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1. Introduction

1.1. Background and history. The use of geometric models in the description of the
behaviour of concurrent systems in computer science can be traced back at least to the
work of E.W. Dijkstra [6], where concurrent processes are modeled by so-called progress
graphs ; cf. for instance Fig. 1. For so-called semaphore programs (explained below), these
progress graphs have been exploited for an algorithmic determination of deadlocs and
unreachable states [23, 5, 9]. A systematic framework for studying schedules of actions
of distributed computations by means of geometric properties was proposed by V. Pratt
[25] and subsequently R. van Glabbeek [30]. In his thesis [16], É. Goubault initiated a
systematic study of Higher Dimensional Automata (HDA) built on cubical sets [27, 4, 3]
employing methods from algebraic topology, in particular homological methods. The idea
is that a schedule of actions (including deadlocks and unreachables, but also serializability
conditions etc.) is essentially invariant under “continuous deformation”, i.e. some sort of
homotopy. This point of view has been exploited in a database framework in [20] and later
in [11].

Relevant models have to reflect the irreversibility of time, and this is why partial orders
have to play an important role. A prototypical example (the “Swiss flag” in Fig. 1) models
the concurrent execution of two programs (on the axes) both locking (P) and releasing
(V) by a semaphore two shared objects a and b, but in reverse order. An execution path
in this model has to be a “dipath”, i.e., a continuous path with monotone projection to
each axis – modelling the progress of an individual program; moreover, it has to start at
the minimal point (0, 0) and to end at the maximal point (1, 1), and it has to avoid the
shaded forbidden region (“Swiss flag”) modelling concurrent access to a or b. A dipath
entering the “unsafe” region cannot end up at (1, 1) – likewise, no dipath from (0, 0) can
ever enter the “unreachable” region in Fig. 1. Moreover, there are two possible outcomes
of a run of the concurrent program: Either T1 locks both a and b before T2 can access
any of them, or T2 uses b and a before T1 does. These two runs correspond to dipaths
that pass “under”, resp. ”over” the forbidden region, but without any further restrictions.
The example suggests that (some sort of) homotopy can capture the essential difference
between two dipaths or executions.

Figure 1. Example of a progress graph
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1.2. Partial orders and dipaths. With the intention to employ topological methodology
in this framework, we proposed [11] to use partially ordered topological spaces, cf. [24] for
an early and detailed reference, or rather a local version, as a base for further analysis:

A topological space X with a partial order ≤ is called a po-space if and only if the
relation ≤⊂ X ×X is closed. A po-space is automatically Hausdorff [24].

The definition of a locally partially ordered space (for short lpo-space) formally resembles
that of a manifold, using covers of a Hausdorff space X by open po-subsets such that the
partial orders on those agree on suitable (po-)neighbourhoods of every element. Two local
partial orders are equivalent if their union is still a local partial order. See [11] – slightly
uncorrect in the preprint version – or [12] for details.

The structure preserving maps between lpo-spaces are the dimaps [11], i.e., continuous
maps respecting partial orders within sufficiently small neighbourhoods of every point.
The most important dimaps for our purposes are the dipaths : Let ~I := [0, 1] denote the
unit interval and let R≥0 := {t ∈ R|t ≥ 0}, both equipped with the natural order; let X

denote an lpo-space, and let x0, x1 ∈ X. A dipath from x0 to x1 is a dimap f : ~I → X
with f(0) = x0 and f(1) = x1. An infinite dipath from x0 is a dimap f : R≥0 → X with
f(0) = x0 and such that limt→∞ f(t) does not exist. Infinite dipaths model execution paths
that run indefinitely without “dying slowly” (thus avoiding the so-called “zeno” executions)
in forward semantics of concurrent programs. Analogous problems in backwards semantics
can be handled likewise by considering infinite dipaths defined on R≤0 = {t ∈ R|t ≤ 0} or
on R.

Higher Dimensional Automata (cf. Sect. 1.1) and their dynamics can be seen as particular
lpo-spaces; executions of programs on these state spaces correspond to finite or infinite
dipaths on those. Just recently, alternative frameworks for handling the properties of
HDAs have been proposed and discussed. In particular, the flows of P. Gaucher[14] and
the d-spaces of M. Grandis[18, 19] – many of them arising from lpo-spaces – admit nicer
categorical and homotopy theoretical properties.

Classical concurrency uses mainly techniques of a combinatorial or graph theoretical
nature. All of the approaches mentioned above have in common an attempt to employ
topological techniques to enhance our understanding; these are in particular useful to
model higher dimensional connections and relations.

1.3. Dihomotopy. To capture equivalent behaviour (ensuring the same results of com-
putations etc.) along executions, V. Pratt [25] suggested to use “monoidal homotopies” as
equivalence relation on spaces of executions. Examples of 3-dimensional progress graphs
(cf. [11]) showed that it is not enough to consider standard homotopies between dipaths;
instead, one has to modify the definition in a rather obvious way:

Definition 1.1. Let X denote an lpo-space with x0, x1 ∈ X.

(1) A dihomotopy from x0 to x1 is a continuous map H : I × ~I → X such that Hs =

H(s,−) : ~I → X is a dipath from x0 to x1 for every s ∈ I. Two dipaths f, g : ~I → X
from x0 to x1 are dihomotopic to each other if there exists a dihomotopy from x0 to
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x1 such that H0 = f and H1 = g. We denote by ~π1(X)(x0, x1) the set of dihomotopy
(equivalence) classes of dipaths from x0 to x1.

(2) An infinite dihomotopy from x0 is a continuous map H : I ×R≥0 → X such that
H(s,−) : R≥0 → X is an infinite dipath from x0 for every s ∈ I. We denote by
~π1(X)(x0,∞) the set of dihomotopy classes of infinite dipaths from x0. Likewise,
one defines ~π1(X)(−∞, x1) and ~π1(X)(−∞,∞).

Remark that the paths H(−, t), t ∈ ~I, in general, are not directed. Otherwise, diho-
motopy would not be an equivalence relation. It is quite obvious how to generalise these
definitions from the dihomotopy of paths with fixed end points to the dihomotopy of di-
paths with end points moving in specified subspaces X0 and X1 – yielding equivalence
classes ~π1(X;X0, X1) – or to the dihomotopy of dimaps, cf. [11].

Concatenation on the level of dipaths factors over dihomotopy and induces compositions

~π1(X)(x0, x1)× ~π1(X)(x1, x2)→ ~π1(X)(x0, x2) and

~π1(X)(x0, x1)× ~π1(X)(x1,∞)→ ~π1(X)(x0,∞),

(f, g) 7→ g ∗ f,
satisfying the associativity conditions. In this paper g ∗ f means: “first f , then g”.

There is an alternative (“combinatorial”) approach to dihomotopy: An elementary di-

homotopy in X is a dimap H : ~I2 → X defined on the partially ordered square ~I2. The
two dipaths H(1, t) ∗H(s, 0) and H(s, 1) ∗H(0, t) on the boundary of the square are then
elementarily dihomotopic to each other. This relation is clearly reflexive and symmetric.
It is not difficult to define concatenations of elementary dihomotopies with matching faces;
in this context, we insist on directedness “horizontally”, whereas directions may shift “ver-
tically”. The relation combinatorial dihomotopy is then defined as the transitive closure of
the relation elementary dihomotopy.

Combinatorial dihomotopy is the relation suggested by concurrency models. The inter-
pretation of an elementary dihomotopy is the independence of two transitions τ0 and τ1,
i.e., first τ0 and then τ1 is equivalent to first τ1 and then τ0; moreover any interleaving of
partial executions of these two transitions has to yield the same result.

Remark 1.2. It is clear, that an elementary dihomotopy is a particular dihomotopy which
is directed along both parameters. As a consequence, combinatorial dihomotopy implies
dihomotopy. A combinatorial dihomotopy is a dihomotopy with the special property that
the paths H(−, t), t ∈ ~I, are concatenations of actual dipaths and of dipaths “in the wrong
direction” (zig-zags).

In general, dihomotopy does not imply combinatorial dihomotopy, as the following ex-
ample shows: Let ~ΣX denote the unreduced suspension of a topological space X with
the partial order coming exclusively from the suspension coordinate. This is the po-space
introduced in [15] – for different purposes – under the term Glob(X). All dipaths from the

minimal to the maximal point have the form αx : I → ~ΣX, t 7→ [(x, t)] for a fixed x ∈ X –
or are monotone reparametrizations of those. The dipaths αx and αx′ from the bottom to
the top cannot be connected by a combinatorial homotopy for x 6= x′: For t 6∈ ∂I, the only
zig-zag paths connecting (x, t) and (x′, t) have to pass through the minimal or through the
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maximal point. Since the endpoints have to be kept fix, it is not possible to construct a
continuous combinatorial dihomotopy between αx and αx′ . On the other hand, these two
dipaths are obviously dihomotopic in the sense of Def. 1.1 if just x and x′ are contained in
the same path component of X.

There is evidence, that the two relations agree for “nice enough” po-spaces: L. Fajstrup
has recently proved [8] that two dihomotopic dipaths in a cubical complex – the geometric
realisation of a cubical set[4, 3] – are combinatorially dihomotopic as well.

1.4. Aims and Structure. The transition from (directed) topology to algebra is more
complicated than in the classical situation, since the reverse of a dipath is no longer di-
rected. Hence, dipaths up to dihomotopy neither form a fundamental group nor a funda-
mental groupoid. Instead, one has to work with fundamental categories. These are huge
gadgets, and this paper searches for representations of the essential dihomotopy informa-
tion in more compressed ways. To this aim, we propose to use categories of fractions of a
fundamental category with respect to suitably chosen sytems of morphisms and to inves-
tigate quotient categories of those with objects the path components with respect to these
systems.

In Sect. 2, we discuss the fundamental category of an lpo-space and of a related quotient
category retaining only “globally relevant information”. Sect. 3 reviews the main tool,
categories of fractions with respect to systems of morphisms, and proposes to investigate
certain “component categories”. Sect. 4 describes and investigates several relevant systems
of morphisms within a fundamental category and the associated component categories. In
Sect. 5, we propose a similar scheme for an investigation of “higher dihomotopy”. Finally,
Sect. 6 discusses the (lack of) naturality of the component categories.

The original stimulus for this study was the interesting paper [28] by S. Soko lowski who
defined a functor Ω1 associating to a po-space a partial order on the dihomotopy classes
of dipaths with given start point; moreover, he defined in that paper higher dimensional
functors Ωn. I would like to thank him and also L. Fajstrup and É. Goubault for many
clarifying discussions.

2. The fundamental category and its relatives

2.1. The fundamental category. Let X denote an lpo-space or a d-space, cf. [18, 19],
i.e., a topological space X with a specified set of dipaths within the path set PX including
the constant paths, which is closed under concatenation and invariant under monotone
reparameterizations. A d-space may have arbitrarily small loops; in particular, the dipaths
do not give rise to a locally antisymmetric relation. The dihomotopy relation investigated
by Grandis corresponds to our combinatorial dihomotopy.

Definition 2.1. (1) The objects of the fundamental category ~π1(X) are the points of
X. The morphisms between elements x and y are given as the dihomotopy classes
in ~π1(X)(x, y).

(2) The category ~π∞1 (X) contains ~π1(X). It has an additional maximal element∞ with
Mor(x,∞) = ~π1(X)(x,∞) for x ∈ X, Mor(∞, y) = ∅ for y ∈ X andMor(∞,∞) =
1∞.
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In both cases, composition of morphisms with matching target, resp. source is given by
concatenation of dipaths – up to dihomotopy.

Compared to a fundamental group, a fundamental category is an enormous gadget and
it has a much less nice algebraic structure. On the other hand, from simple examples one
gets the impression, that the cardinality of the set of morphisms between two points is
quite robust when these points are only perturbed a little bit:

Example 2.2. (1) For the square with one hole (left part of Fig. 2), there are no
dipaths between the regions marked L and R, there is no dipath from T to any
other region, neither is there a morphism from any other region to B. There are, up
to dihomotopy, two dipaths from any point of B to any point of T . Moreover, from
any point of B, certain points of B,L,R can be reached by (exactly one) dipath
up to dihomotopy. Likewise, any point of T can be reached from (certain of) the
points in L,R and T in essentially one way.

Figure 2. Square with a hole and complement of a ”Swiss flag”

(2) For the complement of a “Swiss flag” (right part of Fig. 2), the situation is a bit
more complicated: There is no dipath leaving the unsafe rectangle Us and there is
no dipath entering the unreachable rectangle Ur from the outside. It is possible to
reach Us by essentially one dipath from B∪Bl∪Br up to dihomotopy, and from Ur,
one can reach points in Tl ∪ Tr ∪ T in essentially one way. The only possibility for
two classes of dipaths between points occurs when the first is in B and the second
in T . Moreover, these classes can be represented by dipaths along the boundary –
representing the two sequential executions.

In general, it is not easy to calculate fundamental categories of an lpo-space or a d-space.
For the spaces arising from 2-dimensional mutual exclusion models, tools for the calculation
are contained in [26]. In a much more general direction, M. Grandis quite recently adapted
the usual proof of the Seifert-van Kampen theorem to the case of d-spaces ([18], Thm. 3.6)
exhibiting the fundamental category of a (suitable) union of subspaces as a pushout (in
Cat) of the fundamental categories of the subspaces. With the result of L. Fajstrup
(cf. Rem. 1.2), this theorem is also valid for the fundamental categories of cubical sets or
complexes with dihomotopy as defined in Def. 1.1. It is still not quite clear though how to
use this pasting theorem algorithmically to calculate fundamental categories for interesting
classes of lpo-spaces.

2.2. Cancellation problems. In general, cancellation is not possible in a fundamental
category.

Example 2.3. Consider the po-space X = ∂~I3 \ int(~I2 × {0}) ⊂ R3, the boundary of a
standard cube from which the interior of the bottom face is removed. For x0 = (0, 0, 0)
and x1 = (1, 1, z), the dihomotopy set ~π1(X)(x0, x1) consists of two elements for z < 1.
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They yield the unique element in ~π1(X)(x0, (1, 1, 1)) after composition with a dipath class
from x1 to (1, 1, 1).

One way to handle non-cancellation is to neglect all information that is not “visible”
for dipaths from a set of initial point to a set of final points. In the applications, one
is mainly interested in executions (dipaths) from a specified subset X0 ⊂ X ∪ {−∞} of
initial points to a specified subset X1 ⊂ X ∪ {∞} of final points – or infinitely running
executions (infinite dipaths) from a set of initial points. The reason for insisting on sources
and targets being subspaces instead of just points (as in [17]) is that inductive calculations
may require to cut dipaths and dihomotopies into pieces: “below X0, between X0 and X1

and above X1”. In many applications, these subsets are achronal, i.e., ~π1(Xi)(x, y) = ∅ for
x 6= y, x, y ∈ Xi, or even discrete.

The following example – with one point sets X0 and X1 – shows that the fundamental
category often contains information that is not relevant for dipaths starting at X0 and
ending at X1:

Example 2.4. Let ~J ⊂ ~I denote an open subinterval, and let Yn
1= ~In \ ~Jn, a set with

minimal point 0 = (0, . . . , 0) and maximal point 1 = (1, . . . , 1). It is easy to see that,
for n > 2, all dipaths in Y from 0 to 1 are dihomotopic. But the fundamental category
~π1(Yn) is not trivial. Let I− = {t ∈ I|t ≤ inf J} and I+ = {t ∈ I|t ≥ sup J}. Then,
π1(Yn)(x, y) = ∅ if there is an i with xi > yi or if there is an i with xi ∈ I−, yi ∈ I+ and all

xk, yk ∈ ~J, k 6= i. Otherwise, ~π1(Yn)(x, y) has one element unless there are precisely two

coordinates 1 ≤ i < j ≤ n such that xi, xj ∈ I−, yi, yj ∈ I+
2 and all other xk, yk ∈ ~J ; in

this case, there are two dihomotopy classes of dipaths from x to y.

To get rid of cancellation problems and of superfluous information, we proceed as follows:
Two dihomotopy classes β1, β2 ∈ ~π1(X)(x, y) are called equivalent if

γ∗β1∗α = γ∗β2∗α ∈ ~π1(X)(x0, x1) for all α ∈ ~π1(X)(x0, x) and all γ ∈ ~π1(X)(y, x1), xi ∈ Xi.

The equivalence class of an element β ∈ ~π1(X)(x, y) will be denoted by [β], the set of all
such equivalence classes by ~π1(X; [X0, X1])(x, y). Remark that the equivalence relation is
compatible with concatenation. We arrive at a category ~π1(X; [X0, X1]) whose objects are
the elements x ∈ X between X0 and X1, i.e., with ~π1(x)(X0, x) 6= ∅ 6= ~π1(x,X1) and with
equivalence classes in ~π1(X; [X0, X1])(x, y) as morphisms from x to y.

For the equivalence classes of dihomotopy classes, one has then a weak form of cancel-
lation: If

[γ] ∗ [β1] ∗ [α] = [γ] ∗ [β2] ∗ [α] ∈ ~π1(X)(x0, x1)

for all α ∈ ~π1(X)(x0, x) and γ ∈ ~π1(X)(y, x1), xi ∈ Xi, then [β1] = [β2].

2.3. Aims. It is the aim of this paper to relate dipaths (up to dihomotopy) contributing
to the same global information although possibly having different end points, and hereby
to define and describe – several versions of – the “components” (cf. Ex. 2.2 and Fig. 2) for

1This space models a shared objects that can be accessed by at most n−1 out of n competing processes
at the same time.

2This corresponds to (xi, xj) ∈ B, (yi, yj) ∈ T in the square with a hole from Fig. 2.
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general lpo-spaces or d-spaces. As a result, one may compress the fundamental category
to one or several component categories that are much smaller – often discrete – but that
still contain the essential information.

3. Categories of fractions and components

Since there is nothing special about the fundamental category in the following analysis,
this section will be formulated for a general (small) category C.

3.1. The category of fractions.

Definition 3.1. A subset Σ ⊆Mor(C) is called a system of morphisms if

(1) Σ is closed under composition.
(2) 1x ∈ Σ for every x ∈ Ob(C).

with 1x denoting the identity on x. The elements of Σ are sometimes called weakly invert-
ible.

Examples for interesting systems of morphisms within a fundamental category will be
given in Sect. 4.

For a system Σ of C-morphisms, one may define the category of fractions C[Σ−1] and the
localization functor qΣ : C → C[Σ−1] [13, 2] having the following universal property:

• For every s ∈ Σ the morphism qΣ(s) is an isomorphism.
• For any functor F : C → D such that F (s) is an isomorphism for every s ∈ Σ there

is a unique functor θ : C[Σ−1]→ D with θ ◦ qΣ = F .

It is not too difficult to construct such a category of fractions, cf. [2] for details. Briefly,
the objects of C[Σ−1] are just the objects of C. To define the morphisms of C[Σ−1], one
introduces an inverse s−1 to every morphism s ∈ Σ(x, y) = Σ ∩Mor(x, y). These inverses
are collected in Σ−1(y, x), x, y ∈ Ob(C) and then in Σ−1. Consider the closure of Mor(C)∪
Σ−1 under composition and the smallest equivalence relation containing s−1 ◦ s = 1x and
s ◦ s−1 = 1y for s ∈ Σ(x, y) that is compatible with composition. The equivalence classes
constitute the morphisms of C[Σ−1]. A morphism in C[Σ−1] can always be represented
[13, 2] in the form

s−1
k ◦ fk ◦ · · · ◦ s

−1
1 ◦ f1, sj ∈ Σ, fj ∈Mor, k ∈ N.

In the context of homotopy theory – with topological spaces as objects, continuous
maps as morphisms and the weak equivalences as the system of morphisms – categories of
fractions are often called the homotopy category of C, cf. e.g. [1, 21].

3.2. The component category. Any morphism of the form s−1
1 ◦s2 ◦· · ·◦s−1

2k−1 ◦s2k, sj ∈
Σ, k ∈ N is called a Σ-zig-zag morphism. The set ZZ(Σ) of all Σ-zig-zag morphisms forms
a system of morphisms contained in the invertibles of the category of fractions, denoted
Inv(C[Σ−1]). Equality holds if Σ contains the invertibles Inv(C) of the original category
C. The subcategory of C[Σ−1] with all objects, the morphisms of which are given by the
zig-zag morphisms ZZ(Σ), forms in fact a groupoid.

Two objects x, y ∈ Ob(C) are called Σ-connected – x 'Σ y – if there exists a zig-zag-
morphism from x to y. This definition corresponds to usual path connectedness with respect
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to paths in Σ only – but regardless of orientation. Σ-connectivity is an equivalence relation;
the equivalence classes will be called the Σ-connected components – the path components
with respect to Σ-zig-zag paths, i.e., the components of the groupoid above.

Next, consider the smallest equivalence relation on the morphisms of C[Σ−1] generated
(under composition) by

(3.1) α ' α ◦ sj, α ' tj ◦ α for α ∈Mor(x, y), s ∈ Σ(x′, x), t ∈ Σ(y, y′), j = ±1.

Remark that equivalent morphisms no longer need to have the same source or target. In
particular, every morphism in Σ is equivalent to the identities in both its source and its
target; hence, all zig-zag morphisms within a component are equivalent to each other.

Dividing out the morphisms in Σ within C, we arrive at a component category : The
objects of the component category π0(C; Σ) are by definition the Σ-connected components
of C; the morphisms from [x] to [y], x, y ∈ Ob(C), are the equivalence classes of morphisms
in
⋃
x′'Σx,y′'Σy

MorC[Σ−1](x
′, y′). The composition of [β] ◦ [α] for α ∈ MorC[Σ−1](x, y) and

β ∈MorC[Σ−1](y
′, z) is given by [β ◦ s ◦ α] with s any zig-zag morphism from y to y′. The

equivalence class of that composition is independent of the choices of representatives α and
β (by definition) and of the choice of the zig-zag path s by the preceeding remark.

The overall idea is thus as follows: Having fixed a suitable system Σ of “weakly invertible”
morphisms, we decompose the study of C into the study of

• the component category encompassing the global effects of irreversibility and
• the components with a groupoid structure given by the Σ-zig-zags.

The original category C and the component category π0(C; Σ) are related by a functor

π0(Σ) : C qΣ→C[Σ−1] → π0(C; Σ); the last arrow is the quotient functor. Particularly inter-
esting are systems Σ for which π0(Σ) is injective on the morphism sets and bijective on
non-empty morphism sets.

3.3. Morphisms between given sources and targets. For a description of compo-
nents of the quotient category ~π1(X; [X0, X1]) from Sect. 2.2, we need a modification: Let
X0, X1 ⊂ Ob(C) denote nonempty sets of objects such that the morphisms in Mor(C)
satisfy the following weak cancellation property for βi ∈Mor(x, y):

(3.2) γ ◦ β1 ◦ α = γ ◦ β2 ◦ α for all α ∈Mor(x0, x), γ ∈Mor(y, x1), xi ∈ Xi ⇒ β1 = β2.

Let Mor(X0, X1) = {f ∈ Mor(x0, x1) | x0 ∈ X0, x1 ∈ X1}. We wish to analyse the
structure of Mor(X0, X1) up to an equivalence relation given by a system Σ of morphisms
in C. For a given such system, let Σj := {s ∈ Σ(x, y)| x, y ∈ Xj, j = 0, 1}.
Definition 3.2. (1) An elementary equivalence between f ∈ Mor(x0, x1) and g ∈

Mor(x′0, x
′
1 ), x0, x

′
0 ∈ X0, x1, x

′
1 ∈ X1 consists of a pair of s ∈ Σ0(x0, x

′
0), t ∈

Σ1(x1, x
′
1) such that

x1
t // x′1

x0

f

OO

s // x′0

g

OO
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commutes.
(2) The symmetric and transitive closure of this relation is called equivalence and com-

pares morphisms from X0 to X1 under zig-zag morphisms:

· · · x1oo t // x′1 x′′1
t′oo // · · ·

· · · x0oo

f

OO

s // x′0

f ′

OO

x′′0
s′oo

f ′′

OO

// · · ·

(3) The equivalence classes form the sets Mor01 =
⋃
x0∈X0,x1∈X1

Mor(x0, x1)/∼.

(4) Mor(X0, x) = Mor(X0, {x}) for x ∈ X.

As in the case of the fundamental category of an lpo-space, we want to define systems
of morphisms and associated component categories that inherit the essential information
in the category C from the perspective of Mor01. In many cases of interest, Σj will consist
only of the identity morphisms on the objects in Xi – e.g., if C is the fundamental category
of a n lpo-space and the Xi are achronal subsets of X, cf. Sect. 2.2. In that case, Mor01 =⋃
x0∈X0,x1∈X1

Mor(x0, x1).

3.4. Induced morphisms. Representations of morphisms. Let X0, X1 ⊂ Ob(C). By
composition, a morphism s ∈Mor(x, y) induces maps

s# : Mor(X0, x) → Mor(X0, y) s# : Mor(y,X1) → Mor(x,X1)
f 7→ s ◦ f g 7→ g ◦ s.

Since composition is associative, these induced maps are adjoints under the composition
pairings cx at x and cy at y:

Mor(X0, x)

s#

��

× Mor(x,X1)
cx // Mor01,

Mor(X0, y) × Mor(y,X1)

s#

OO

cy

88qqqqqqqqqqq

or equivalently

Mor(X0, x) � �Λ(cx)
//

s#

��

Mor
Mor(x,X1)
01

(s#)∗

��

Mor(y,X1) � �Λ(cy)
//

s#

��

Mor
Mor(X0,y)
01

(s#)∗

��

Mor(X0, y) � �Λ(cy)
// Mor

Mor(y,X1)
01

Mor(x,X1) � �Λ(cx)
// Mor

Mor(X0,x)
01 .

If the category C satisfies weak cancellation (3.2), the maps Λ(cx) and Λ(cy) are injections.
We associate with a morphism f ∈Mor(x, y) the set of all its extensions

E(f) = {[g ◦ f ◦ h] | h ∈Mor(X0, x), g ∈Mor(y,X1)} ⊂Mor01

from X0 to X1 up to equivalence. Collecting these, we obtain maps into the power set
2Mor01 :

Exy : Mor(x, y)→ 2Mor01 , Exy(f) = E(f).
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Likewise, one obtains extension maps E0y : Mor(X0, y) → Mor01. For f ∈ Mor(x, y) and
g ∈Mor(y, z), one has obviously

(3.3) Exz(g ◦ f) ⊂ Exy(f) ∩ Eyz(g).

Figure 3. Dipaths on the surface of a cube with two holes

Example 3.3. Even in easy geometric examples, equality does not hold in (3.3). In Fig. 3,
we consider the surface of a cube with two squares on the front face punched out. The
dipaths f and g on the front face can both be extended to the same two (out of three)
dihomotopy classes of dipaths from the left front bottom vertex to the right rear top vertex,
whereas their concatenation g ∗ f only can be extended to one of them.

4. Applications

4.1. Classes of weakly invertible morphisms. First some trivial cases: If Σ consists of
the identity morphisms only, then obviously C[Σ−1] and the component category π0(C; Σ)
are equivalent to C. If Σ = Mor, all morphisms in C[Σ−1] are invertible, and the Σ-
connected components are the usual path components of C – regarded as a non-oriented
graph. The component category π0(C; Σ) has only identity morphisms.

We will now list several more interesting classes Σi of weakly invertible morphisms.
Comments on the respective categories of fractions and component categories, in particular
for categories of the form C = ~π1(X; [X0, X1]) will be given in Sect. 4.2. Let always C denote
a small category. Let X0 and X1 denote non-empty subsets of Ob(C) of source, resp. target
objects.

(1) Let (X0 ↓ C) denote the associated comma category of morphisms under X0 -
if X0 contains just one object, this is just the usual comma category [22]. Let
f ∈Mor(X0, x), g ∈Mor(X0, y) denote objects in (X0 ↓ C). Then

Σ1(f, g) =

{
Mor(f, g) E(f) = E(g)
∅ else

with E the extension functor from Sect. 3.4.
(2) Now, we turn to the category C itself. For x, y ∈ Ob(C), a morphism s ∈Mor(x, y)

is contained in Σ2(x, y) if and only if s# : Mor(y,X1)→Mor(x,X1) is a bijection.
(3) Dually, we let Σ3(x, y) consist of all morphsisms s ∈ Mor(x, y) such that s# :

Mor(X0, x)→Mor(X0, y) is a bijection.
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(4) Σ4 = Σ2 ∩ Σ3 ⊂Mor.

X1

x
s //

=={{{{{{{{
y

OO�
�
� !

X0

OO�
�
�!

=={{{{{{{{

(5) Σ5 is a system of morphisms satisfying the extension condition that every diagram

· //___∈Σ5 ·

·
g∈Mor

OO

s∈Σ5

// ·

OO�
�
� ∈Mor

can be completed, i.e.,

(Σ5 ◦ g) ∩ (Mor ◦ s) 6= ∅ for s ∈ Σ5, g ∈Mor.

The diagram

· //___ t1 · //___ t2 ·

·
g

OO

s1
// ·

OO�
�
�
g1

s2
// ·

OO�
�
�
g2

shows how to fill in the diagram for a composition of morphisms in Σ5 by the
composition of two “solutions” in Σ5.

(6) Likewise, Σ6 is a system of morphisms satisfying the extension condition that every
diagram

· t∈Σ6 // ·

·

OO�
�
�∈Mor

//___
∈Σ6
·
g∈Mor

OO

can be completed, i.e.,

(f ◦ Σ6) ∩ (t ◦Mor) 6= ∅.
Same remarks as for Σ5.

(7) Σ7 is a system satisfying both extension conditions above.
(8) For x, y ∈ Ob(C), let Σ8(x, y) = ∅ if Mor(x,X1) 6= ∅ = Mor(y,X1) and Σ8(x, y) =

Mor(x, y) else. Dually, one may compare reachability from X0.

Particularly interesting are the maximal systems satisfying the requirements for Σi, 5 ≤
i ≤ 7. Maximality makes sense because the system generated by (finitely or infinitely
many) such systems under composition satisfies the extension properties, as can be seen
from the composition diagrams above, cf. (5).
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4.2. Properties and examples.

(1) For the fundamental category C = ~π1(X), the comma category (X0 ↓ ~π1(X)) has
as objects the dihomotopy classes of dipaths starting in X0. A partial dipath s
with g = s ◦ f is contained in Σ1 if no “decision” has been made between f and
g – all “careers” in ~π1(X; [X0, X1]) open to f are still open to g. Walking along a
zig-zag path does not alter the extension sets of the execution paths en route. “No
branching occurs between f and g” is another slogan explaining Σ1.

The component category π0(~π1(X; {x0}, {∞}]),Σ1) – with x0 an initial point –
induces the partially ordered set Ω1(X) defined and investigated by S. Soko lowski,
cf. [28, 29].

(2) If s ∈ Σ2(x, y), then E(s#(f)) = E(f) for all f ∈Mor(X0, x). If t ∈ Σ3(x, y), then
E(t#(f)) = E(f) for all f ∈Mor(y,X1).

(3) The conditions for Σ2- and Σ3-morphisms are not independent. For a category
satisfying weak cancellation (3.2), the (adjunction) diagrams at the end of Sect. 3
show:

s# onto ⇒ (s#)∗ injective ⇒ s# injective
s# onto ⇒ (s#)∗ injective ⇒ s# injective.

(4) Here is how to interpret the conditions for Σ2 if C = ~π1(X; [X0, X1]):
(a) For every f ∈ ~π1(X)(x,X1) there exists a “factor” g ∈ ~π1(X)(y,X1) such that

f ◦ h = g ◦ s ◦ h for all h ∈ ~π1(X)(X0, x).
(b) Factorisation is unique: Two such factors g1, g2 ∈ ~π1(X)(y,X1) satisfying

g1 ◦ s ◦ h = g2 ◦ s ◦ h for all h ∈ ~π1(X)(X0, x) have the property:
g1 ◦ h′ = g′2 ◦ h′ for all h′ ∈ ~π1(X)(X0, y).

Analogously for Σ3.
(5) The systems Σi, 1 ≤ i ≤ 4 enjoy the “2 out of 3 property”: if two out of s, t, t ◦ s

are contained in Σi, then so is the last.
(6) In a category with weak cancellation (3.2) with respect to X0 and X1, one may

cancel elements in Σ2 on the left: Let f, g ∈ Mor(x′, x), s ∈ Mor(x, y) such that
s ◦ f = s ◦ g ∈ Mor(x′, y). As a consequence, k ◦ s ◦ f ◦ h = k ◦ s ◦ g ◦ h
for all h ∈ Mor(X0, x

′), k ∈ Mor(y,X1). Since s ∈ Σ2, any morphism k′ ∈
Mor(x,X1) can be written in the form k ◦ s, whence k′ ◦ f ◦ h = k′ ◦ g ◦ h for
all h ∈ Mor(X0, x

′), k′ ∈ Mor(x,X1). By weak cancellation (3.2), we conclude:
f = g. By the same argument, elements in Σ3 may be cancelled on the right.

(7) For 2-dimensional mutual exclusion models, an algorithm for determining the Σi

components, i = 2, 3, 4 has been described in [17] using results of [26].
(8) Every morphism in C[Σ−1

5 ] can be represented in the form s−1 ◦ f with s ∈ Σ and
f ∈ Mor: It is easy to see (cf. e.g. [2]) that the composition of two morphisms of
this type can be rechristened as a morphism of that same type. Similarly, every
morphism in C[Σ−1

6 ] can be represented in the form g ◦ t−1 with t ∈ Σ and g ∈Mor.
(9) By successive application of the definitions, one obtains: Let x 'Σ5 x

′ ∈ Ob(C)
and let MorC(x, y) 6= ∅. Then there exists y 'Σ5 y

′ ∈ Ob(C) with MorC(x
′, y′) 6=

∅. Likewise, let y 'Σ6 y′ ∈ Ob(C) and let MorC(x, y) 6= ∅. Then there exists
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z 'Σ6 x
′ ∈ Ob(C) such that MorC(x

′, y′) 6= ∅. In particular, for Σ7-components,
the existence of morphisms between components can be investigated by examining
one arbitrarily chosen object in each component.

(10) The conditions for Σi, i = 5, 6, 7 are stronger than one might think at first glance:
Call X0, resp. X1 Σi-closed if

y0 ∈ X0, Σ6(x0, y0) 6= ∅ ⇒ x0 ∈ X0, resp. x1 ∈ X1, Σ5(x1, y1) 6= ∅ ⇒ y1 ∈ X1.

For a Σ5-closed set X1, the extension property has the consequence that s# :
Mor(y,X1) → Mor(x,X1) is onto for a morphism s ∈ Σ5(x, y). Likewise, for
X0 Σ6-closed, an element s ∈ Σ6(x, y) induces a surjection s# : Mor(X0, x) →
Mor(X0, y). Using (3) above, we conclude: s ∈ Σ7 ⇒ s# and s# are bijections,
and thus Σ7 ⊆ Σ4.

In particular, we have for f ∈ Mor, s, t ∈ Σ7: E(f) = E(s ◦ f) = E(f ◦ t), cf. (2)
above. Moreover, the extension properties show that for g, h ∈ Mor, there exist
g′, h′ ∈ Mor such that E(g ◦ f) = E(g′ ◦ s ◦ f), resp. E(f ◦ h) = E(f ◦ t ◦ h′). In
other words, not only is there a correspondance of the set of extensions for f and
s ◦ f , but there is a similar correspondance for all their “prolongations”.

(11) In a category with weak cancellation with respect to sets of initial objects X0 and
final objects X1, a system Σ7 of morphisms admits a left and a right calculus of
fractions [2] generalising (8) above: Since the extension properties are the defining
property for Σ7, we need only check the following properties [2] for f, g ∈Mor(x, y):
s ∈ Σ7, s ◦ f = s ◦ g ⇒ ∃s′ ∈ Σ7 with f ◦ s′ = g ◦ s′ and
t ∈ Σ7, f ◦ t = g ◦ t ⇒ ∃t′ ∈ Σ7 with t′ ◦ f = t′ ◦ g.

Since Σ7 ⊆ Σ4, we can use (6) to cancel s and t and conclude even more than
necessary: f = g.

(12) The system Σ8 is relevant for the analysis of deadlocks and unsafe regions; the dual
version for the analysis of unreachable regions, cf. [10, 11, 26].

Remark 4.1. A straightforward modification of the definitions of weakly invertible systems
of morphisms without mentioning subsets of sources and targets (in particular for the
fundamental category ~π1(X) of an lpo-space X) does not give satisfactory results. Recent

discussions with E. Haucourt and É. Goubault indicate a solution. This theme will be
taken up elsewhere.

Example 4.2. (1) Several examples determining the component categories of simple
po-spaces with respect to the systems Σi, i ≤ 4, are given in [17].

(2) The following example shows that, in general, Σ4 does not satisfy the exten-
sion conditions for a Σ6-system. Consider again the po-space X that is given
as the surface of a cube with two holes on the front face in Fig. 4. The ele-
ments x0 and x2 are contained in the bottom face. It is easy to see, that all of
the sets ~π1(X)(x0, x2), ~π1(X)(x1, x2), ~π1(X)(0, xi) and ~π1(X)(xi,1) consist of a sin-
gle element. In particular, the unique element sj ∈ ~π1(X)(xj, x2) is contained in
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Σ4(xj, x2), 0 ≤ j ≤ 1. On the other hand, the diagram

x0
s0 // x2

x1

s1

OO

cannot be completed to a square by Σ4-morphisms: Any element x ≤ x0, x1 is con-
tained in the segment of the front edge and “ahead of” x0. In particular, ~π1(X)(x,1)
consists of at least two elements, and hence Σ4(x, xj) = ∅, 0 ≤ j ≤ 1.

Figure 4. Invertibility on the surface of a cube with two holes

4.3. Relation to history equivalence. In [10], we introduced the homotopy history of a
dipath f in X from X0 to X1 and the associated history equivalence classes. In a categorical
framework, those definitions read as follows:

Definition 4.3. Let f ∈Mor(X0, X1).

(1) The history hf of f is defined as

hf = {x ∈ Ob(C)| ∃f0 ∈Mor(X0, x), f1 ∈Mor(x,X1) with f = f1 ◦ f0}.
(2) Two objects x, y ∈ Ob(C) are history equivalent if and only if x ∈ hf ⇔ y ∈ hf for

all f ∈Mor(X0, X1).

A history equivalence class C ⊂ Ob(C) is thus a primitive element of the Boolean algebra
generated by the histories, i.e., an intersection of histories and their complements such that
either C ⊆ hf or C ∩ hf = ∅ for all f ∈Mor(X0, X1) .

Proposition 4.4. Let x, y ∈ Ob(C) and f ∈Mor(X0, X1).

(1) Σ2(x, y) 6= ∅ implies: x ∈ hf ⇒ y ∈ hf .
(2) Σ3(x, y) 6= ∅ implies: y ∈ hf ⇒ x ∈ hf .
(3) Every Σ4-component is contained in a path component of a history equivalence class.

Proof. (1) Let s ∈ Σ2(x, y) and let f = f1 ◦ f0 with f0 ∈ Mor(X0, x), f1 ∈ Mor(x,X1).
There exists g1 ∈Mor(y,X1) such that f1 = g1 ◦ s. Hence f = g1 ◦ (s ◦ f0), i.e., y ∈ hf .
(2) is proved similarly.
(3) For s ∈ Σ4(x, y), we have thus: x ∈ hf ⇔ y ∈ hf for every f ∈ Mor(X0, X1), and
hence: x ∈ C ⇔ y ∈ C for every history equivalence class C. The path s connects x and
y. �

Prop. 4.4 suggests a method for a start of the construction of the Σ4-components: If
you know the dihomotopy classes in ~π1(X; [X0, X1]), find the history equivalence classes
and their path components with respect to zig-zag dipaths in MorC (those were called
the diconnected components in [10]); a further refinement might be necessary. In Ex. 2.2,
there are two dihomotopy classes l, r ∈ ~π1(X)(0,1) of dipaths from the bottom to the
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top. It is easy to see, that hl = B ∪ L ∪ T and hr = B ∪ R ∪ T . Hence, hl ∩ hr =
B∪T, hl∩ (X \hr) = L, hr∩ (X \hl) = R, and the remaining intersection of complements
is empty. The subspace hl ∩ hr consists of the two Σ4-components B and T .

5. Higher homotopy categories

A first serious attempt to bring higher homotopy into the discussion of po-spaces via
methods from algebraic topology was formulated by S. Soko lowski in [28]. In this section,
I would like to give a presentation of the definitions and of first results in the categorical
framework of this paper.

For a topological space Z (made into a po-space with equality as the partial order) and
a local po-space (or d-space) X, let XZ denote the mapping space with the compact-open
topology. Maps in XZ come equipped with the pointwise (local) partial order, i.e.,

(5.1) f ≤ g ⇔ f(z) ≤ g(z) for all z ∈ Z
or with an induced d-space structure. A dicylinder, cf. [28] for Z a sphere, is a dimap

F : Z × ~I → X; equivalently, it may be regarded as a dipath from f = F0 to g = F1 in XZ

with respect to the partial order (5.1).
We can now define a category [Z : X]1 which has the maps in XZ as objects. The

morphisms between f and g in [Z : X]1 are the fixed end dihomotopy classes of dicylin-
ders; i.e., two dicylinders F and G from f to g are dihomotopic, if there is a dihomo-
topy H : Z × I × ~I → X with H(z, t, 0) = f(z), H(z, t, 1) = g(z) and H(z, 0, s) =

F (z, s), H(z, 1, s) = G(z, s) for all z ∈ Z, t ∈ I and s ∈ ~I. Concatenation along g allows
us to compose a dicylinder from f to g with a dicylinder from g to h. This concatenation
is compatible with dicylinder dihomotopy and thus gives rise to the category [Z : X]1–
which is equivalent to the fundamental category of the mapping space XZ . An analogue
to the higher fundamental groups is given by the special cases Z = Sn−1, n > 1. We call
[Sn−1 : X]1 the n-th category of X.

Studying higher homotopy invariants of a po-space X means studying component cate-
gories of its nth category. With a source subspace X0 ⊂ X and a target subspace X1 ⊂ X,
one would like to structure the dihomotopy classes of dimaps

f : (Sn−1 × ~I;Sn−1 × {0}, Sn−1 × {1})→ (X;X0, X1).

Again, the results will depend on the definition of the “weakly invertible” morphisms.
Details will be worked out elsewhere. We rephrase and comment some of the findings and
examples of S. Soko lowski in [28]:

(1) Even if the po-space X does not have any deadlock point x (i.e., ~π1(X)(x,X1) 6= ∅
for all x ∈ X, cf. [23, 5, 9]), the mapping spaces very often have lots of them. If X
is the po-space from the left part of Fig. 1, a map S1 → X whose image intersects
both L and R cannot be the bottom of a dicylinder with top the constant map
from S1 into the top point.

(2) The nth categories can discriminate between po-spaces with equivalent fundamental

categories (with given source and target). For an example, letX = ~I3\ ~J3 denote the
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po-space from Ex. 2.4, i.e., a 3-dimensional cube with an open subcube removed.
All dipaths from 0 to 1 are dihomotopic to each other. Hence, the associated
component category π0(π1(X; [0,1]),Σ4) is trivial. A dicylinder f : S1×(~I; 0,1)→
(X; 0,1) from the bottom to the top induces a map S2 ' ΣS1 → X and is classified
(up to dihomotopy) by the integral mapping degree of that latter map. The Σ4-
component category of the second category of X contains a bottom and a top
element (represented by constant maps) and, for every k ∈ Z, one class inbetween.
There are no morphisms between components corresponding to different values
k 6= l. Both the fundamental category and the second category of Y = ~I3 are
trivial.

(3) The nth categories come with additional structure that ought to be exploited:
Evaluation at a base point ∗ ∈ Sn−1 yields a functor from the nth category of a
po-space X to its fundamental category. On the fibre of that functor over a chosen
dipath in X, the dicylinders can be concatenated using a suspension coordinate in
Sn−1.

6. Naturality questions

Let f : X → Y denote a dimap (continuous and preserving local partial orders) between
lpo-spaces. It is obvious that f induces a map f∗ : ~π1(X)→ ~π1(Y ) between the fundamen-
tal categories. If f also preserves base points or base spaces, one may ask whether there is
an induced map on the component categories, as well. This is in general not the case:

Example 6.1. Consider the space Y (square with one hole) from Ex. 2.2.1 and the in-
clusion i : X → Y of the subspace X = B ∪ L ∪ T . Since there is only one dihomotopy
class from the bottom point (X0 = Y0 = {0}) to the top point (X1 = Y1 = {1}) in X,
all morphisms belong to any of the relevant systems of weakly invertible morphisms: For
C = ~π1(X; [0,1]), we get: Σi = Mor, 1 ≤ i ≤ 8 (for i = 1, we consider the morphisms of
the comma category). In particular, X consists of a single Σi-component. On the other
hand, X viewed as a subset of Y decomposes into two or three components – depending
on the choice of Σi, 1 ≤ i ≤ 7 – with respect to C = ~π1(Y ; [0,1]).

There is a simple reason for this failure of naturality: In general, f∗ does not map Σi(X)
into Σi(Y ). In particular, there is no reason to expect our systems of morphisms to be
preserved unless f∗ : ~π1(X; [X0, X1]) → ~π1(Y ; [Y0, Y1]) is surjective. For another view on
this naturality problem, compare S. Soko lowski’s [29].

Is there an intermediate level (between the fundamental category and one of the com-
ponent categories) on which one can talk about naturality?

6.1. Equivalences of categories with systems of morphisms. In this section, we
look at categories C equipped with a system of morphisms Σ ⊂Mor(C) and an associated
equivalence relation (3.1).

Definition 6.2. A functor Φ : (C,ΣC) → (D,ΣD) – with Φ(ΣC) ⊆ ΣD – is called an
equivalence if

(1) For every g ∈MorD[Σ−1
D ] there exists f ∈MorC[Σ−1

C ] such that Φ(f) 'ΣD g;
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(2) for f1, f2 ∈MorC[Σ−1
C ], one has: Φ(f1) 'ΣD Φ(f2)⇒ f1 'ΣC f2.

Pairs (C,ΣC), (D,ΣD) related by an equivalence or a (zig-zag) sequence of equivalences are
called equivalent.

Applying the definition to identity morphisms in D, one requires in particular every
object in D to be ΣD-connected to an object in the image of Φ. More generally, an
equivalence Φ induces an isomorphism Φ∗ : π0(C; ΣC)→ π0(D; ΣD) between the component
categories.

In particular, the quotient functor π0(Σ) : (C,Σ) → (π0(C,Σ), I) – with I consisting
only of the identity morphisms on the components – from Sect. 3.2 is an equivalence, by
definition. More generally, let Σ′ ⊂ Σ denote a (closed) subsystem of morphisms, and let
Σ/Σ′ denote the system of equivalence classes. Then, we get a triangle of quotient functors

(C,Σ)

�� ((RRRRRRRRRRRRRR

(π0(C; Σ′),Σ/Σ′) // (π0(C,Σ), I).

The diagonal functor is an equivalence. Hence, the vertical functor satisfies (2), and by def-
inition, it satisfies (1), as well. As a result, the horizontal functor has to be an equivalence,
as well.

6.2. Induced functors. The following construction allows us to represent a functor Φ :
C → D that does not necessarily respect chosen systems ΣC ⊂ MorC and ΣD ⊂ MorD
by a functor Φ̄ between equivalent categories of a “smaller” size inbetween the original
and the component category. Here, two functors are considered equivalent if they can
be “conjugated” into each other by a (zig-zag) sequence of equivalences of categories and
systems on both sides.

We define the system Σ(Φ) := ΣC ∩ Φ−1(ΣD) to consist of those morphisms, that are
weakly invertible in C and whose images are weakly invertible in D. It follows immediately
from the definition that Φ(ΣΦ) ⊆ ΣD. We obtain a commutative diagram of functors

(C,ΣC)

��

{{wwwwwwwwwwwwwwwwwwwwwww

Φ // (D,ΣD)

��
(π0(C,ΣΦ),ΣC/ΣΦ)

Φ̄ //

uukkkkkkkkkkkkkk
(π0(D,ΣD), I),

(π0(C,ΣC), I)

which “conjugates” Φ into the equivalent functor Φ̄.

Example 6.3. In the case of the functor i∗ induced by inclusion i : X = B∪L∪T → Y from
Ex. 6.1 on the fundamental categories, Σ4(Y ) consists of the dipaths entirely contained in
one of the domains B,L,R, resp. T . Hence, Σ4(i∗) consists of the dipaths entirely contained
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in one of the domains B,L, resp. T . Hence, ī∗ is the inclusion of categories

L // T L // T

� � ī∗ //

B

OO

B

OO

// R

OO

Alternatively, one might consider the lattice of systems contained in a particular system
Σ and ask a functor to map “sufficiently” small systems of one lattice into systems of the
other. This possibility is currently under investigation.

6.3. An application to the (non)existence of dimaps. An analysis of components and
histories (cf. Sect. 4.3) can help to find restrictions to the existence of dimaps between lpo-
spaces with specific properties. We use essentially the fact, that a dimap ϕ : (X;X0, X1)→
(Y ;Y0, Y1) preserves histories and finite intersections of these: ϕ(hf) ⊆ h(ϕ ◦ f) for f a
dipath in X from X0 to X1.

Example 6.4. Let X and Y denote the two po-spaces from Fig. 5 together with their com-
ponent categories π0(X; Σ4) and π0(Y ; Σ4) with non-commuting and commuting squares
(indicated by semicircular arrows). Both spaces X and Y admit exactly four dihomo-
topy classes of dipaths from the bottom to the top; those on X are given by gi ∗ fj, 0 ≤
i, j ≤ 1. Which abstract maps Φ : ~π1(X)(0,1) → ~π1(Y )(0,1) can be realised by a dimap
ϕ : (X; 0,1)→ (Y ; 0,1)?

The intersection of the (homotopy) histories of all four dihomotopy classes in X from
0 to 1 consists of the union of the components B ∪M ∪ T . Every dihomotopy class in
Y is characterised by the particular “antidiagonal” component Ri, 1 ≤ i ≤ 4, that it
touches. In Y , the union of the six intersections of pairs of histories corresponding to
the four dihomotopy classes is not pathwise connected (in the usual sense). Its two path
components, denoted C0 and C1, consist of the six Σ4-components below, resp. above the
antidiagonal.

Figure 5. Two po-spaces and their component categories

If the image of ϕ∗ : ~π1(X)(0,1) → ~π1(Y )(0,1) contains at least two elements, then
either M , and thus its “past” ↓M are mapped into C0 – or M and its “future” ↑M are
mapped into C1. In the first case, ϕ∗([gi ∗ f0]) = ϕ∗([gi ∗ f1]), in the second ϕ∗([g1 ∗ fi]) =
ϕ∗([g0 ∗ fi]), 0 ≤ i ≤ 1. We conclude, that the image of ϕ∗ has at most two elements. In
particular, there is no surjective dimap ϕ : (X; 0,1)→ (Y ; 0,1).

7. Concluding remarks

Lisbeth Fajstrup has worked on a translation of the covering concept to categories of lpo-
spaces [7]. It turns out, that these “dicoverings”, in general, have fibers with non-constant
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cardinality. It seems that cardinality is constant along the Σ3-morphisms of the approach
of this paper. It is an obvious task to work out an analogue to covering theory, i.e., to
relate the combinatorics of (the component categories of) the fundamental categories to
the topological investigation.

Certainly, the naturality problems touched upon in Sect. 6 deserve further investigation;
a satisfactory framework seems to be crucial for several applications connected to the
simulation and bisimulation concepts from concurrency theory. Combined with Grandis’
version [18] of the Seifert-van Kampen theorem, we hope to be able to achieve algorithmic
calculations of the (component categories) of fundamental categories, at least for spaces
arising from the Higher Dimensional Automata mentioned in the introduction. This is the
subject of ongoing work by L. Fajstrup, É. Goubault, E. Haucourt and the author.
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