
The Mathematical Foundation of A*

Olav Geil
Department of Mathematical Sciences

Aalborg University

This note was written for use in a mathematical course for students in com-
puter game programming at Department of Computer Science at Aalborg Uni-
versity. The literature on A* can be rather confusing and it is the aim of the
note to present the complete mathematical foundation for A*. Having estab-
lished the foundation of A* it becomes clear which errors in the literature one
should omit to implement.

1 The basic concepts

Consider a finite weighted graph G = (V,E), meaning that #V < ∞ and that
we are given a map w : E → R+. Let va, vz ∈ V . We want to establish a most
inexpensive path from va to vz if such one exists. When the function w has some
physical meaning a good candidate for an algorithm to solve this problem is the
A* algorithm. As we will see this algorithm can be viewed as a generalization
of Dijkstra’s algorithm. The A* algorithm is an example of an informed search.
More precisely we have as input to the algorithm for every v ∈ V a value
h(v) ∈ R+ ∪{0} estimating in advance the weight of the most inexpensive path
from v to vz. The function h : V → R+ ∪ {0} is called a heuristic function. We
are particular interested in admissible heuristics and monotone heuristics.

Definition 1 A heuristic function h : V → R+ ∪ {0} is called admissible with
respect to vz if for every v ∈ V , h(v) is not larger than the weight of a most
inexpensive path from v to vz.

Observe, that in particular h(vz) needs to be equal to 0 if h is admissible with
respect to vz.

Definition 2 A heuristic function h : V → R+ ∪ {0} is called monotone if for
every pair of neighbors vi, vj in G we have

|| h(vi)− h(vj) ||≤ w(vi, vj)

The following proposition shows that being monotone is basically a stronger
requirement than being admissible.

Proposition 1 A monotone heuristic function h satisfying h(vz) = 0 is admis-
sible with respect to vz.

1

5v

v1 v3

v8v7v6

v2

va

v1

v7

v3

5v

v8v6

va

vzv4 v4 vz

v2

Figure 1:

Proof: Consider any vertex v ∈ V . If there is no path from v to vz then
certainly the condition in Definition 1 is satisfied. Assume a most inexpensive
path is given by P : v = v1, v2, . . . , vs = vz. We have

w(P) = w(v1, v2) + w(v2, v3) + · · ·+ w(vs−1, vs)
≥ (h(v1)− h(v2)) + (h(v2)− h(v3)) + · · ·+ (h(vs−1)− h(vs))
= h(v1)− h(vz) = h(v1)

and again the condition in Definition 1 is satisfied. �

Example 1 Given n towns identify each of them with a vertex, say V = {v1, . . . , vn}.
Let there be an edge between vi and vj, i 6= j if there is a road from vi to vj that
does not pass any other town. For every edge (vi, vj) let w(vi, vj) be the length
of the most inexpensive route from vi to vj not passing any other town. An
obvious heuristic is to choose h(v) to be simply the bee line distance between v
and vz. In this way one obviously derive an admissible heuristic. We now show
that the heuristic is actually also monotone. Let vi, vj be neighbors. The usual
triangle equality tells us that the bee line distance from vi to vz is less than or
equal to the sum of the bee line distances from vj to vz plus the be line distance
from vi to vj. The latter one being less than or equal to w(vi, vj). Hence, we
get the equality

h(vi) ≤ h(vj) + w(vi, vj)
⇓

w(vi, vj) ≥ h(vi)− h(vj).

By symmetry this tells us

w(vi, vj) ≥|| h(vi)− h(vj) ||

and we are through,

Example 2 To use the A* algorithm we must have a graphical model of our
world. Assume the world under consideration is a bounded area in 2D. We can
place a square grid on the world consisting of squares. Hence, we identify every
square with a vertex and we have an edge between two vertices if the squares
they present share a side.

2

v1

v7

v3

5v

v8v6

va

v4 vz

v2

Figure 2:

If we imagine that the vertices are placed in the center of the squares we can cal-
culate the distance between any two adjacent vertices. Identify now coordinates
for vertices as follows. The vertex in the lower left corner is (0, 0) and the vertex
v has coordinates (vx, vy) if it is in position of vx squares to the right and vy

squares up relative to the lower left corner. Hence, in Figure 1 the coordinates
of vz are (1, 1). Let D be the (real world) minimal price for moving between to
adjacent vertices in the graph. The Manhattan heuristic is given as

h(v) = D(|| vx − (vz)x || + || vy − (vz)y ||).

Clearly, the Manhattan heuristic is monotone with h(vz) = 0 and thereby also
admissible. Note, that it is important to include the scaling factor D.

Assume next that we make a little different model of our world by having an edge
between any two vertices for which the squares touch each other. In our example
we produce in this way Figure 2. If we try to use the Manhattan heuristic
in this model (which is sometimes faulty done) we might very well get into
serious troubles. Assume as an example that the physical distance between two
adjacent vertices are given in the following natural way. Two adjacent vertices
in horizontal or vertical position to each other are assumed to be in distance
1. Two adjacent vertices in diagonal position to each other are assumed to be
in distance

√
2 (coming from the Pythagorean equality). The minimal price for

moving between adjacent vertices is now D = 1 but we may for instance move
from (1, 1) to (2, 2) in only one step instead of two. The price will only be

√
2

instead of 1 + 1 = 2. Analyzing the situation we see that an adapted Manhattan
heuristic would be

h(v) =
√

2
2

(|| vx − (vz)x || + || vy − (vz)y ||)

or
h(v) = 0.7(|| vx − (vz)x || + || vy − (vz)y ||).

These adapted Manhattan heuristics are both monotone and admissible.

In situations where we are allowed to make diagonal moves we could also choose
to use instead of the Manhattan heuristic the diagonal heuristic defined as follows

h(v) = D max{|| vx − (vz)x ||, || vy − (vz)y ||}.

3

This heuristic is of course again monotone and admissible.

If the minimal price for a horizontal move or a vertical move is D1 and the
minimal price for making a diagonal move is D2 =

√
2D1 we could make a

more refined heuristic as follows. To move from v to vz by only horizontal or
vertical moves requires at least || vx− (vz)x || + || vy − (vz)y || moves. However,
by allowing diagonal moves one, horizontal move plus one vertical move might
be replaced by a single diagonal move. In this way we get the heuristic

h(v) = D2(min{|| vx − (vz)x ||, || vy − (vz)y ||})
+D1 (|| vx − (vz)x || + || vy − (vz)y || −2 min{|| vx − (vz)x ||, || vy − (vz)y ||})

= D1

(
|| vx − (vz)x || + || vy − (vz)y || −(2−

√
2) min{|| vx − (vz)x ||, || vy − (vz)y ||}

)
.

This heuristic of course is again monotone and admissible. The heuristics in
the present example of course can be generalized to work in 3D world.

2 The algorithm

In this note we will present two versions of A*. Namely, Algorithm 1 and
Algorithm 2 below. Algorithm 1 is the most general one as it only requires
the heuristic to be admissible to always find a shortest path. If in addition the
heuristic is monotone we can skip some parts of Algorithm 1 giving us Algorithm
2. The reader should keep in mind that the algorithms are just generalizations
of Dijkstra’s algorithm. More precisely, using the heuristic function h(v) = 0
for all v ∈ V will make Algorithm 1 as well as Algorithm 2 into nothing but
Dijkstra’s algorithm. Recall, that in Dijkstra’s algorithm we build up a search
tree routed in va. In every loop we update information about the cost of coming
from va to vertices that has not yet been included in the tree. At the end of
the loop we include in the tree the most inexpensive one. We keep on building
up the tree until vz is included. The shortest path from va to vz found by the
algorithm will then be the unique path in the tree from va to vz.

A* does something very much similar. However, instead of only calculat-
ing the cost g(v) for moving from va to v we add the heuristic h(v) to get
f(v) = g(v) + h(v). The point added to the search tree are the one with lowest
f -value. Clearly, doing this corresponds to choosing the point which looks to
be on a most inexpensive path from va to vz rather than just being the one
closest to va. Except for f = g + h being used rather than only g, Algorithm
2 is very close to Dijkstra’s algorithm. Algorithm 1 works for relatively general
heuristics and here things can be a little complicated. It might happen that a
point v which is already included in the search tree need to be updated, meaning
that it should be connected somehow different to the other vertices in the tree.
This happens when a new and more inexpensive path is found from va to v.
What we do then is to remove it from the search tree making the search tree
possible into a forest. To handle this the A* algorithm works with a number of
lists. The list Open from the beginning contains only va. At later times in the

4

run it contains every vertex that has not yet been included in the tree (possible
forest) but is either connected to the tree (possible forest) or is adjacent to a
vertex that has at some earlier point been in the tree (forest). The set Closed
are the points in the search tree (forest).

Algorithm 1:
Input: A weighted graph G = (V,E) and vertices va, vz ∈ V . A heuristic func-
tion h : E → R+ ∪ {0}.

Output: A path from va to vz or “failure”.

Step 1 (initialization):

g(va) = 0, f(va) = g(va) + h(va), Open = {va}, Closed = ∅.

Step 2:

If Open = ∅ then

begin

Return(“failure”) and Quit

end

If Open is nonempty then

begin

Let B be a vertex in Open with smallest f -value.

If B = vz then

begin

Let P be the path

P : vz, Parent(vz), Parent(Parent(vz)), . . . , Parent(· · · (Parent(vz))) = va

Return(P reversed) and Quit

end

end

5

Step 3:

Let Successor be the list with all vertices adjacent to B.

For all C in Successor:

begin

If C ∈ Closed or C ∈ Open

begin

Let g′(C) = g(B) + w(B,C)

If g′(C) < g(C)

begin

let g(C) = g′(C), f(C) = g(C) + h(C) and Parent(C) = B

If C ∈ Closed

begin

Closed = Closed\{C}

Open = Open ∪ {C}

end

end

end

If neither C ∈ Closed nor C ∈ Open

begin

Let g(C) = g(B) + w(B,C), f(C) = g(C) + h(C) and Parent(C) = B.

Open = Open ∪ {C}

end

end

6

Step 4:

Open = Open\{B}

Closed = Closed ∪ {B}

Go to step 2

7

Algorithm 2:
Input: A weighted graph G = (V,E) and vertices va, vz ∈ V . A heuristic func-
tion h : E → R+ ∪ {0}.

Output: A path from va to vz or “failure”.

Step 1 (initialization):

g(va) = 0, f(va) = g(va) + h(va), Open = {va}, Closed = ∅.

Step 2:

If Open = ∅ then
begin

Return(“failure”) and Quit

end

If Open is nonempty then

begin

Let B be a vertex in Open with smallest f -value.

If B = vz then

begin

Let P be the path

P : vz, Parent(vz), Parent(Parent(vz)), . . . , Parent(· · · (Parent(vz))) = va

Return(P reversed) and Quit

end

end

8

Step 3:

Let Successor be the list with all vertices adjacent to B.

For all C in Successor:

begin

If C ∈ Open

begin

Let g′(C) = g(B) + w(B,C)

If g′(C) < g(C)

begin

let g(C) = g′(C), f(C) = g(C) + h(C) and Parent(C) = B

end

end

If neither C ∈ Closed nor C ∈ Open

begin

Let g(C) = g(B) + w(B,C), f(C) = g(C) + h(C) and Parent(C) = B.

Open = Open ∪ {C}

end

end

9

v1

v2

v3

v4
v5

v6

v7

1

1

2

1

2

1

1

Figure 3:

Step 4:

Open = Open\{B}

Closed = Closed ∪ {B}

Go to step 2

In the remaining part of this note we will often refer to the vertex B as the
active vertex.

3 Examples

To illustrate the algorithms we treat two small examples. To really experience
the strength of A* one should investigate larger examples and heuristics with
some physical meaning.

Example 3 Consider the weighted graph in Figure 3 The heuristic h(v1) =
4,h(v2) = 3,h(v3) = 2,h(v4) = 2,h(v5) = 1,h(v6) = 1,h(v7) = 0 is monotone
with h(v7) = 0. Hence, we can use Algorithm 2 to find a shortest path from
va = v3 to vz = v7. We get:

10

Open = {v3}, Closed = ∅, B = v3

Successors = {v1, v2, v5}
v1 /∈ Closed,Open

g(v1) = 2, h(v1) = 4, f(v1) = 6, Parent(v1) = v3

v2 /∈ Closed,Open

g(v2) = 1, h(v2) = 3, f(v2) = 4, Parent(v2) = v3

v5 /∈ Closed,Open

g(v5) = 1, h(v5) = 1, f(v5) = 2, Parent(v5) = v3

Closed = {v3}, Open = {v1, v2, v5}
B = v5

Successors = {v3, v4}
v3 ∈ Closed

v4 /∈ Closed,Open

g(v4) = 3, h(v4) = 2, f(v4) = 5, Parent(v4) = v5

Closed = {v3, v5}, Open = {v1, v2, v4}
B = v2

Successors = {v3, v4}
v3 ∈ Closed

v4 /∈ Closed, v4 ∈ Open

g′(v4) = 2 < g(v4)
g(v4) = 2, h(v4) = 2, f(v4) = 4, Parent(v4) = v2

Closed = {v2, v3, v5}, Open = {v1, v4}
B = v4

Successors = {v2, v5, v6}
v2 ∈ Closed

v5 ∈ Closed

g(v6) = 3, h(v6) = 1, f(v6) = 4, Parent(v6) = v4

Closed = {v2, v3.v4, v5}Open = {v1, v6}
B = v6

Successors = {v4, v7}
v4 ∈ Closed

g(v7) = 4, h(v7) = 0, f(v7) = 4, Parent(v7) = v6

Closed = {v2, v3, v4, v5, v6}Open = {v1, v7}
B = v7

Return(P : v3, v2, v4, v6, V7)

11

v2 v3 v4

v1

v5

v6

17

11
1

7

Figure 4:

Example 4 Consider the weighted graph in Figure 4 The heuristic h(v1) =
11,h(v2) = 2,h(v3) = 2,h(v4) = 10,h(v5) = 7,h(v6) = 0 is not monotone. How-
ever, it is admissible with respect to v6. Hence, we can use Algorithm 1 to find
a shortest path from va = v1 to vz = v6. We get:

Open = {v1}, Closed = ∅, B = v1

Successors = {v2, v4}
v2 /∈ Closed,Open

g(v2) = 7, h(v2) = 2, f(v2) = 9, Parent(v2) = v1

v4 /∈ Closed,Open

g(v4) = 1, h(v4) = 10, f(v4) = 11, Parent(v4) = v1

Closed = {v1}, Open = {v2, v4}
B = {v2}
Successors = {v1, v3, v5}
v1 = Closed

g′(v1) = 14 ≥ g(v1)
v3 /∈ Closed,Open

g(v3) = 8, h(v3) = 2, f(v3) = 10, Parent(v3) = v2

v5 /∈ Closed,Open

g(v5) = 8, h(v5) = 7, f(v5) = 15, Parent(v5) = v2

Closed = {v1, v2}, Open = {v3, v4, v5}

12

B = v3

Successors = {v2, v4}
v2 ∈ Closed

g′(v2) = 9 ≥ g(v2)
v4 ∈ Open

g′(v4) = 9 ≥ g(v4)
Closed = {v1, v2, v3}, Open = {v4, v5}
B = v4

Successors = {v1, v3}
v1 ∈ Closed

g′(v1) = 2 ≥ g(v1)
v3 ∈ Closed

g′(v3) = 2 < g(v3)
g(v3) = 2, h(v3) = 2, f(v3) = 4, Parent(v3) = v4

Closed = {v1, v2}, Open = {v3, v4, v5}
Closed = {v1, v2, v4}, Open = {v3, v5}
B = v3

Successors = {v2, v4}
v2 ∈ Closed

g′(v2) = 3 < g(v2)
g(v2) = 3, h(v2) = 2, f(v2) = 5, Parent(v2) = v3

Closed = {v1, v4}, Open = {v2, v3, v5}
v4 ∈ Closed

g′(v4) = 3 ≥ g(v4)
Closed = {v1, v3, v4}, Open = {v2, v5}
B = v2

Successors = {v1, v3, v5}
v1 ∈ Closed

g′(v1) = 10 ≥ g(v1)
v3 ∈ Closed

g′(v3) = 4 ≥ g(v3)
v5 ∈ Open

g′(v5) = 4 < g(v5)
g(v5) = 4, h(v5) = 7, f(v5) = 11, Parent(v5) = {v2}
Closed = {v1, v2, v3, v4}, Open = {v5}

13

B = v5

Successors = {v2, v6}
v2 ∈ Closed

g′(v2) = 5 ≥ g(v2)
v6 /∈ Closed,Open

g(v6) = 11, h(v6) = 0, f(v6) = 11, Parent(v6) = v5

Closed = {v1, v2, v3, v4, v5}, Open = {v6}
B = v6

Return(P : v1, v4, v3, v2, v5, v6)

The path found by the algorithm is of length 11 and is surely the most inexpensive
path from v1 to v6. It is important that when updating the g-value of a vertex
in Closed we remember to move the vertex to Open. Failing to do this would
produce the path P ′ : v1, v2, v3, v6 of length 15.

4 The mathematical foundation

In this section we show first that Algorithm 1 is guaranteed to find a most in-
expensive path (provided there is a path) whenever the heuristic is admissible.
This result is then used to show that Algorithm 2 finds a most inexpensive path
(provided there is a path) whenever the heuristic is monotone with h(vz) = 0.

Theorem 1 Consider a weighted graph G = (V,E) and vertices va, vz ∈ V Let
the heuristic h : V → R+ ∪ {0} be admissible with respect to vz. If a path from
va to vz exist then Algorithm 1 finds a most inexpensive such one. If no path
exist the algorithm returns “failure”.

Proof: The algorithm builds up a tree (or forest) containing va. It can stop
of one of two reasons. Either it stops because Open is empty. In this case we
have in Closed all vertices connected to va by some path. The vertex vz cannot
be in Closed as this would have caused the algorithm to stop earlier. Therefore
there is no path from va to vz and the algorithm answers correctly by returning
“failure”. The other possibility for the algorithm to stop is that B = vz. In this
case the algorithm has established a path from va to vz. We have to show that
there cannot be a less expensive path from va to vz then the one found by the
algorithm.

Before doing this we note that the algorithm will eventually stop. This is seen
as follows. let v be a vertex that is in Open at some point of the the run. The
value g(v) corresponds to the length of some path from va to v. Every time v is
moved from Open to Closed and back to Open again it is because a less expen-
sive path has been detected from va to v. However, there are only finitely many
paths from va to v and therefore v can move forth and back between Closed and
Open only finitely many times. In every loop some vertex moves from Open to
Closed and therefore the algorithm will either stop because B = vz or it will

14

stop because Open is empty.

It remains to be shown that it the algorithm finds a path P from va to vz and if

Q : va = v1, v2, . . . , vt−1, vt = vz

is a most inexpensive path from va to vz then the cost of Q is not less than the
cost of P . We will assume that actually the cost of Q is less than the cost of
P and arrive at a contradiction. Consider the step in the algorithm just before
B is chosen to be vz (all g and f values in the following will be with respect
to this step of the algorithm). Let at this point v1, v2, . . . , vs ∈ Closed but
vs+1 /∈ Closed. We note that according to our assumptions that the path Q
was not established such an s exists. We also observe that vs+1 must be in Open.

By assumption the edge (va, v2) is most inexpensive path from va to v2. There-
fore g(v2) equals the length of the shortest path from va to v2 already after the
very first loop of the algorithm. At some later loop v2 must have been active
(as v2 is in Closed). At this point g(v3) must have been assigned a value which
equals the length of a most inexpensive path from va to v3. Continuing this way
we see that g(vu) equals the length of a most inexpensive path from va to vu

for u = 1, 2, . . . , s + 1.

If now we denote by distw(x, y) the weight of a most inexpensive path from x
to y we therefore get

f(vs+1) = g(vs+1) + h(vs+1)
= distw(va, vs+1) + h(vs+1)
≤ distw(va, vs+1) + distw(vs+1, vz)
= w(Q) (1)

Here w(Q) denotes the weight of the path Q. In the third equality we used the
fact that the heuristic is admissible. In the last equality we used the fact that
Q is a least expensive path from va to vz.

Having estimated f(vs+1) we next consider f(vz). As the algorithm is just about
to choose vz as active vertex and thereby establish the path P we have

f(vz) = g(vz) + h(vz) = g(vz) = w(P). (2)

Comparing (1) and (2) we see that it cannot be true that vz is chosen as active
vertex before vs+1 is. We have arrived at a contradiction. �

Theorem 2 Consider a weighted graph G = (V,E) and vertices va, vz ∈ V .
Let the heuristic h : V → R+ ∪ {0} be monotone with h(vz) = 0. If a path from

15

va to vz exists then Algorithm 2 finds a most inexpensive such one. If no path
exist the algorithm returns “failure”.

Proof: By Proposition 1 the heuristic is admissible. According to Theorem 1
we therefore could apply Algorithm 1 on the problem and thereby find a most
inexpensive path if such one exist. We will show that if Algorithm 1 is used,
then once a vertex has been moved to Closed its g-value will never again be
updated. In other words it will never be moved back to Open. But then Algo-
rithm 1 becomes identical to Algorithm 2 and the theorem follows.

We will (faulty) assume that a vertex vi exists that is moved from Closed to
Open when Algorithm 1 is applied and arrive at a contradiction. Without loss
of generality we may assume that vi is the very first vertex to be moved from
Closed to Open. We consider the algorithm just before this is done. Denote
B = vt. By assumption we have

g(vi) > g(vt) + w(vt, vi). (3)

To establish a contradiction to (3) we will need to prove that

g(vt) + h(vt) ≥ g(vi) + h(vi). (4)

This is where we will need the assumption that no vertex has been moved from
Closed at the present step of the algorithm. Assume the path found from va to
vt at the present step of the algorithm is

R : va = vj0 , vj1 , . . . , vjk
, vt = vjk+1

.

By monotonicity and the assumption that no vertex have been moved from
Closed to Open we must have

g(va) + h(va) ≤ g(vj1) + h(vj1) ≤ · · ·
≤ g(vjk

) + h(vjk
) ≤ g(vt) + h(vt).

If vi is in R, then (4) is established. If not let vjl
be the first vertex in R added

to Closed after vi was added to Closed. But then vjl−1
was in Closed before vi

was added to Closed and therefore according to the algorithm

g(vi) + h(vi) ≤ g(vjl
) + h(vjl

)

must hold. But
g(vjl

) + h(vjl
) ≤ g(vt) + h(vt)

and (4) follows.

Using (4) and the fact that the heuristic function is monotone we get

g(vi + h(vi) ≤ g(vt) + h(vt)
≤ g(vt) + h(vt) + w(vt, vi)− (h(vt)− h(vi))
= g(vt) + w(vt, vi) + h(vi)
= g′(vi) + h(vi).

16

Therefore, g(vi) ≤ g′(vi) in contradiction with (3).

We have shown that no vertex vi is ever moved from Closed to Open and there-
fore it suffices to use Algorithm 2 instead of Algorithm 1. �

5 Concluding remarks

The task of finding shortest paths by use of artificial intelligence algorithms
is the object of active research. A lot of interesting papers have been written
including papers on robotics, chemistry and of course game programming. There
are many resources on A* in particular a lot of homepages. Be careful not to
believe everything that is written. It is quite common to faulty use Algorithm
2 for non-monotonic admissible heuristics. As we have seen this may cause the
algorithm to not find a shortest path. In particular it is not uncommon to use
Algorithm 2 with non-monotonic Manhattan heuristics. In some descriptions of
Algorithm 1 it is forgotten to move the vertex C from Closed to Open when its
g value is updated (as we mentioned in Example 4 this may cause the algorithm
to find a wrong path). Some authors insist that it is checked that

|| h(vi)− h(vj) ||≤ distw(vi, vj) (5)

holds for all pairs of vertices v− i, vj ∈ V for h to be called monotone. From the
proof of Proposition 1 it can be seen that whenever (5) holds for all neighbors
it automatically holds for all pairs of vertices. Hence, there is not reason for
checking more than the neighbors.

Among the very many interesting results that where not covered in this intro-
ductionary note we like to mention a few. It may happen when applying A*
that more vertices C in Open are assigned the same f -value. When this is also
the smallest f -value for vertices in Open the algorithm has more choices of B.
To deal with his some versions of A* have implemented some intelligent ways of
breaking ties. The D* algorithm is a generalization of A*. it works in unknown,
partially unknown or even changing environments. The Adaptive A* algorithm
and the LPA* algorithm are very efficient when the landscape is fixed but one
needs to find shortest paths from va to vz for a series of different pairs (va, vz).

The A* algorithm was invented by P. Hart, N. Nilsson and B. Raphael in 1968. It
is said to be discovered by the commercial computer game industry in 1999. We
conclude the note by mentioning that the results described here easily generalizes
to directed graphs.

17

