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Organization of the talk

1. Weak higher dimensional transition system (HDTS)

2. Labelled symmetric precubical set

3. Realizing a labelled symmetric precubical set as a
weak HDTS

4. Categorical equivalence

5. Homotopy theory of weak HDTS and bisimulation
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Concurrent execution of two actions
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{α, β, γ, δ} set of states and of 0-cubes

{(α, a, β), (β, b, γ), (α, b, δ), (δ, a, γ), (α, a, b, γ), (α, b, a, γ)}
set of transitions
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Weak HDTS

Σ a nonempty set of labels

A weak HDTS X = (S, µ : L→ Σ, T =
⋃

n>1 Tn) with set
of states S, set of actions L, labelling map µ, set of
n-transitions Tn ⊂ S × Ln × S with n > 1

Multiset axiom (α, u1, . . . , un, β) ∈ T implies
(α, uσ(1), . . . , uσ(n), β) ∈ T for every permutation σ

Coherence axiom if (α, u1, . . . , un, β),
(α, u1, . . . , up, ν1), (ν1, up+1, . . . , un, β),
(α, u1, . . . , up+q, ν2) and (ν2, up+q+1, . . . , un, β) belong
to T , then (ν1, up+1, . . . , up+q, ν2) ∈ T

Note: the Coherence axiom is automatically satisfied in
a cube
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The categoryWHDTS

X = (S, µ : L→ Σ, T =
⋃

n>1 Tn) and
X ′ = (S′, µ′ : L′ → Σ, T ′ =

⋃
n>1 T ′

n)

A map of weak HDTS f : X → X ′ consists of
a set map f0 : S → S′

a map f̃ ∈ (Set↓Σ)(µ, µ′)

such that if (α, u1, . . . , un, β) is a transition, then
(f0(α), f̃(u1), . . . , f̃(un), f0(β)) is a transition

The forgetful functor ω : WHDTS→ Set
{s}∪Σ :

ω(X) = (S, (µ−1(x))x∈Σ) is concrete topological

WHDTS is locally finitely presentable
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Two additional axioms

First Cattani-Sassone Axiom CSA1 If (α, u, β) and
(α, u′, β) are two transitions such that µ(u) = µ(u′), then

u = u′. Impossible situation: 0

u

��

u

?? 1

CSA1 always satisfied for concrete examples

Unique Intermediate State Axiom CSA2 for n > 2 and
1 6 p < n, for every transition (α, u1, . . . , un, β), there
exists a unique state ν such that (α, u1, . . . , up, ν) and
(ν, up+1, . . . , un, β) are transitions

CSA2 plays the role of the face maps in a
precubical set
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The categoryHDTS

HDTS : weak HDTS satisfying CSA1 and CSA2
HDTS locally finitely presentable, but not
topological
HDTS full reflective subcategory of WHDTS

The pure n-transition Cn[a1, . . . , an]ext

Set of states S = {I, F}

Set of actions L = {(a1, 1), . . . , (an, n)}

Labelling map µ(ai, i) = ai

T = {(I, (aσ(1), σ(1)), . . . , (aσ(n), σ(n)), F )}

The n-cube Cn[a1, . . . , an] is the reflection of
Cn[a1, . . . , an]ext: 2n states since {(a1, 1), . . . , (an, n)}
contains n elements
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Cattani-Sassone HDTS

A Cattani-Sassone HDTS is a HDTS with the
Coherence axiom replaced by CSA3 below

Third Cattani-Sassone axiom CSA3 if the nine tuples
(α, u1, . . . , un, β), (α, u1, . . . , up, ν1), (ν1, up+1, . . . , un, β),
(ν1, up+1, . . . , up+q, ν2), (ν2, up+q+1, . . . , un, β),
(α, u1, . . . , up+q, ν

′
2), (ν ′2, up+q+1, . . . , un, β),

(α, u1, . . . , up, ν
′
1) and (ν ′1, up+1, . . . , up+q, ν

′
2) are

transitions, then ν1 = ν ′1 and ν2 = ν ′2

The HDTS are the Cattani-Sassone HDTS

The Coherence axiom is the topological part of CSA3

The remaining part of CSA3 is algebraic and already
contained in CSA2
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HDTS as a small-orthogonality class

Every HDTS is orthogonal to the set of maps
Cn[a1, . . . , an]ext → Cn[a1, . . . , an] for n > 0 and
a1, . . . , an ∈ Σ

Every HDTS is orthogonal to the set of maps
C1[x] ⊔∂C1[x] C1[x]→ C1[x] for x ∈ Σ

Every weak HDTS orthogonal to the set of maps
Cn[a1, . . . , an]ext → Cn[a1, . . . , an] for n > 0 and
a1, . . . , an ∈ Σ satisfies CSA2

Every weak HDTS orthogonal to the set of maps
C1[x] ⊔∂C1[x] C1[x]→ C1[x] for x ∈ Σ satisfies CSA1

HDTS is a small-orthogonality class
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Symmetric precubical set

Symmetric precubical set
Family (Kn)n>0 of sets (x ∈ Kn is called a n-cube),
of face maps ∂α

i : Kn → Kn−1 satisfying the cubical
relations and of symmetry maps si : Kn → Kn with
1 6 i 6 n− 1 satisfying the Moore relations and
∂α

j si = si−1∂
α
j for j < i, ∂α

j si = ∂α
i+1 for j = i,

∂α
j si = ∂α

i for j = i + 1 and ∂α
j si = si∂

α
j for j > i + 1

The symmetric precubical set of labels

(!SΣ)0 = {()}

(!SΣ)n = Σn for n > 1

∂α
i (a1, . . . , an) = (a1, . . . , âi, . . . , an)

si(a1, . . . , an) = (a1, . . . , ai−1, ai+1, ai, ai+2, an)
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Labelled symmetric precubical set

Labelled symmetric precubical set: map K →!SΣ

The category �
op
S Set↓!SΣ is locally finitely

presentable

[n] = {0, 1}n, the n-cube �S [n] defined by: f ∈ �S [n]p
set map from [p] to [n] which is a composite of

δα
i (ǫ1, . . . , ǫr) = (ǫ1, . . . , [α]i, . . . , ǫr)

σi(ǫ1, . . . , ǫr) = (ǫ1, . . . , ǫi+1, ǫi, . . . , ǫr)

The labelled n-cube �S [a1, . . . , an] with a1, . . . , an ∈ Σ is
the map �S [n]→!SΣ which takes Id[n] to (a1, . . . , an)

The boundary ∂�S[a1, . . . , an] of �S[a1, . . . , an] is the
labelled n-cube with the n! n-cubes removed
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From precubical set to WHDTS

There exists an isomorphism of categories

T :
{

Cubes of �
op
S Set↓!SΣ

}
∼= {Cubes of HDTS}

T extended to a functor T : �
op
S Set↓!SΣ→WHDTS by

T(K) := lim
−→

�S [a1,...,an]→K

Cn[a1, . . . , an]

T : �
op
S Set↓!SΣ→WHDTS is a left adjoint

T is not faithful, not full and not essentially
surjective
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About faithfulness

For n > 2, the two maps
�S[a1, . . . , an] ⇉ �S [a1, . . . , an]⊔∂�S[a1,...,an]�S [a1, . . . , an]

have same image by T

IdCn[a1,...,an] : Cn[a1, . . . , an]→ Cn[a1, . . . , an]

The map (�op
S Set↓!SΣ)(K,L)→WHDTS(T(K), T(L))

is one-to-one when there exists at most one lift k

∂�S [a1, . . . , an] //
� _

��

L

�S [a1, . . . , an]

k

88q
q

q
q

q
q

for n > 2 and a1, . . . , an ∈ Σ HDA paradigm
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About the HDA paradigm

A labelled symmetric precubical set L satisfies the
HDA paradigm if and only if L is orthogonal to the
maps

�S[a1, . . . , an]⊔∂�S [a1,...,an]�S [a1, . . . , an]→ �S [a1, . . . , an]

for n > 2 and a1, . . . , an ∈ Σ

The full subcategory HDA
Σ of L satisfying the HDA

paradigm is reflective locally finitely presentable

The restriction functor T : HDA
Σ →WHDTS is faithful

It is not full, nor essentially surjective...
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About fullness (I)

Let C2[u, v] be the HDTS with set of states {α, β, ν0, ν2}

Let X be the image by T of

ν2

v

��?
??
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?

αw 88
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?
u // ν1

w

OO

v // β wee

ν0

u
??��������

The inclusion C2[u, v] ⊂ X does not come from a map
of labelled symmetric precubical sets since there are
no squares with the vertices α, β, ν0, ν2
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About fullness (II)

Let K and L be two labelled symmetric precubical sets
such that L satisfies the HDA paradigm and such that
T(L) satisfies the Unique intermediate state axiom.
Then the set map

(�op
S Set↓!SΣ)(K,L)

f 7→T(f)
// WHDTS(T(K), T(L))

is bijective
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About essential surjectivity

x = (∅, {x} ⊂ Σ, ∅) 6= T(∅) with x ∈ Σ




T(�1[x] ⊔�1[x])
x1−→
x2−→

6∼=





lim
−→

(C1[x]← x→ C1[x])
x
−→

x
−→

We must consider the categorical localization
HDTS[Cub−1] where

Cub(X) = lim
−→

Cn[a1,...,an]→X

Cn[a1, . . . , an]

Cub(∅) ∼= Cub(x)

Cub(T(�1[x] ⊔�1[x])) ∼= Cub lim
−→

(C1[x]← x→ C1[x])
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The category equivalence

A category equivalence

HDA
Σ
hdts := T

−1(HDTS) ∩HDA
Σ ≃ HDTS[Cub−1]

HDA
Σ
hdts is reflective locally finitely presentable in

HDA
Σ, and in �

op
S Set↓!SΣ

Note: a HDTS T(K) satisfies CSA1 if and only if K is
orthogonal to the maps �S [a] ⊔∂�S [a] �S[a]→ �S [a] for
a ∈ Σ

Question: is HDA
Σ
hdts a small-orthogonality class ?
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Homotopy theory of weak HDTS

A cofibration of weak HDTS is a map inducing an
injection on the set of actions

There exists a left-determined model category
structure on WHDTS with respect to the class of
cofibrations

i.e. the smallest localizer with respect to the
cofibrations is the class of weak equivalences of a
model category structure
A left proper combinatorial model category

Consider the Bousfield localization with respect to the
inclusions

Cn[a1, . . . , an]ext ⊂ Cn[a1, . . . , an]

x ⊂ C1[x]

About Higher Dimensional Transition Systems – p. 19/26



Cubical transition system

Wrong definition: colimits of cubes because
C1[x] ⊔ C1[x] and lim

−→
(C1[x]← x→ C1[x]) must be two

non-isomorphic cubical transition systems

A cubical transition system is a weak HDTS X injective
w.r.t. the maps

x ⊂ C1[x] for x ∈ Σ

Cn[a1, . . . , an]ext ⊂ Cn[a1, . . . , an] for n > 0 and
a1, . . . , an ∈ Σ

The full subcategory CTS is locally presentable,
coreflective, not concretely coreflective and not
topological
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Homotopy theory in CTS

A cofibration of cubical transition systems is a map
inducing an injection on the set of actions

There exists a left-determined model category
structure on CTS with respect to the class of
cofibrations

i.e. the smallest localizer with respect to the
cofibrations is the class of weak equivalences of a
model category structure
A left proper combinatorial model category

The adjunction CTS ⇆ WHDTS is a Quillen
equivalence
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The homotopy category ofWHDTS

The canonical map X → 1 functorially factors as a
composite

X −→ CSA1(X) −→ 1

with X → CSA1(X) transfinite composition of pushouts
of C1[x] ⊔∂C1[x] C1[x]→ C1[x] for x ∈ Σ and CSA1(X)

safisfying CSA1

The homotopy category of WHDTS is equivalent to
CTS[CSA−1

1 ]: in particular, two weakly equivalent
cubical transition systems satisfying CSA1 (e.g.
HDTS) are isomorphic

C1[x] ⊔ C1[x]→ lim
−→

(C1[x]← x→ C1[x]) is not a weak
equivalence !
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Bousfield localizing w.r.t. Cub

There exists a model structure on WHDTS such that
the homotopy category is CTS[Cub−1]

In this new model category, the map

C1[x] ⊔ C1[x]→ lim
−→

(C1[x]← x→ C1[x])

is a weak equivalence

This model structure is obtained by Bousfield localizing
WHDTS w.r.t. the class of maps

{
g : X → Y s.t. Cub(gfib) weak equivalence

}

where (−)fib is the fibrant replacement functor
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Path in a weak HDTS

A path is a cubical transition system such that:
there is a unique initial state I

there is a unique final state F

there is a finite number of states, all reachable from
I

a

a

a

b b

c c c

d

d

Class of paths denoted by P; a path from a CTS X is a
map P → X
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Bisimulation in CTS

Let X and X ′ be two CTS with set of states S and S′;
X ′ simulates X if there exists a binary relation
R ⊂ S × S′ such that for every (α, α′) ∈ R, for every
path P , for every map c : P → X such that c(I) = α,
there exists a map c′ : P ′ → X ′ such that c′(I) = α′ and
such that (c(F ), c′(F )) ∈ R.

(Usual definition) X and X ′ are bisimilar if X ′ simulates
X and X simulates X ′.

(Joyal-Nielsen-Winskel’s definition) X and X ′ are
bisimilar iff there exists a diagram of maps of cubical
transition systems X ← Z → X ′ such that the maps
Z → X and Z → X ′ both satisfies the RLP with respect
to the inclusion {I} ⊂ P for every path P
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Homotopy and bisimulation

Two weakly equivalent cubical transition systems are
bisimilar

Two weakly equivalent weak HDTS are not necessarily
bisimilar: e.g. Cn[a1, . . . , an]ext and Cn[a1, . . . , an]

Some last remarks:
Does the categorical equivalence

HDA
Σ
hdts := T

−1(HDTS) ∩HDA
Σ ≃ HDTS[Cub−1]

come from a Quillen equivalence ?
Does the Bousfied localization w.r.t. the class of all
bisimulations exist ?
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