ}.
For λ ∈ Γ and δ ∈ N consider the codes

E(λ) = SpanFq
{ϕ(fη) | η �Nr

0
λ}

Ẽ(δ) = SpanFq
{ϕ(fη) | η ∈ ∆(R, ρ, ϕ) and σ(η) ≥ δ}

C(λ) = {~c ∈ Fn
q | ~c · ϕ(fη) = 0 for all η with η �Nr

0
λ}

C̃(δ) = {~c ∈ Fn
q | ~c · ϕ(fη) = 0 for all η ∈ ∆(R, ρ, ϕ) with µ(η) < δ}.

Remark 6 From Remark 5 we conclude that the choice of well-behaving basis
is of no importance for the definition of the codes E(λ) and C(λ).

From [20, Th. 4.13 and Pro. 4.23] and [2, Th. 33] we have the following
theorem. The result concerning C(λ) and C̃(δ) is known as the order bound.

Theorem 5 The minimum distance of E(λ) is at least

min{σ(η) | η �Nr
0

λ} (22)

and the minimum distance of C(λ) is at least

min{µ(η) | λ ≺Nr
0

η and η ∈ ∆(R, ρ, ϕ)} ≥ min{µ(η) | λ ≺Nr
0

η}. (23)

The minimum distances of Ẽ(δ) and C̃(δ) are at least δ.

Recall from Theorem 4 that if Γ is a finitely generated value semigroup then
the corresponding order domain R can be described as a factor ring. We now
show that for such order domains Theorem 5 is a direct consequence of the
theory developed in Section 7. We start with the following easy characteri-
zation of ϕ.
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Proposition 4 Let ϕ : R = Fq[X1, . . . , Xm]/I → Fn
q be a morphism as in

Definition 12. There exists a set

U = {P1, . . . , Pn} ⊆ VFq(I)

such that ϕ(F + I) = (F (P1), . . . , F (Pn)) for all F + I ∈ R. The Pi’s are
pairwise different.

Applying Proposition 4 to order domains with finitely generated value semi-
group we see that the codes in Definition 16 are of the type covered by Re-
mark 4 of Section 7. Rather than dealing with the general case U ⊆ VFq(I)
we will in the following concentrate on the situation U = VFq(I). The reader
can easily generalize our findings by replacing, as in Remark 4, any occur-
rence of Iq with IU .
Our most important observation is that

∆(R, ρ, ϕ) = w(∆≺w(Iq)). (24)

To show (24) we start by noting that both sets are of size n. Hence, (24)
must hold if we can show

∆(R, ρ, ϕ) ⊆ w(∆≺w(Iq)).

Clearly, α(1) = 0 is in w(∆≺w(Iq)) as any non-empty footprint contains 1.
Aiming for a contradiction assume α(i) /∈ w(∆≺w(Iq)) for some 2 ≤ i ≤ n.
Let fα(i) = F + I, w(lm(F )) = α(i). We have

ϕ(F + I) = ϕ(F rem G + I) (25)

where G is a Gröbner basis for Iq. The very definition of a Gröbner basis
ensures that lm(F rem G) ∈ ∆≺w(Iq). Hence, lm(F rem G) ≺w lm(F ). But
then, by (25) and Definition 14, α(i) /∈ ∆(R, ρ, ϕ). We have reached at a
contradiction and therefore (24) holds.
With (24) in hand we establish the following connections: E(λ) and C(λ) re-
spectively equals C(I, L1) and C(I, L1)

⊥ respectively where L1 is as in (19).
Ẽ(δ) equals C(I, L2) where L2 is as in (20) and C̃(δ) equals C(I, L3)

⊥ where
L3 is as in (21). We conclude that the bounds in Theorem 5 on the mini-
mum distances of E(λ), Ẽ(δ), C(λ) and C̃(δ) are consequences of Theorem 3.
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10 One-point geometric Goppa codes

One of the main reasons for introducing order domains in [20] was to
have an easy description of one-point geometric Goppa codes and to have
an easy way of generalizing the construction of one-point geometric Goppa
codes to algebraic structures of higher transcendence degree. Presenting in
the present paper things in reverse order of what is normally done we now
finally come to the one-point geometric Goppa codes.
Let P be a rational place in an algebraic function field F of one variable with
constant field Fq. Let νP be the valuation corresponding to P . Consider the
algebraic structure

R = ∪∞m=0L(mP). (26)

Defining ρ = −νP we have ρ(R) = Γ ∪ {−∞} where Γ ⊆ N0 is known
as the Weierstrass semigroup corresponding to P . By inspection the map
ρ : R → Γ ∪ {−∞} satisfies the six conditions in Definition 11 and therefore
is a weight function.
Unfortunately it is not in general an easy task to determine the structure
R above and therefore it is often difficult to find the factor ring description
of R as guaranteed by Theorem 4. Observe, that one such description was
given in Example 4 in the case of a Hermitian curve over F9.
The geometric Goppa codes coming from the structure in (26) are known as
one-point geometric Goppa codes. We now explain the connection between
these codes and the affine variety codes in Section 7. Let Q1, . . . ,Qn be
rational places, pairwise different, and all different from P . The map ϕ :
R → Fn

q , ϕ(f) = (f(Q1), . . . , f(Qn)) is a morphism as in Definition 12.
Therefore from Proposition 4 the rational places Q1, . . . ,Qn correspond to n
different affine points P1, . . . , Pn in V(Iq) and ϕ(F +I) = (F (P1), . . . , F (Pn))
holds. We have

CL(Q1 + · · ·+Qn, λP) = C(I, L)

and
CΩ(Q1 + · · ·+Qn, λP) = C(I, L)⊥

where
L = {f ∈ R | ρ(f) ≤ λ}.

Let Γ = {λ1, λ2, . . .} where λ1 < λ2 < · · · holds. The Goppa bounds from
algebraic geometry applied to the case of one-point geometric Goppa codes
state.

25



Theorem 6 Let P be a rational place as above and let R be the corresponding
order domain as in (26). The minimum distance of E(λ) is at least

n− λ. (27)

The minimum distance of C(λt) is at least

t + 1− g. (28)

Now we show that the bounds in Theorem 6 can be viewed as being a conse-
quence of Theorem 5. We will need the following technical lemma from [20,
Lem. 5.15 and Th. 5.24].

Lemma 3 Let Γ = {λ1, λ2, . . .} with λ1 < λ2 < · · · be a semigroup in N0

with finitely many gaps. Define

g(i) = #{λ ∈ N0\Γ | λ < λi}.

For any λi we have #(Γ\(λi + Γ)) = λi and µ(λi) = i− g(i) + D(i) where

D(i) = {(x, y)|x, y ∈ N0\Γ and x + y = λi}.

Here, λ + Γ means {λ + λ1, λ + λ2, . . .}.

Theorem 7 For the case of one-point geometric Goppa codes the bound
in (22) is always at least as good as (and sometimes better than) the bound
in (27). Similarly, the bound in (23) is always at least as good as (and
sometimes better than) the bound in (28).

Proof: To prove the first claim we need only consider numbers λi ∈
∆(R, ρ, ϕ), λi ≤ s. We have σ(λi) = #(∆(R, ρ, ϕ)∩ (λi +Γ)). From the first
part of Lemma 3 we see that the number of elements in ∆(R, ρ, ϕ) that are
not in λi +Γ is at most λi. Therefore σ(λi) ≥ n−λi holds with equality only
when Γ\(λi+Γ) ⊆ ∆(R, ρ, ϕ). We conclude min{σ(λi) | λi ∈ ∆(R, ρ, ϕ), λi ≤
s} ≥ n− s. Concerning the last claim we have

min{µ(η) | η ∈ Γ and λt < η} = min{i− g(i) + #D(i) | t < i} ≥ t + 1− g

with equality if and only if λt+1 = λt + 1, g(t + 1) = g and #D(t + 1) = 0
hold. The proof is complete.
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Having shown that the bounds in Theorem 5 on the minimum distances
of the codes E(λ) and C(λ) are at least as good as the Goppa bounds in the
case of R being of the form (26) it is clear that we can consider the codes
Ẽ(δ) and the codes C̃(δ) related to (26) as improved one-point geometric
Goppa codes.
It was shown in [27, Th. 1] that all numerical weight functions (i. e. weight
functions with weights in N0) are either of the form (26) or is a sub algebra of
such a structure. Turning to semigroups that are not numerical the related
structures are no longer curves but are higher dimensional [17, Sec. 11]. The
related codes can be viewed as generalizations of one-point geometric Goppa
codes.

11 Bibliographical Notes

The theory of evaluation codes has grown relatively large in its ten years’
lifetime and therefore it is not possible to give a full list of references on
the topic in the present paper. Instead we will give just a few references on
different aspects of the theory.
Examples of evaluation codes coming from higher dimensional objects than
curves are given in [25] and [2]. Regarding generalized Hamming weights of
evaluation codes more results can be found in [19], [3], [2], and [18]. The
Feng-Rao bound as described in [11], [12], and [24] is more general than the
order bound [20] in that it does not only deal with evaluation codes. The
most general version of the Feng-Rao bound deals with linear codes [29], [18].
The Gröbner basis theoretical point of view on order domains are studied
in [30], [31], [28], [33], [21], and [17]. Evaluation codes are described in a
Gröbner basis theoretical setting in [30], [31], [1], and [2]. For the case of
affine variety codes decoding algorithms can be found in [13], [10], [32]. Many
papers deal with decoding of evaluation codes. Among these are [20], [6],
and [16]. A study of the function µ on different families of semigroups Γ can
be found in [5] and [34].
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