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Organization of the talk

. Weak higher dimensional transition system (HDTS)

2. Labelled symmetric precubical set

. Realizing a labelled symmetric precubical set as a
weak HDTS

. Categorical equivalence
. Homotopy theory of weak HDTS and bisimulation
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Concurrent execution of two actions
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Q (a,b) Or (b, a) g
(a)
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® {a,0,v,0} set of states and of 0-cubes

o {(o,a,08),(8,b,7),(a,b,6),(d,a,7),(a,a,b,7),(a,b,a,v)}
set of transitions
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Weak HDTS
-

# > anonempty set of labels
® Aweak HDTS X = (S,u: L — X, T =5 Tn) With set

of states S5, set of actions L, labelling map p, set of
n-transitions 7,, C S x L" x Swithn > 1

s Multiset axiom (o, uq, ..., up, 3) € T implies
(@, Ug(1), - - > Ug(n), 3) € T fOr every permutation o
s Coherence axiomif (a, uq,...,un, 3),
(o, ut, ... up, 1), (V1,Upt1,-- -, Un, B),
(o, u1, ..., Upyqg, v2) AN (12, Uptgt1, - - -, Un, 5) Delong
to T, then (vi, upt1, ..., Uprq,v2) €T

# Note: the Coherence axiom is automatically satisfied in

o

a cube
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The categoryWHDT'S

X=Spu:L—-%T=U,>T:) and

X' = (8" L — 2T =,y T0)

A map of weak HDTS f : X — X’ consists of
s asetmap fo: 5 — &

s amap f € (Set|)(u, i)
such that if (a, uq,...,uy, ) IS a transition, then

(fola), f(u1), ..., f(un), fo(B)) is a transition

The forgetful functor w : WHDTS — Set!¥}V> :
w(X) = (S, ("1 (x))ex) is concrete topological

WHDTS is locally finitely presentable

-
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Two additional axioms

=

(a,/, 3) are two transitions such that p(u) = u(u'), then

# First Cattani-Sassone Axiom CSAL If (a,u, 8) and
)

uw = u'. Impossible situation: 0 1

TN
W
s CSAI1 always satisfied for concrete examples

Unique Intermediate State Axiom CSA2 for n > 2 and
1 < p < n, for every transition («, uq, ..., uy,, ), there
exists a unique state v such that (o, u1, ..., up,v) and
(V, Upt1, ..., up, 3) are transitions

s CSAZ2 plays the role of the face maps in a
precubical set

-
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The categoryHDT'S
-

HDTS : weak HDTS satisfying CSA1 and CSA2

s HDTS locally finitely presentable, but not
topological

s HDTS full reflective subcategory of WHDT'S

The pure n-transition C,la, ..., a,|*!

s Setof states S ={[, F'}

s Setofactions L ={(a,1),...,(an,n)}

s Labelling map u(a;, ) = a;

o T ={(I,(a51),0(1)),. .., (ag(n),0(n)), F)}

The n-cube Cylay, ..., ay] Is the reflection of

Cplai,...,a,]t: 2™ states since {(a1,1),..., (an,n)}
contains n elements J
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Cattani-Sassone HDTS
-

A Cattani-Sassone HDTS is a HDTS with the
Coherence axiom replaced by CSA3 below

Third Cattani-Sassone axiom CSAS3 if the nine tuples
(o, ut, ... up, B), (o, u1,...,up, V1), (V1,Upt1,- .-, Un, 3),
(U1, Upt1s - ooy Uptq, V2)s (V2, Upggtds - - - Un, 3),

(UL, vy Uprg, Vh),y (Vg Uptgady - -+ Un,y B),

(a,ut, ..., up,vy) and (v], upt1, ..., Uptq, V5) Are
transitions, then v; = v and v, = 14,

The HDTS are the Cattani-Sassone HDTS
The Coherence axiom is the topological part of CSA3

The remaining part of CSA3 is algebraic and already
contained in CSA2

-
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HDTS as a small-orthogonality class

-

# Every HDTS is orthogonal to the set of maps
Culat, ..., a,)%" — Cylar, ..., a,] forn >0 and
A1, ...,0n € 2

# Every HDTS is orthogonal to the set of maps
C1 [f] uacl[x] 1 [$] — [:IZ‘} forx e X

#® Every weak HDTS orthogonal to the set of maps
Cplay, ..., a,)%" — Cyhlay, ..., a,] forn >0 and
ai,...,ap € 2 satisfles CSA2

#® Every weak HDTS orthogonal to the set of maps
Chlz| Upcy o Crlz] — Chlz] for z € ¥ satisfies CSAL

# HDTS is a small-orthogonality class

-
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Symmetric precubical set

- .

#» Symmetric precubical set

s Family (K,,),>0 of sets (z € K, IS called a n-cube),
of face maps 0% : K,, — K,_; satisfying the cubical
relations and of symmetry maps s; : K,, — K, with
1 <1 < n— 1 satisfying the Moore relations and
8]@5@- — si_la;?‘ for j < 1, Q;?‘sz- = 0, for j =1,
8fsi:8?forj:i+1and 8§‘si:si8fforj >4 1

# The symmetric precubical set of labels
s ("X =1{0}
s (°Y),=X"forn>1
s OMay,...,ap) = (a1,...,05,...,ap)

s si(ay,...,an)=(ay,...,qi—1,0i+1, i, aj+2,ay) J
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Labelled symmetric precubical set

=

# Labelled symmetric precubical set: map K —!°%
s The category 0¥ Set|!°Y is locally finitely
presentable
® [n] ={0,1}", the n-cube Og[n] defined by: f € Og|n|,
set map from [p] to [n| which is a composite of

o 07(€1,...,6) = (€15, )iy .., €)
s oi(€1,...,6)=(€1,...,611,€,...,6)
# The labelled n-cube Oglaq,...,a,] With ay, ... a, € XIS

the map Og[n] —!°% which takes Idy, to (a1, ..., ay)

#® The boundary 0lglay,...,a,| of Oglay,...,a,] IS the
labelled n-cube with the n! n-cubes removed

o -

About Higher Dimensional Transition Systems — p.



-

o

From precubical setto WHDTS

#® There exists an isomorphism of categories

=

T : {Cubes of DgpSetUSZ} ~ {Cubes of HDTS}

» T extended to a functor T : O Set|!°> — WHDTS by

T(K) :=

lim
—
Oslai,...,an]—K

Chlai, ..., ap]

s T:07Set|!”Y — WHDTS is a left adjoint
s T is not faithful, not full and not essentially

surjective

-
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About faithfulness
L o

® Forn > 2, the two maps

Dg[al, an] = Ogla, .. ap|Usngay e Dslats - - -5 an)
have same image by T
Ian[a1,...,an] . Cn[al, ce ,an] — Cn[al, ce ,an]

® The map (OZSet|!°Y) (K, L) — WHDTS(T(K), T(L))
IS one-to-one when there exists at most one lift k

o0slar, ... an] — L
k-

-~
7~

Oglat, ..., ap]

forn>2anday,...,a, € X HDA paradigm

o -
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About the HDA paradigm
B

A labelled symmetric precubical set L satisfies the

HDA paradigm if and only if L is orthogonal to the
maps

Dg[al, e ,an] uams[al,m’an] Ds[al, e ,an] — Ds[al, e ,an]

forn>2anday,...,a, € X

The full subcategory HDA* of L satisfying the HDA
paradigm is reflective locally finitely presentable

The restriction functor T : HDA* — WHDTS is faithful
It is not full, nor essentially surjective...

-
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About fullness (1)

Let C5|u, v] be the HDTS with set of states {«, G, g, 12}
Let X be the image by T of

V2

AN,

w O(%Vl% w

NS

The inclusion Cs[u, v] C X does not come from a map
of labelled symmetric precubical sets since there are
no squares with the vertices o, 3, v, 19

-
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About fullness (Il)

f #® Let K and L be two labelled symmetric precubical setsT
such that L satisfies the HDA paradigm and such that
T(L) satisfies the Unique intermediate state axiom.

Then the set map

(O%Set |195)(K, L) — ). WHDTS(T(K), T(L))

IS bijective

o -
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About essential surjectivity

f.p r= (g, {x} C X, 0)£LT(g)withz € X T
[ T(Oh [z] U Oy [a]) lim(Ch|z] — 2 — Cilz])
9 N o AN

# We must consider the categorical localization
HDTS[Cub '] where

Cub(X) = lim Cnlai, ..., an)
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The category equivalence
-

A category eguivalence

HDA7,,, = T }(HDTS) N HDA* ~ HDTS[Cub ]

HDA7 . is reflective locally finitely presentable in
HDA*, and in OZSet|!°%.

Note: a HDTS T(K) satisfies CSAl if and only If K Is
orthogonal to the maps Ugla] Usngq Usla] — Uslal for
a € X

Question: is HDA#,,. a small-orthogonality class ?

-
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Homotopy theory of weak HDTS
B o

# A cofibration of weak HDTS is a map inducing an
Injection on the set of actions

#® There exists a left-determined model category
structure on WHDT'S with respect to the class of
cofibrations

s l.e. the smallest localizer with respect to the
cofibrations is the class of weak equivalences of a
model category structure

s A left proper combinatorial model category

# Consider the Bousfield localization with respect to the
Inclusions

s Chlar,...,ap] C Cylay,. .., ay)

\— s x C (x| J
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Cubical transition system

- .

# Wrong definition: colimits of cubes because
Cilz] U Chlz] and lim(Ch|x] < z — Ci[z]) must be two
non-isomorphic cubical transition systems
#® A cubical transition system is a weak HDTS X injective
w.r.t. the maps
s xCChlz|forz e X
s Cplai,...,a,]*** C Cylay,...,a,]) forn >0 and
A1, ...,0n € 2

# The full subcategory CTS is locally presentable,
coreflective, not concretely coreflective and not
topological

o -
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Homotopy theory iIn CT'S
B o

# A cofibration of cubical transition systems is a map
iInducing an injection on the set of actions

#® There exists a left-determined model category
structure on CT'S with respect to the class of
cofibrations

s l.e. the smallest localizer with respect to the
cofibrations is the class of weak equivalences of a
model category structure

s A left proper combinatorial model category

# The adjunction CTS = WHDTS is a Quillen
equivalence

o -
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The homotopy category of WHDT'S

- .

# The canonical map X — 1 functorially factors as a
composite

X — CSA(X) — 1

with X — CSA;(X) transfinite composition of pushouts
of C1 [:E] I—'@Cl[x] C1 [:E] — [:E] for x € X and CSAl(X)
safisfying CSAl

# The homotopy category of WHDTS Is equivalent to

CTS[CSAl_l}: In particular, two weakly equivalent

cubical transition systems satisfying CSA1 (e.qg.
HDTS) are isomorphic

® Cy[z]UC x| — lim(Cy|z] « 2z — Cq]z]) Is not a weak
equivalence !

o -
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Bousfield localizing w.r.t. Cub

- .

® There exists a model structure on WHDT'S such that
the homotopy category is CTS|[Cub™ ']

# [n this new model category, the map

Cilz|U Cilz] — lim(Chfz] — 2 — Cifz])

IS a weak equivalence

# This model structure is obtained by Bousfield localizing
WHDTS w.r.t. the class of maps

{g . X — Y s.t. Cub(¢’%) weak equivalence}

where (—)/ is the fibrant replacement functor

o -
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Path in a weak HDTS

- .

# A path is a cubical transition system such that:
s there is a unigue initial state
s there is a unique final state F

o there is a finite number of states, all reachable from
i

d

/A C

b b

o Class of paths denoted by P; a path froma CTS X is a
map P — X

o -
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Bisimulation in CTS

- .

# Let X and X’ be two CTS with set of states S and 5;
X’ simulates X if there exists a binary relation
R C S x S such that for every (a,a’) € R, for every
path P, for every map ¢: P — X such that ¢(I) = a,
there exists a map ¢ : P/ — X’ such that ¢/(I) = o’ and

such that (¢(F),d(F)) € R.

# (Usual definition) X and X’ are bisimilar if X’ simulates
X and X simulates X'.

# (Joyal-Nielsen-Winskel's definition) X and X’ are
bisimilar iff there exists a diagram of maps of cubical
transition systems X «— Z — X' such that the maps
7 — X and Z — X' both satisfies the RLP with respect
to the inclusion {I} C P for every path P

o -
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Homotopy and bisimulation

=

Two weakly equivalent cubical transition systems are
bisimilar

Two weakly equivalent weak HDTS are not necessarily
bisimilar: e.g. Cyla1,...,a,]*" and Cylaq, ..., ay)

Some last remarks:
s Does the categorical equivalence

HDA},. = T"{(HDTS) nHDA” ~ HDTS[Cub ']

come from a Quillen equivalence ?

o Does the Bousfied localization w.r.t. the class of all
bisimulations exist ?
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