About Higher Dimensional Transition Systems

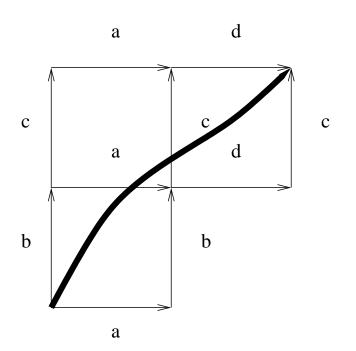
Philippe Gaucher http://www.pps.jussieu.fr/~gaucher

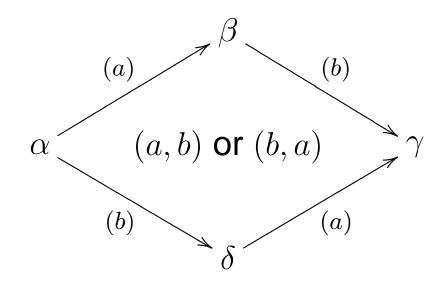
Preuves, Programmes et Systèmes, CNRS UMR 7126 et Paris 7

Organization of the talk

- 1. Weak higher dimensional transition system (HDTS)
- 2. Labelled symmetric precubical set
- Realizing a labelled symmetric precubical set as a weak HDTS
- 4. Categorical equivalence
- 5. Homotopy theory of weak HDTS and bisimulation

Concurrent execution of two actions





- $\{\alpha, \beta, \gamma, \delta\}$ set of states and of 0-cubes

Weak HDTS

- $oldsymbol{\triangleright}$ Σ a nonempty set of labels
- A weak HDTS $X = (S, \mu : L \to \Sigma, T = \bigcup_{n \geqslant 1} T_n)$ with set of states S, set of actions L, labelling map μ , set of n-transitions $T_n \subset S \times L^n \times S$ with $n \geqslant 1$
 - Multiset axiom $(\alpha, u_1, \dots, u_n, \beta) \in T$ implies $(\alpha, u_{\sigma(1)}, \dots, u_{\sigma(n)}, \beta) \in T$ for every permutation σ
 - Coherence axiom if $(\alpha, u_1, \ldots, u_n, \beta)$, $(\alpha, u_1, \ldots, u_p, \nu_1)$, $(\nu_1, u_{p+1}, \ldots, u_n, \beta)$, $(\alpha, u_1, \ldots, u_{p+q}, \nu_2)$ and $(\nu_2, u_{p+q+1}, \ldots, u_n, \beta)$ belong to T, then $(\nu_1, u_{p+1}, \ldots, u_{p+q}, \nu_2) \in T$
- Note: the Coherence axiom is automatically satisfied in a cube

The category WHDTS

- $X = (S, \mu : L \to \Sigma, T = \bigcup_{n \geqslant 1} T_n) \text{ and }$ $X' = (S', \mu' : L' \to \Sigma, T' = \bigcup_{n \geqslant 1} T'_n)$
- **●** A map of weak HDTS $f: X \to X'$ consists of
 - a set map $f_0: S \to S'$
 - a map $\widetilde{f} \in (\mathbf{Set} \downarrow \Sigma)(\mu, \mu')$ such that if $(\alpha, u_1, \dots, u_n, \beta)$ is a transition, then $(f_0(\alpha), \widetilde{f}(u_1), \dots, \widetilde{f}(u_n), f_0(\beta))$ is a transition
- The forgetful functor $\omega: \mathbf{WHDTS} \to \mathbf{Set}^{\{s\} \cup \Sigma}$: $\omega(X) = (S, (\mu^{-1}(x))_{x \in \Sigma})$ is concrete topological
- WHDTS is locally finitely presentable

Two additional axioms

• First Cattani-Sassone Axiom CSA1 If (α, u, β) and (α, u', β) are two transitions such that $\mu(u) = \mu(u')$, then

$$u=u'$$
. Impossible situation: 0

- CSA1 always satisfied for concrete examples
- Unique Intermediate State Axiom CSA2 for $n \geqslant 2$ and $1 \leqslant p < n$, for every transition $(\alpha, u_1, \ldots, u_n, \beta)$, there exists a unique state ν such that $(\alpha, u_1, \ldots, u_p, \nu)$ and $(\nu, u_{p+1}, \ldots, u_n, \beta)$ are transitions
 - CSA2 plays the role of the face maps in a precubical set

The category HDTS

- HDTS: weak HDTS satisfying CSA1 and CSA2
 - HDTS locally finitely presentable, but not topological
 - HDTS full reflective subcategory of WHDTS
- The pure *n*-transition $C_n[a_1,\ldots,a_n]^{ext}$
 - Set of states $S = \{I, F\}$
 - Set of actions $L = \{(a_1, 1), \dots, (a_n, n)\}$
 - Labelling map $\mu(a_i, i) = a_i$
 - $T = \{(I, (a_{\sigma(1)}, \sigma(1)), \dots, (a_{\sigma(n)}, \sigma(n)), F)\}$
- The *n*-cube $C_n[a_1,\ldots,a_n]$ is the reflection of $C_n[a_1,\ldots,a_n]^{ext}$: 2^n states since $\{(a_1,1),\ldots,(a_n,n)\}$ contains n elements

Cattani-Sassone HDTS

- A Cattani-Sassone HDTS is a HDTS with the Coherence axiom replaced by CSA3 below
- Third Cattani-Sassone axiom CSA3 if the nine tuples

$$(\alpha, u_1, \dots, u_n, \beta)$$
, $(\alpha, u_1, \dots, u_p, \nu_1)$, $(\nu_1, u_{p+1}, \dots, u_n, \beta)$, $(\nu_1, u_{p+1}, \dots, u_{p+q}, \nu_2)$, $(\nu_2, u_{p+q+1}, \dots, u_n, \beta)$, $(\alpha, u_1, \dots, u_{p+q}, \nu_2')$, $(\nu_2', u_{p+q+1}, \dots, u_n, \beta)$, $(\alpha, u_1, \dots, u_p, \nu_1')$ and $(\nu_1', u_{p+1}, \dots, u_{p+q}, \nu_2')$ are transitions, then $\nu_1 = \nu_1'$ and $\nu_2 = \nu_2'$

- The HDTS are the Cattani-Sassone HDTS
- The Coherence axiom is the topological part of CSA3
- The remaining part of CSA3 is algebraic and already contained in CSA2

HDTS as a small-orthogonality class

- Every HDTS is orthogonal to the set of maps $C_n[a_1,\ldots,a_n]^{ext} \to C_n[a_1,\ldots,a_n]$ for $n\geqslant 0$ and $a_1,\ldots,a_n\in \Sigma$
- Every HDTS is orthogonal to the set of maps $C_1[x] \sqcup_{\partial C_1[x]} C_1[x] \to C_1[x]$ for $x \in \Sigma$
- Every weak HDTS orthogonal to the set of maps $C_n[a_1,\ldots,a_n]^{ext} \to C_n[a_1,\ldots,a_n]$ for $n \geqslant 0$ and $a_1,\ldots,a_n \in \Sigma$ satisfies CSA2
- Every weak HDTS orthogonal to the set of maps $C_1[x] \sqcup_{\partial C_1[x]} C_1[x] \to C_1[x]$ for $x \in \Sigma$ satisfies CSA1
- HDTS is a small-orthogonality class

Symmetric precubical set

Symmetric precubical set

- Family $(K_n)_{n\geqslant 0}$ of sets $(x\in K_n \text{ is called a }n\text{-cube})$, of face maps $\partial_i^\alpha:K_n\to K_{n-1}$ satisfying the cubical relations and of symmetry maps $s_i:K_n\to K_n$ with $1\leqslant i\leqslant n-1$ satisfying the Moore relations and $\partial_j^\alpha s_i=s_{i-1}\partial_j^\alpha$ for j< i, $\partial_j^\alpha s_i=\partial_{i+1}^\alpha$ for j=i, $\partial_i^\alpha s_i=\partial_i^\alpha$ for j=i+1 and $\partial_j^\alpha s_i=s_i\partial_i^\alpha$ for j>i+1
- The symmetric precubical set of labels
 - $(!^S\Sigma)_0 = \{()\}$
 - $(!^S\Sigma)_n = \Sigma^n \text{ for } n \geqslant 1$

 - $s_i(a_1,\ldots,a_n)=(a_1,\ldots,a_{i-1},a_{i+1},a_i,a_{i+2},a_n)$

Labelled symmetric precubical set

- **●** Labelled symmetric precubical set: map $K \rightarrow !^S \Sigma$
 - The category $\Box_S^{op}\mathbf{Set}{\downarrow}!^S\Sigma$ is locally finitely presentable
- $[n] = \{0,1\}^n$, the n-cube $\square_S[n]$ defined by: $f \in \square_S[n]_p$ set map from [p] to [n] which is a composite of
- The labelled n-cube $\square_S[a_1,\ldots,a_n]$ with $a_1,\ldots,a_n\in\Sigma$ is the map $\square_S[n]\to !^S\Sigma$ which takes $\mathrm{Id}_{[n]}$ to (a_1,\ldots,a_n)
- The boundary $\partial \Box_S[a_1,\ldots,a_n]$ of $\Box_S[a_1,\ldots,a_n]$ is the labelled n-cube with the n! n-cubes removed

From precubical set to WHDTS

There exists an isomorphism of categories

$$\mathbb{T}: \left\{ \mathsf{Cubes} \; \mathsf{of} \; \Box_S^{op} \mathbf{Set} {\downarrow} !^S \Sigma \right\} \cong \left\{ \mathsf{Cubes} \; \mathsf{of} \; \mathbf{HDTS} \right\}$$

• \mathbb{T} extended to a functor $\mathbb{T}:\Box_S^{op}\mathbf{Set}{\downarrow}!^S\Sigma \to \mathbf{WHDTS}$ by

$$\mathbb{T}(K) := \underbrace{\lim}_{\Box_S[a_1, \dots, a_n] \to K} C_n[a_1, \dots, a_n]$$

- $\mathbb{T}: \Box_S^{op}\mathbf{Set}{\downarrow}!^S\Sigma \to \mathbf{WHDTS}$ is a left adjoint
- ullet T is not faithful, not full and not essentially surjective

About faithfulness

• For $n \geqslant 2$, the two maps

$$\Box_S[a_1,\ldots,a_n] \rightrightarrows \Box_S[a_1,\ldots,a_n] \sqcup_{\partial \Box_S[a_1,\ldots,a_n]} \Box_S[a_1,\ldots,a_n]$$
 have same image by \mathbb{T} $\mathrm{Id}_{C_n[a_1,\ldots,a_n]}:C_n[a_1,\ldots,a_n] \to C_n[a_1,\ldots,a_n]$

■ The map $(\Box_S^{op}\mathbf{Set} \downarrow !^S\Sigma)(K,L) \to \mathbf{WHDTS}(\mathbb{T}(K),\mathbb{T}(L))$ is one-to-one when there exists at most one lift k

$$\partial \Box_S[a_1, \dots, a_n] \xrightarrow{k} L$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$

$$\Box_S[a_1, \dots, a_n]$$

for $n \geqslant 2$ and $a_1, \ldots, a_n \in \Sigma$ HDA paradigm

About the HDA paradigm

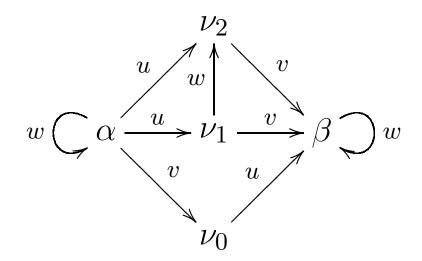
A labelled symmetric precubical set L satisfies the HDA paradigm if and only if L is orthogonal to the maps

$$\square_S[a_1,\ldots,a_n] \sqcup_{\partial \square_S[a_1,\ldots,a_n]} \square_S[a_1,\ldots,a_n] \to \square_S[a_1,\ldots,a_n]$$

- for $n \geqslant 2$ and $a_1, \ldots, a_n \in \Sigma$
- The full subcategory \mathbf{HDA}^{Σ} of L satisfying the HDA paradigm is reflective locally finitely presentable
- The restriction functor $\mathbb{T}:\mathbf{HDA}^\Sigma\to\mathbf{WHDTS}$ is faithful
- It is not full, nor essentially surjective...

About fullness (I)

- Let $C_2[u,v]$ be the HDTS with set of states $\{\alpha,\beta,\nu_0,\nu_2\}$
- Let X be the image by \mathbb{T} of



• The inclusion $C_2[u,v] \subset X$ does not come from a map of labelled symmetric precubical sets since there are no squares with the vertices $\alpha, \beta, \nu_0, \nu_2$

About fullness (II)

• Let K and L be two labelled symmetric precubical sets such that L satisfies the HDA paradigm and such that $\mathbb{T}(L)$ satisfies the Unique intermediate state axiom. Then the set map

$$(\Box_S^{op}\mathbf{Set}\downarrow !^S\Sigma)(K,L) \xrightarrow{f\mapsto \mathbb{T}(f)} \mathbf{WHDTS}(\mathbb{T}(K),\mathbb{T}(L))$$

is bijective

About essential surjectivity

 $\underline{x} = (\varnothing, \{x\} \subset \Sigma, \varnothing) \neq \mathbb{T}(\varnothing) \text{ with } x \in \Sigma$

We must consider the categorical localization HDTS[Cub⁻¹] where

$$\underline{\operatorname{Cub}}(X) = \varinjlim_{C_n[a_1, \dots, a_n] \to X} C_n[a_1, \dots, a_n]$$

- $\underline{\operatorname{Cub}}(\varnothing) \cong \underline{\operatorname{Cub}}(\underline{x})$
- $\underline{\text{Cub}}(\mathbb{T}(\Box_1[x] \sqcup \Box_1[x])) \cong \underline{\text{Cub}} \varinjlim (C_1[x] \leftarrow \underline{x} \to C_1[x])$

The category equivalence

A category equivalence

$$\mathbf{HDA}_{hdts}^{\Sigma} := \mathbb{T}^{-1}(\mathbf{HDTS}) \cap \mathbf{HDA}^{\Sigma} \simeq \mathbf{HDTS}[\underline{\mathrm{Cub}}^{-1}]$$

- $\mathbf{HDA}_{hdts}^{\Sigma}$ is reflective locally finitely presentable in \mathbf{HDA}^{Σ} , and in $\Box_{S}^{op}\mathbf{Set}{\downarrow}!^{S}\Sigma$
- Note: a HDTS $\mathbb{T}(K)$ satisfies CSA1 if and only if K is orthogonal to the maps $\Box_S[a] \sqcup_{\partial \Box_S[a]} \Box_S[a] \to \Box_S[a]$ for $a \in \Sigma$
- Question: is $\mathbf{HDA}^{\Sigma}_{hdts}$ a small-orthogonality class?

Homotopy theory of weak HDTS

- A cofibration of weak HDTS is a map inducing an injection on the set of actions
- There exists a left-determined model category structure on WHDTS with respect to the class of cofibrations
 - i.e. the smallest localizer with respect to the cofibrations is the class of weak equivalences of a model category structure
 - A left proper combinatorial model category
- Consider the Bousfield localization with respect to the inclusions

•
$$C_n[a_1,\ldots,a_n]^{ext} \subset C_n[a_1,\ldots,a_n]$$

•
$$\underline{x} \subset C_1[x]$$

Cubical transition system

- Wrong definition: colimits of cubes because $C_1[x] \sqcup C_1[x]$ and $\varinjlim (C_1[x] \leftarrow \underline{x} \rightarrow C_1[x])$ must be two non-isomorphic cubical transition systems
- A cubical transition system is a weak HDTS X injective w.r.t. the maps
 - $\underline{x} \subset C_1[x]$ for $x \in \Sigma$
 - $C_n[a_1,\ldots,a_n]^{ext}\subset C_n[a_1,\ldots,a_n]$ for $n\geqslant 0$ and $a_1,\ldots,a_n\in \Sigma$
- The full subcategory CTS is locally presentable, coreflective, not concretely coreflective and not topological

Homotopy theory in CTS

- A cofibration of cubical transition systems is a map inducing an injection on the set of actions
- There exists a left-determined model category structure on CTS with respect to the class of cofibrations
 - i.e. the smallest localizer with respect to the cofibrations is the class of weak equivalences of a model category structure
 - A left proper combinatorial model category
- The adjunction CTS

 WHDTS is a Quillen equivalence

The homotopy category of WHDTS

• The canonical map $X \to \mathbf{1}$ functorially factors as a composite

$$X \longrightarrow \mathrm{CSA}_1(X) \longrightarrow \mathbf{1}$$

with $X \to \mathrm{CSA}_1(X)$ transfinite composition of pushouts of $C_1[x] \sqcup_{\partial C_1[x]} C_1[x] \to C_1[x]$ for $x \in \Sigma$ and $\mathrm{CSA}_1(X)$ safisfying CSA1

- The homotopy category of WHDTS is equivalent to CTS[CSA₁⁻¹]: in particular, two weakly equivalent cubical transition systems satisfying CSA1 (e.g. HDTS) are isomorphic
- $C_1[x] \sqcup C_1[x] \to \varinjlim(C_1[x] \leftarrow \underline{x} \to C_1[x])$ is not a weak equivalence!

Bousfield localizing w.r.t. Cub

- There exists a model structure on WHDTS such that the homotopy category is $\mathbf{CTS}[\underline{\mathrm{Cub}}^{-1}]$
- In this new model category, the map

$$C_1[x] \sqcup C_1[x] \to \underline{\lim}(C_1[x] \leftarrow \underline{x} \to C_1[x])$$

is a weak equivalence

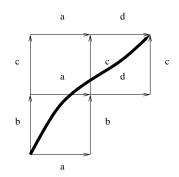
This model structure is obtained by Bousfield localizing WHDTS w.r.t. the class of maps

$$\left\{g:X\to Y \text{ s.t. } \underline{\operatorname{Cub}}(g^{fib}) \text{ weak equivalence}\right\}$$

where $(-)^{fib}$ is the fibrant replacement functor

Path in a weak HDTS

- A path is a cubical transition system such that:
 - there is a unique initial state I
 - there is a unique final state F
 - there is a finite number of states, all reachable from $\it I$



• Class of paths denoted by \mathcal{P} ; a path from a CTS X is a map $P \to X$

Bisimulation in CTS

- Let X and X' be two CTS with set of states S and S'; X' simulates X if there exists a binary relation $\mathcal{R} \subset S \times S'$ such that for every $(\alpha, \alpha') \in \mathcal{R}$, for every path P, for every map $c: P \to X$ such that $c(I) = \alpha$, there exists a map $c': P' \to X'$ such that $c'(I) = \alpha'$ and such that $(c(F), c'(F)) \in \mathcal{R}$.
- (Usual definition) X and X' are bisimilar if X' simulates X and X simulates X'.
- (Joyal-Nielsen-Winskel's definition) X and X' are bisimilar iff there exists a diagram of maps of cubical transition systems $X \leftarrow Z \rightarrow X'$ such that the maps $Z \rightarrow X$ and $Z \rightarrow X'$ both satisfies the RLP with respect to the inclusion $\{I\} \subset P$ for every path P

Homotopy and bisimulation

- Two weakly equivalent cubical transition systems are bisimilar
- Two weakly equivalent weak HDTS are not necessarily bisimilar: e.g. $C_n[a_1, \ldots, a_n]^{ext}$ and $C_n[a_1, \ldots, a_n]$
- Some last remarks:
 - Does the categorical equivalence

$$\mathbf{HDA}_{hdts}^{\Sigma} := \mathbb{T}^{-1}(\mathbf{HDTS}) \cap \mathbf{HDA}^{\Sigma} \simeq \mathbf{HDTS}[\underline{\mathrm{Cub}}^{-1}]$$

- come from a Quillen equivalence?
- Does the Bousfied localization w.r.t. the class of all bisimulations exist?