Theorem: For any real number $x \neq 1$ one has that

$$
\sum_{n=0}^{k} x^{n}=\frac{1-x^{k+1}}{1-x}
$$

Proof. Let s denote the sum on the left hand side. We have

$$
s=1+x+x^{2}+x^{3}+\cdots+x^{k}
$$

such that

$$
x s=x+x^{2}+x^{3}+x^{4}+\cdots+x^{k+1} .
$$

Thus,

$$
(1-x) s=s-x s=1-x^{k+1}
$$

such that

$$
s=\frac{1-x^{k+1}}{1-x}
$$

Corollary: If $|x|<1$, then

$$
\sum_{n=0}^{\infty} x^{n}:=\lim _{k \rightarrow \infty} \sum_{n=0}^{k} x^{n}=\frac{1}{1-x}
$$

