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1 Introduction

These lecture notes give a very short introduction to polynomials with real and complex coef-
ficients. They are a supplement to the book extract [1].

2 Definitions and Some Properties

Polynomials with complex coefficients are functions of a complex variable z of a particularly
simple form. Examples are

z2 + (8 + i)z + 4, z16 − 64, (7− 8i)z3 − (4 + 4i)z2 −
√

17, 232, and z − 1. (2.1)

The formal definition is as follows.

Definition 2.1. A polynomial with complex coefficients is a function of the form

p(z) = anz
n + an−1z

n−1 + · · ·+ a1z + a0, (2.2)

where aj ∈ C, j = 0, 1, . . . , n, and z is a complex variable. If an 6= 0, then n is the degree
of p(z), which is written as deg(p(z)) = n. In general, the degree of a polynomial p(z) is the
largest k such that ak 6= 0. The polynomial with all coefficients equal to zero is called the zero
polynomial. The degree of the zero polynomial is defined to be zero1.

Looking at the examples in (2.1), we see that the degree of the first polynomial is 2, the
second one has degree 16, etc.

A number of operations can be performed with polynomials. Given a polynomial p(z) and
a complex number c, the polynomial c p(z) is obtained by multiplying each coefficient in p(z)
by c. Given two polynomials p(z) and q(z), their sum is defined by adding the coefficients of
corresponding power. Some examples will illustrate these definitions.

Given p(z) = z3 − iz + 1 + 7i and c = 1− i, we have

c p(z) = (1− i)(z3 − iz + 1 + 7i) = (1− i)z3 + (1− i)(−i)z + (1− i)(1 + 7i)

= (1− i)z3 + (−1− i)z + 8 + 6i.

1This choice requires some care in certain computations, which however will not be needed there. In most
cases one prefers to assign the degree −∞ to the zero polynomial, but that also requires some care in compu-
tations
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Let q(z) = −z3 + 4z2 − 8z − 8. Then the polynomial p(z) + q(z) is given by

p(z) + q(z) = (z3 − iz + 1 + 7i) + (−z3 + 4z2 − 8z − 8)

= (1 + (−1))z3 + (0 + 4)z2 + (−i+ (−1− i))z + (1 + 7i+ (−8))

= 4z2 + (−1− 2i)z − 7 + 7i.

Note that since the coefficient to the term z2 in p(z) is zero, it is not written explicitly in
the usual expression for p(z), but we have included it in the computation above to clarify the
principle of addition.

Polynomials can be multiplied. Given p1(z) = z2 − i and q1(z) = z3 − z, the product is
obtained by multiplying out and collecting coefficients to the same power of z. We have

p1(z)q1(z) = (z2 − i)(z3 − z) = z2(z3 − z)− i(z3 − z)

= z5 − z3 − iz3 + iz = z5 + (−1− i)z3 + iz.

In general, we cannot divide polynomials and obtain a quotient, which is again a polynomial.
But division with remainder can be carried out. The method is the same as used for integers.
Given the integers m = 9 and n = 4, division of m by n with remainder means that we can write
m = kn + r, where k is an integer, and the remainder r is an integer that satisfies 0 ≤ r < n.
Thus the result in the example is 9 = 2 ·4+1. The assumption needed to carry out this division
with remainder is that m ≥ n.

Given two polynomials p1(z) and p2(z), such that deg(p1) ≥ deg(p2) > 0, division with
remainder means to write

p1(z) = q(z)p2(z) + r(z).

Here q(z) is a polynomial and r(z) is a polynomial satisfying 0 ≤ deg(r) < deg(p2).
Here are some examples to illustrate this procedure. First let us take p1(z) = z4−z3 +z2−z

and p2(z) = z2 − 1. Then the result is

z4 − z3 + z2 − z = (z2 − z + 2)(z2 − 1) + (−2z + 2),

such that q(z) = z2 − z + 2 and r(z) = −2z + 2.
For the next example we take p1(z) = 4z4 − 64 and p2(z) = z2 − 4. In this case

4z4 − 64 = (4z2 + 16)(z2 − 4) + 0.

Thus in this case the remainder is zero.
There are various ways of doing these divisions with remainder by hand. At least one of

the methods will be illustrated during the lectures. It is also possible to use Maple to carry
out the computation of the quotient and the remainder. The functions are called quo and rem,
respectively. See the Maple documentation for their use.

3 Roots of Polynomials

We introduce the following definition.

Definition 3.1. Let p(z) = anz
n + an−1z

n−1 + · · ·+ a1z + a0 be a polynomial of degree n ≥ 1.
A complex number z0 ∈ C is called a root of p(z), if p(z0) = 0.

Thus a root of the polynomial p(z) is just a different name for a zero of p(z) as a function.
The reason for using a special name is that roots of a polynomial have many nice properties
not shared by zeroes of general functions.

We have the following important result.
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Proposition 3.2. Let p(z) be a polynomial of degree n ≥ 1. Then z0 ∈ C is a root of p(z), if
and only if there exists a polynomial q(z) (of degree n− 1), such that

p(z) = q(z)(z − z0). (3.1)

Proof. If (3.1) holds, then it is obvious that p(z0) = 0. Conversely, assume that z0 is a root of
p(z). Then we can use the division with remainder described in the previous section to write
p(z) = q(z)(z− z0) + c, where c is the remainder, a polynomial of degree 0. Now if we use that
p(z0) = 0, it follows that c = 0 and (3.1) holds.

Definition 3.3. Let p(z) be a polynomial of degree n ≥ 1. Assume that z0 is a root of p(z).
We define the multiplicity of the root z0 to be the integer m that satisfies

p(z) = q(z)(z − z0)
m and q(z0) 6= 0. (3.2)

The most important result about polynomials is the following result, which is called the
Fundamental Theorem of Algebra. This theorem is not easy to prove, so we will state it
without proof.

Theorem 3.4 (Fundamental Theorem of Algebra). Let p(z) be a polynomial of degree n ≥ 1.
Then p(z) always has a root z0 ∈ C.

It is important to note that this theorem states that there always exists a root in any
polynomial of degree greater than or equal to one. But the theorem does not give a method or
an algorithm to find a root. Actually there is no general algorithm to find the exact roots of a
polynomial of degree five or higher.

One can apply the Fundamental Theorem of Algebra repeatedly to obtain the following
result.

Corollary 3.5. Let p(z) be a polynomial of degree n ≥ 1. Then there exist complex numbers
z1, z2, . . . , zn, such that

p(z) = an(z − z1)(z − z2) · · · (z − zn). (3.3)

Proof. We use the Fundamental Theorem of Algebra to write p(z) = q1(z)(z − z1) for some
complex number z1. Now q1(z) is a polynomial of degree n− 1. If n− 1 > 0, we can apply the
Fundamental Theorem of Algebra once more to write q1(z) = q2(z)(z − z2) for some complex
number z2. Repeating this argument the result follows.

We can use Definition 3.3 and Corollary 3.5 to obtain the following result, by grouping
together repeated roots in (3.3).

Corollary 3.6. Let p(z) be a polynomial of degree n ≥ 1. Then there exist complex numbers
ζ1, ζ2, · · · , ζk, ζj 6= ζj′, j 6= j′, and integers m1,m2, · · · ,mk, satisfying 1 ≤ mj ≤ n, j =
1, 2, . . . , k and m1 +m2 + · · ·+mk = n, such that

p(z) = an(z − ζ1)m1(z − ζ2)m2 · · · (z − ζk)mk . (3.4)

We note that mj is the multiplicity of the root ζj.
We conclude this section with a few examples of factorizations. We consider first p(z) =

z4 + 2z2 + 1. We have p(z) = (z − i)2(z + i)2. Thus this polynomial has two different complex
roots, +i and −i, and each of these roots has multiplicity 2.

Next we take p(z) = 6 z3 − 6i z2 + 12 z − 6 z2 + 6i z − 12. In this case one can show that
p(z) = 6(z − 1)(z + i)(z − 2i). Thus the roots are 1, −i, and 2i, and all three roots have
multiplicity one.
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4 Roots in Polynomials of Degree One and Two

Let us start with the easy case of a polynomial of degree one, p(z) = a1z + a0, a1 6= 0. The
root is given by z1 = −a0/a1 and has multiplicity one.

Next we look at a special type of polynomial of degree two, p(z) = z2 − a. We have the
following result.

Proposition 4.1. Let p(z) = z2 − a, where a = α + iβ, α, β ∈ R. Let

sgn(β) =

{
1, if β ≥ 0,

−1, if β < 0.
(4.1)

Let r = |a| =
√
α2 + β2. Then the two roots of p(z) = z2 − a are given by

z1 =

√
r + α

2
+ i sgn(β)

√
r − α

2
, (4.2)

z2 = −
√
r + α

2
− i sgn(β)

√
r − α

2
. (4.3)

Proof. The proof is very simple. One needs to verify that (z1)
2 = a and (z2)

2 = a. Let us verify
the first equality. We have

(z1)
2 =

(√
r + α

2
+ i sgn(β)

√
r − α

2

)2

= 1
2
(r + α)− 1

2
(r − α) + 2i sgn(β)

√
1
4
(r + α)(r − α)

= α + i sgn(β)
√
β2 = α + i sgn(β)|β|

= α + iβ = a.

In this computation we have used that (r + α)(r − α) = r2 − α2 = (α2 + β2) − α2 = β2 and
β = sgn(β)|β|.

Based on this result we can now find the roots in a general polynomial of degree two. We
have the following result.

Proposition 4.2. Let p(z) = az2 + bz+ c, where a, b, c ∈ C with a 6= 0. Let D = b2− 4ac, and
let w be one of the solutions to z2 −D = 0. Then the roots of p(z) are given by

−b± w
2a

. (4.4)

D is called the discriminant of the polynomial.

Proof. Since a 6= 0, we can rewrite the polynomial p(z) as follows.

p(z) = az2 + bz + c = a
(
z2 +

b

a
z +

c

a

)
= a
((
z +

b

2a

)2 − b2

4a2
+
c

a

)
= a
((
z +

b

2a

)2 − D

4a2

)
= a
((
z +

b

2a

)2 − w2

4a2

)
= a
(
z +

b

2a
− w

2a

)(
z +

b

2a
+
w

2a

)
,

which shows that the two roots are given by (4.4).
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We now give a few examples of the use of these two results. First we solve the equation
z2 = 2 − 2i. Thus we have α = 2, β = −2, r =

√
22 + (−2)2 =

√
8 = 2

√
2 and sgn(β) = −1.

Thus

z1 =

√
1
2
(2
√

2 + 2) + i(−1)

√
1
2
(2
√

2 + 2) =

√√
2 + 1− i

√√
2− 1.

The other root is of course z2 = −z1.
Next we find the roots of the polynomial 2 z2−10i z−12. First we compute the discriminant:

D = (−10i)2 − 4 · 2 · (−12) = −4.

One of the solutions to w2 = −4 is w = 2i. Thus the roots are

−(−10i)± 2i

2 · 2
=

{
3i,

2i.

Remark 4.3. There is an easy way to test whether one has found the correct roots of a
polynomial of degree two. Assume for simplicity that a = 1, such that we have the roots z1

and z2 of the polynomial z2 + bz + c. These two roots must then satisfy

z1 + z2 = −b and z1z2 = c. (4.5)

The verification of these results is left to the reader.

5 Roots of zm − a
In this section we review the results from [1] concerning roots of the polynomial zm − a, or
equivalently, solutions to the equation zm = a, where m ≥ 1 is an integer. The method is to
write a in polar form

a = reiθ, r = |a|, θ = Arg a.

The m different solutions are then given by

zk = r1/m
(
cos(

θ + 2πk

m
) + i sin(

θ + 2πk

m
)
)
, k = 0, 1, . . . ,m− 1. (5.1)

Examples and further comments can be found in [1].

6 Factorization of Polynomials

The results in Corollaries 3.5 and 3.6 show that once we know the roots in a polynomial, then
we can factor it. Even for polynomials with real coefficients we may get non-real numbers in
the factorization, as in

4 z2 + 16 = 4(z − 2i)(z + 2i).

However, if we are satisfied with a factorization in factors that are of degree one or two, then
it can be achieved with real coefficients only. Before we state this result, we need the following
important result.

Proposition 6.1. Let p(z) = anz
n + an−1z

n−1 + · · · + a1z + a0 with real coefficients aj ∈ R,
j = 0, 1, 2, . . . , n. If z0 is a root of p(z), then the conjugate z0 is also a root of p(z).
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Proof. We have p(z0) = anz
n
0 + an−1z

n−1
0 + · · ·+ a1z0 + a0 = 0. Taking the complex conjugate

we get, using the facts that the conjugate of a sum is the sum of the sum of the conjugates,
and the conjugate of a product is the product of the conjugate of each factor,

p(z0) = anzn0 + an−1z
n−1
0 + · · ·+ a1z0 + a0

= anzn0 + an−1z
n−1
0 + · · ·+ a1z0 + a0

= anz0
n + an−1z0

n−1 + · · ·+ a1z0 + a0

= p(z0).

In the computation above we have used that the coefficients aj are real, such that aj = aj,
j = 0, 1, . . . , n. Thus p(z0) = 0 implies p(z0) = 0.

Proposition 6.2. Let p(z) = anz
n + an−1z

n−1 + · · · + a1z + a0 with real coefficients aj ∈ R,
j = 0, 1, 2, . . . , n. Let ξj, j = 1, 2, . . . , J denote the distinct real roots of p(z), and let ζk,
k = 1, 2, . . . , K be complex numbers with Im ζk 6= 0, such that ζk, ζk are the remaining distinct
roots of p(z), k = 1, . . . , K. Write ζk = αk + iβk with αk and βk real. Then we have

p(z) = an(z − ξ1)n1 · · · (z − ξJ)nJ ((z − α1)
2 + β2

1)m1 · · · ((z − αK)2 + β2
K)mK . (6.1)

Here nj is the multiplicity of the root ξj, j = 1, . . . , J and mk is the multiplicity of the root ζk,
k = 1, . . . , K. We have J + 2K = n.

Proof. The result is a consequence of Corollary 3.6 and Proposition 6.1. For the real roots this
is immediate. For the pairs of complex conjugate roots we use that

(z − ζk)(z − ζk) = (z − αk − iβk)(z − αk + iβk) = (z − αk)2 + β2
k .

Let us give some examples. First we consider p(z) = z4 − 1. Here we can use the result
from Section 5 to find the roots. The roots are z1 = 1, z2 = −1, z3 = i, and z4 = −i. Thus we
have two real roots and one pair of complex conjugate roots. Therefore we have

p(z) = (z − 1)(z + 1)(z − i)(z + i) = (z − 1)(z + 1)(z2 + 1).

Next let us look at p1(z) = z8 − 2z4 + 1. If we note that p1(z) = (z4 − 1)2, we can use the
previous factorization to get

p1(z) = (z − 1)2(z + 1)2(z − i)2(z + i)2 = (z − 1)2(z + 1)2(z2 + 1)2.

Thus the roots are the same, but their multiplicities are different.
We now give a somewhat more complicated example. We let

p2(z) = z5 − 3 z4 + 8 z3 − 14 z2 + 16 z − 8.

The roots of this polynomial are

z1 = 1, z2 = 1 + i, z3 = 1− i, z4 = 2i, z5 = −2i.

Thus there is one real root and two pairs of complex conjugate roots. The factorization in
Proposition 6.2 becomes

p2(z) = (z − 1)((z − 1)2 + 1)(z2 + 4) = (z − 1)(z2 − 2z + 2)(z2 + 4).

Remark 6.3. The result in Remark 4.3 can be generalized to an arbitrary polynomial. Again
to simplify the statement we assume that the coefficient to the highest power is equal to one.
Thus we consider a polynomial

p(z) = zn + an−1z
n−1 + · · ·+ a1z + a0

with roots (repeated with multiplicity) z1, z2, . . . , zn. These roots then satisfy

z1 + z2 + · · ·+ zn = −an−1 and z1z2 · · · zn = (−1)na0. (6.2)
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7 Techniques for Finding Roots in a Polynomial

In the examples above we have not given many details on how to find the roots in a given
polynomial. For polynomials of degree one and two, and for polynomials of the form zm − a,
we have given explicit formulas for finding roots. For polynomials of degree three or four there
exist general formulas, but they are very complicated to state, and to use.

To illustrate this, we consider the following polynomial of degree three,

p(z) = z3 − 2 z2 − 5 z − 11.

From Proposition 6.2 we can conclude that p(z) must have one real root. The real root is

z1 =
1

6

3

√
1612 + 12

√
14997 +

38

3

1
3
√

1612 + 12
√

14997
+

2

3
.

It turns out that the remaining two roots are complex. One of the complex roots is

z2 = −i 1

12

3

√
1612 + 12

√
14997− 19

3

1
3
√

1612 + 12
√

14997
+

2

3

+
1

2
i
√

3

(
1

6

3

√
1612 + 12

√
14997− 38

3

1
3
√

1612 + 12
√

14997

)
.

We conclude that rather innocent looking polynomials of degree three with integer coefficients
can have very complicated roots.

There are some general results and guidelines that can be given for finding roots. We state
the consequence of Proposition 6.2 used above.

Proposition 7.1. Let p(z) be a polynomial of odd degree with real coefficients. Then p(z)
always has at least one real root.

For the special case of polynomials with integer coefficients we have the following result.

We recall that a rational number
k

`
is said to be irreducible, if k and ` have no common factors.

Thus 2
4

is not irreducible, but 1
2

is irreducible.

Proposition 7.2. Let p(z) = anz
n + an−1z

n−1 + · · ·+ a1z + a0 be a polynomial, such that the

coefficients aj, j = 0, 1, . . . , n all are integers. Assume that p(z) has a rational root z0 =
k

`
,

which is irreducible. Then an is divisible by ` and a0 is divisible by k.

Proof. Assume that the irreducible rational number z0 =
k

`
is a root of p(z). We first write out

p(z0) = 0.

an
(k
`

)n
+ an−1

(k
`

)n−1
+ · · ·+ a1

(k
`

)
+ a0 = 0.

Then we multiply on both sides of the equation by `n.

ank
n + an−1k

n−1`+ · · ·+ a1k`
n−1 + a0`

n = 0.

We now move the term ank
n to the right hand side to get

an−1k
n−1`+ · · ·+ a1k`

n−1 + a0`
n = −ankn.

Since all terms on the left hand side contain a factor `, the left hand side is divisible by `.
Since k by assumption is not divisible by `, it follows that an must be divisible by `. The other
statement is proved in the same manner.
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Let us now show how to use this result. We take

p(z) = z3 − 6 z2 + 13 z − 10.

Thus a3 = 1 and a0 = −10. Now a3 = 1 is divisible by ±1, whereas a0 = −10 is divisible by
±1,±2,±5, and ±10. Thus the only possible rational (in this case actually integer) roots are
±1,±2,±5, and ±10. Now one has to insert them in the polynomial and check whether they
are roots. One finds one root, z1 = 2. The other seven integers are not roots.

The next step is to use division by polynomials, as described in Section 2. The result is
that we have

z3 − 6 z2 + 13 z − 10 = (z − 2)(z2 − 4 z + 5).

Since z2 − 4 z + 5 is a polynomial of degree two, we can use the result from Section 4 to find
the roots. We will not give the details. The result is that z2 = 2 + i and z3 = 2− i.

Sometimes one can find the roots by a two step procedure. We take as an example the
polynomial

p1(z) = z8 − 2 z4 + 1,

which was also considered above. The first step is a change of variable. We let w = z4.
Substituting into p1(z) we get w2−2w+ 1. This is a simple polynomial of degree two, actually
we have w2 − 2w + 1 = (w − 1)2. Thus the only solution is w = 1. Going back to the variable
z we have to find the roots of z4 − 1, which can be done using the result from Section 5. See
above for the result.

The lesson to be learned from the examples in this section is that in general for polynomials
of degree three or greater, finding the roots exactly is a matter of skill, if it is possible at all,
at least if one does the computations by hand.

8 Maple and Roots in Polynomials

As mentioned several times, there is no general formula or algorithm to find roots in polynomials
of degree five or greater. Therefor Maple cannot in general find the roots in a polynomial of
degree five or greater. By default, for polynomials of degree four, Maple does not try to find
the roots. The algorithm is very demanding computationally, and often leads to many pages of
output, which hardly is useful. One can force Maple to use the algorithm, but one should only
do so, if there is a good reason for this.

For polynomials of degree three the general formula is used. The roots in the polynomial
p(z) = z3 − 2 z2 − 5 z − 11 considered above were found using Maple.

Even for the simple polynomials zm − a it is often more efficient and simpler to use the
formula given above, than to use Maple. As an example, consider finding the roots of unity of
order 6, i.e. the roots of the polynomial z6− 1. Using the Maple command solve(z^6-1=0,z)

leads to the result

−1, 1,−1
2

√
−2 + 2 i

√
3, 1

2

√
−2 + 2 i

√
3, −1

2

√
−2− 2 i

√
3, 1

2

√
−2− 2 i

√
3.

However, this is not in the form that you are usually asked to find the roots of a polynomial.
The roots must be given in the form a + ib with a and b real numbers. So further Maple
commands need to be applied, before the final answer is found. In contrast, the formula (5.1)
immediately gives the result in the form a+ ib.

If Maple cannot find the roots explicitly, it gives a reply involving the Maple notation for
the roots of a polynomial. As an example, we consider the polynomial z5 + z2 + z + 1. The
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command solve(z^5+z^2+z+1=0,z) leads to the result

−1, RootOf
(

Z 4 − Z 3 + Z 2 + 1, index = 1
)
,

RootOf
(

Z 4 − Z 3 + Z 2 + 1, index = 2
)
,

RootOf
(

Z 4 − Z 3 + Z 2 + 1, index = 3
)
,

RootOf
(

Z 4 − Z 3 + Z 2 + 1, index = 4
)
.

Thus in this case Maple as its default has not found the roots in the polynomial z4−z3 +z2 +1.
If one forces Maple to find these roots, one will see that they are very complicated.

9 Finding Roots of a Polynomial Numerically

One can use numerical methods to find the roots of a polynomial with a given number of
significant digits. However, many numerical routines will only find some of the roots, and
furthermore, working with a finite number of digits can lead to large deviations between the
approximate roots and the exact roots. Thus one should only use numerical methods, if one
is familiar with them, and knows how to work with floating point numbers. Both Maple and
Matlab have routines for finding roots numerically.

We will give one example of what can happen. Consider the polynomial of degree 20 given
by

p(z) = (z + 1)(z + 2) · · · (z + 19)(z + 20).

Obviously the roots are −1,−2,. . . ,−19,−20. Suppose that we add a term which looks small.
We take

p1(z) = p(z) + 2−23z19.

One would probably guess that this polynomial also has 20 real roots, and that they are close
to the roots of the polynomial p(z). But this completely wrong. This polynomial has 10 real
roots and 5 pairs of complex conjugate roots. One real root is −20.84690810 and a pair of
complex conjugate roots is −19.50243940± i 1.940330347. One should note that the imaginary
part is quite large.

The example shows very clearly that numerical computation of roots can be difficult, since
small changes in a coefficient can change the roots a lot. In the example the coefficient to z19

in p(z) is 210, which we have then changed to 210 + 2−23 ≈ 210.000000119.
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