
Cubical Sets and Petri Nets: an Adjunction

Samuel Mimram

MeASI – CEA Saclay

11 january 2010

1 / 34

Concurrent computations

Programs tend to be concurrent

I processes, multi-core processors, networks, etc.

This raises new problems

I concurrent accesses to resources

I deadlocks

I etc.

A geometrical approach

I in order to regulate and verify concurrent programs,
we should study their geometry

2 / 34

An adjunction

Petri nets ←→ Cubical Sets

a very well-known a geometrical
and studied model model

pn(C)→ N

C → cs(N)

3 / 34

An adjunction

Petri nets ←→ Cubical Sets

a very well-known a geometrical
and studied model model

pn(C)→ N

C → cs(N)

3 / 34

Petri nets

An abstract representation of processes focused on resources:

a

Petri net: a graph whose vertices are either

I places (containing tokens)

I events (or transitions)

4 / 34

Petri nets

An abstract representation of processes focused on resources:

a

Petri net: a graph whose vertices are either

I places (containing tokens)

I events (or transitions)

4 / 34

Petri nets

An abstract representation of processes focused on resources:

a

Petri net: a graph whose vertices are either

I places (containing tokens)

I events (or transitions)

4 / 34

Typical situations

Petri nets can express causality:

a

b

Possible runs:

ab

5 / 34

Typical situations

Petri nets can express causality:

a

b

Possible runs: a

5 / 34

Typical situations

Petri nets can express causality:

a

b

Possible runs: ab

5 / 34

Typical situations

Petri nets can express conflict:

a b

Possible runs:

a or b

6 / 34

Typical situations

Petri nets can express conflict:

a b

a b

Possible runs: a

or b

6 / 34

Typical situations

Petri nets can express conflict:

a b

a b

Possible runs: a or b

6 / 34

Typical situations

Petri nets can express independence:

a b

Possible runs: ab or ba or aa or bb

7 / 34

Typical situations

Petri nets can express independence:

a b

Possible runs: ab or ba or aa or bb

7 / 34

Typical situations

Petri nets can express independence:

a b

Possible runs: ab or ba or aa or bb

7 / 34

Typical situations

Petri nets can express loops:

a

Possible runs: aaaaaaa . . .

8 / 34

Taking multiplicities in account

More generally we consider nets in which a transition might need
or produce multiple tokens of the same place:

a

2 1

2

9 / 34

Taking multiplicities in account

More generally we consider nets in which a transition might need
or produce multiple tokens of the same place:

a

2 1

2

9 / 34

Petri nets, formally

A Petri net (P,M0,E , pre,post) consists of

I a set P of places

I an initial marking M0 ∈ NP

I a set E of events (or transitions)

I a precondition function pre : E → NP

I a postcondition function post : E → NP

10 / 34

Transitions
States
The “state” of a Petri net is a marking M ∈ NP .

Transitions
Given an event e and two markings M1 and M2, there is a
transition

M1
e−→ M2

when there exists a marking M such that

M1 = M + pre(e) and M2 = M + post(e)

Runs
A run

M0
e1−→ M1

e2−→ M2 . . .Mn−1
en−→ Mn

is a finite sequence of transitions from the initial marking M0.

11 / 34

Transitions
States
The “state” of a Petri net is a marking M ∈ NP .

Transitions
Given an event e and two markings M1 and M2, there is a
transition

M1
e−→ M2

when there exists a marking M such that

M1 = M + pre(e) and M2 = M + post(e)

Runs
A run

M0
e1−→ M1

e2−→ M2 . . .Mn−1
en−→ Mn

is a finite sequence of transitions from the initial marking M0.

11 / 34

Transitions
States
The “state” of a Petri net is a marking M ∈ NP .

Transitions
Given an event e and two markings M1 and M2, there is a
transition

M1
e−→ M2

when there exists a marking M such that

M1 = M + pre(e) and M2 = M + post(e)

Runs
A run

M0
e1−→ M1

e2−→ M2 . . .Mn−1
en−→ Mn

is a finite sequence of transitions from the initial marking M0.
11 / 34

Semantics of Petri nets
To every Petri net N we want to associate a semantics JNK which
describes precisely the dynamic behavior of the net.

Idea 1
JNK should be the set of words of events labeling a run of N.

a b

JNK = { ε, a, b, ab, ba, aa, bb }

I We loose too much structure by forgetting about states!

12 / 34

Semantics of Petri nets
To every Petri net N we want to associate a semantics JNK which
describes precisely the dynamic behavior of the net.

Idea 1
JNK should be the set of words of events labeling a run of N.

a b

JNK = { ε, a, b, ab, ba, aa, bb }

I We loose too much structure by forgetting about states!

12 / 34

Semantics of Petri nets
To every Petri net N we want to associate a semantics JNK which
describes precisely the dynamic behavior of the net.

Idea 1
JNK should be the set of words of events labeling a run of N.

a b

JNK = { ε, a, b, ab, ba, aa, bb }

I We loose too much structure by forgetting about states!

12 / 34

Semantics of Petri nets

Idea 2
JNK should be a graph whose

I vertices are reachable markings

I edges are transitions, labelled by events

I We loose structure by forgetting about concurrency!

13 / 34

Semantics of Petri nets

Idea 2
JNK should be a graph whose

I vertices are reachable markings

I edges are transitions, labelled by events

a b

7→

z1 z z2

y1

a

OO

b

??~~~~~~~~
y2

b

``@@@@@@@@
a

OO

x

a

``AAAAAAA b

>>}}}}}}}

I We loose structure by forgetting about concurrency!

13 / 34

Semantics of Petri nets

Idea 2
JNK should be a graph whose

I vertices are reachable markings

I edges are transitions, labelled by events

a b

7→

z

y1

a
66

b

GG

y2
b

WW
a

hh

x

a

``AAAAAAA b

>>}}}}}}}

I We loose structure by forgetting about concurrency!

13 / 34

Semantics of Petri nets

Idea 2
JNK should be a graph whose

I vertices are reachable markings

I edges are transitions, labelled by events

a b

7→

z

y1

a
66

b

GG

y2
b

WW
a

hh

x

a

``AAAAAAA b

>>}}}}}}}

I We loose structure by forgetting about concurrency!

13 / 34

Taking concurrency in account

a b

vs.

a b

b
??�������

a
__???????

a

__??????? b

??�������

vs.

b
??�������

a
__???????

a

__??????? b

??�������

(x := 3 | x := 4) vs. (x := 3 | y := 4)

14 / 34

Taking concurrency in account

a b

vs.

a b

b
??�������

a
__???????

a

__??????? b

??�������

vs.

b
??�������

a
__???????

a

__??????? b

??�������

(x := 3 | x := 4) vs. (x := 3 | y := 4)

14 / 34

Taking concurrency in account

a b

vs.

a b

b
??�������

a
__???????

a

__??????? b

??�������

vs.

b
??������� ∼

a
__???????

a

__??????? b

??�������

(x := 3 | x := 4) vs. (x := 3 | y := 4)

14 / 34

Taking concurrency in account
I We can now distinguish between an “empty square” and a

“filled square”.

I We should also go on in higher dimensions:

a b c

vs.

a b c

empty cube vs. filled cube

a

b
c

15 / 34

Taking concurrency in account
I We can now distinguish between an “empty square” and a

“filled square”.
I We should also go on in higher dimensions:

a b c

vs.

a b c

empty cube vs. filled cube

a

b
c

15 / 34

From Petri nets to Cubical Sets

So, to every Petri net we associate a
Cubical Set

which is like a simplicial set with squares instead of triangles

whose arrows are labeled by events
with an initial position.

16 / 34

From Petri nets to Cubical Sets

So, to every Petri net we associate a
Cubical Set

which is like a simplicial set with squares instead of triangles
whose arrows are labeled by events

with an initial position.

16 / 34

From Petri nets to Cubical Sets

So, to every Petri net we associate a
Cubical Set

which is like a simplicial set with squares instead of triangles
whose arrows are labeled by events

with an initial position.

16 / 34

Simplicial sets

I Recall that a (augmented) simplicial set is a
functor S : ∆op → Set.

I ∆ is the category of finite ordinals and increasing functions.

I Geometric intuition:

0 1 2 3 . . .

. . .

I The arrows of ∆ are generated by

δni : n→ n + 1 and σn+1
i : n + 2→ n + 1

with n ∈ N and 0 ≤ i ≤ n, subject to equations

δn+1
i δnj = δn+1

j+1 δ
n
i . . .

17 / 34

Simplicial sets

I Recall that a (augmented) simplicial set is a
functor S : ∆op → Set.

I ∆ is the category of finite ordinals and increasing functions.

I Geometric intuition:

0 1 2 3 . . .

. . .

I The arrows of ∆ are generated by

δni : n→ n + 1 and σn+1
i : n + 2→ n + 1

with n ∈ N and 0 ≤ i ≤ n, subject to equations

δn+1
i δnj = δn+1

j+1 δ
n
i . . .

17 / 34

Cubical sets

I A cubical set is a functor C : �op → Set.

I Geometric intuition:

0 1 2 3 . . .

. . .

I The category � is generated by

ε−i : n→ n + 1 ε+i : n→ n + 1 ηi : n + 1→ n

source target degeneracy

18 / 34

Cubical sets

I A cubical set is a functor C : �op → Set.

I Geometric intuition:

0 1 2 3 . . .

. . .

I The category � is generated by

ε−i : n→ n + 1 ε+i : n→ n + 1 ηi : n + 1→ n

source target degeneracy

18 / 34

Cubical sets

I A cubical set is a functor C : �op → Set.

I Geometric intuition:

0 1 2 3 . . .

. . .

I The category � is generated by

ε−i : n→ n + 1 ε+i : n→ n + 1 ηi : n + 1→ n

source target degeneracy

18 / 34

The cubical category

The category � is the category generated by

ε−i : n→ n + 1 ε+i : n→ n + 1 ηi : n + 1→ n

subject to the equations

εαj ε
β
i = εβi ε

α
j−1 with i < j , α, β ∈ {−,+}

ηjηi = ηi−1ηj with i > j

ηjε
α
i =


εαi ηj−1 if i < j

id if i = j

εαi ηj if i > j

with α ∈ {−,+}

19 / 34

Labeled cubical sets

A labeled cubical set on an alphabet Σ is

I a cubical set C : �op → Set

I together with a labeling morphism λ : C → ! Σ

What should ! Σ look like if Σ = { a, b }?

z

y1

b
>>}}}}}}}
∼ y2

a
``AAAAAAA

x

a

``AAAAAAA b

>>}}}}}}}

! Σ(0) ! Σ(1) ! Σ(2) . . .

{ ∗ } { ∗, a, b } { ∗, a, b, ab, ba } . . .

20 / 34

Labeled cubical sets

A labeled cubical set on an alphabet Σ is

I a cubical set C : �op → Set

I together with a labeling morphism λ : C → ! Σ

What should ! Σ look like if Σ = { a, b }?

z

y1

b
>>}}}}}}}
∼ y2

a
``AAAAAAA

x

a

``AAAAAAA b

>>}}}}}}}

! Σ(0) ! Σ(1) ! Σ(2) . . .

{ ∗ } { ∗, a, b } { ∗, a, b, ab, ba } . . .

20 / 34

Labeled cubical sets

A labeled cubical set on an alphabet Σ is

I a cubical set C : �op → Set

I together with a labeling morphism λ : C → ! Σ

What should ! Σ look like if Σ = { a, b }?

z

y1

b
>>}}}}}}}
∼ y2

a
``AAAAAAA

x

a

``AAAAAAA b

>>}}}}}}}

! Σ(0)

! Σ(1) ! Σ(2) . . .

{ ∗ }

{ ∗, a, b } { ∗, a, b, ab, ba } . . .

20 / 34

Labeled cubical sets

A labeled cubical set on an alphabet Σ is

I a cubical set C : �op → Set

I together with a labeling morphism λ : C → ! Σ

What should ! Σ look like if Σ = { a, b }?

z

y1

b
>>}}}}}}}
∼ y2

a
``AAAAAAA

x

a

``AAAAAAA b

>>}}}}}}}

! Σ(0) ! Σ(1)

! Σ(2) . . .

{ ∗ } { ∗, a, b }

{ ∗, a, b, ab, ba } . . .

20 / 34

Labeled cubical sets

A labeled cubical set on an alphabet Σ is

I a cubical set C : �op → Set

I together with a labeling morphism λ : C → ! Σ

What should ! Σ look like if Σ = { a, b }?

z

y1

b
>>}}}}}}}
∼ y2

a
``AAAAAAA

x

a

``AAAAAAA b

>>}}}}}}}

! Σ(0) ! Σ(1) ! Σ(2)

. . .

{ ∗ } { ∗, a, b } { ∗, a, b, ab, ba }

. . .

20 / 34

Labeled cubical sets

A labeled cubical set on an alphabet Σ is

I a cubical set C : �op → Set

I together with a labeling morphism λ : C → ! Σ

What should ! Σ look like if Σ = { a, b }?

z

y1

b
>>}}}}}}}
∼ y2

a
``AAAAAAA

x

a

``AAAAAAA b

>>}}}}}}}

! Σ(0) ! Σ(1) ! Σ(2) . . .

{ ∗ } { ∗, a, b } { ∗, a, b, ab, ba } . . .

20 / 34

Technically

I Defining ! Σ involves
I defining all the ! Σ(n)
I defining the generators for maps
I verifying the equations.

I We have two possible labels for the preceding square.

21 / 34

A monoidal definition of cubical sets

The cubical category � is a monoidal category:

I We have a tensor product ⊗

I We also have a unit object: 0

22 / 34

A monoidal definition of cubical sets

The cubical category � is a monoidal category:

I We have a tensor product ⊗

m1
f // n1

I We also have a unit object: 0

22 / 34

A monoidal definition of cubical sets

The cubical category � is a monoidal category:

I We have a tensor product ⊗

m2
g // n2

m1
f // n1

I We also have a unit object: 0

22 / 34

A monoidal definition of cubical sets

The cubical category � is a monoidal category:

I We have a tensor product ⊗

m1 + m2
f⊗g // n1 + n2

I We also have a unit object: 0

22 / 34

A monoidal definition of cubical sets

The cubical category � is a monoidal category:

I We have a tensor product ⊗

m1 + m2
f⊗g // n1 + n2

I We also have a unit object: 0

22 / 34

A monoidal definition of cubical sets

The category � is the category generated by

ε−i : n→ n + 1 ε+i : n→ n + 1 ηi : n + 1→ n

subject to the equations

εαj ε
β
i = εβi ε

α
j−1 with i < j , α, β ∈ {−,+}

ηjηi = ηi−1ηj with i > j

ηjε
α
i =


εαi ηj−1 if i < j

id if i = j

εαi ηj if i > j

with α ∈ {−,+}

23 / 34

A monoidal definition of cubical sets

The category � is the monoidal category generated by

ε− : 0→ 1 ε+ : 0→ 1 η : 1→ 0

subject to the equations

η ◦ ε− = id0 = η ◦ ε+

23 / 34

A monoidal definition of cubical sets

I A monoidal functor between monoidal categories is a functor
which preserves tensor product.

I In particular, functors from � are often monoidal:
consider the functor F : �→ Top defined by

0 1 2 3 . . .

. . .

We have
F (2 + 1) = F (2)× F (1)

= ×

24 / 34

A monoidal definition of cubical sets

I A monoidal functor between monoidal categories is a functor
which preserves tensor product.

I In particular, functors from � are often monoidal:
consider the functor F : �→ Top defined by

0 1 2 3 . . .

. . .

We have
F (2 + 1) = F (2)× F (1)

= ×

24 / 34

A monoidal definition of cubical sets

I A monoidal functor between monoidal categories is a functor
which preserves tensor product.

I In particular, functors from � are often monoidal:
consider the functor F : �→ Top defined by

0 1 2 3 . . .

. . .

We have
F (2 + 1) = F (2)× F (1)

= ×

24 / 34

Cubical objects

A cubical set is a functor

C : �op → Set

When this functor is monoidal, this is exactly the same as a
cubical object.

Cubical objects
A cubical object (A, ε−, ε+, η) in a monoidal category C is an
object A of C together with morphisms

ε− : A→ I ε+ : A→ I η : I → A

such that
ε− ◦ η = idI = ε+ ◦ η

25 / 34

Cubical objects

A cubical set is a functor

C : �op → Set

When this functor is monoidal, this is exactly the same as a
cubical object.

Cubical objects
A cubical object (A, ε−, ε+, η) in a monoidal category C is an
object A of C together with morphisms

ε− : A→ I ε+ : A→ I η : I → A

such that
ε− ◦ η = idI = ε+ ◦ η

25 / 34

Cubical objects

Cubical objects
A cubical object (A, ε−, ε+, η) in a monoidal category C is an
object A of C together with morphisms

ε− : A→ I ε+ : A→ I η : I → A

such that
ε− ◦ η = idI = ε+ ◦ η

The labeling cubical set
(Set,×, 1) is a monoidal category.
The object 1 = {∗} is terminal in Set. Take

I η : 1→ (1 + Σ) the injection

I ε−, ε+ : (1 + Σ)→ 1 the terminal arrow

This defines the cubical set ! Σ.

25 / 34

Cubical objects

Cubical objects
A cubical object (A, ε−, ε+, η) in a monoidal category C is an
object A of C together with morphisms

ε− : A→ I ε+ : A→ I η : I → A

such that
ε− ◦ η = idI = ε+ ◦ η

The labeling cubical set
(Set,×, 1) is a monoidal category.
The object 1 = {∗} is terminal in Set. Take

I η : 1→ (1 + Σ) the injection

I ε−, ε+ : (1 + Σ)→ 1 the terminal arrow

This defines the cubical set ! Σ.

25 / 34

The labeling cubical set

We can give an explicit description of ! Σ:

I the elements of ! Σ(n) are words a1 · a2 · · · an

where ai ∈ Σ] {∗}
I ε−i , ε

+
i remove the i-th letter

I ηi inserts a ∗ at the i-th position

26 / 34

Symmetric cubical sets

Should we label the tile by ab or by ba?

z

y1

b
>>}}}}}}}
∼ y2

a
``AAAAAAA

x

a

``AAAAAAA b

>>}}}}}}}

In fact, we should keep both possibilities and remember that they
are “almost the same”: Set is a symmetric monoidal category

A× B ∼= B × A

27 / 34

Symmetric cubical sets

Should we label the tile by ab or by ba?

z

y1

b
>>}}}}}}}
∼ y2

a
``AAAAAAA

x

a

``AAAAAAA b

>>}}}}}}}

In fact, we should keep both possibilities and remember that they
are “almost the same”: Set is a symmetric monoidal category

A× B ∼= B × A

27 / 34

Symmetric cubical sets

A symmetric cubical set is a symmetric monoidal functor

C : �op
S → Set

where �S is the free symmetric monoidal category on �.

28 / 34

Symmetric cubical sets

The category �S is the symmetric monoidal category generated by

ε− : 0→ 1 ε+ : 0→ 1 η : 1→ 0

γ : 2→ 2

subject to the equations

η ◦ ε− = id0 = η ◦ ε+

(γ ⊗ 1) ◦ (1⊗ γ) ◦ (γ ⊗ 1) = (1⊗ γ) ◦ (γ ⊗ 1) ◦ (1⊗ γ)

γ ◦ γ = 2

(η ⊗ 1) ◦ γ = 1⊗ η
(1⊗ η) ◦ γ = η ⊗ 1

. . .

29 / 34

Symmetric cubical sets

The category �S is the monoidal category generated by

ε− : 0→ 1 ε+ : 0→ 1 η : 1→ 0 γ : 2→ 2

subject to the equations

η ◦ ε− = id0 = η ◦ ε+

(γ ⊗ 1) ◦ (1⊗ γ) ◦ (γ ⊗ 1) = (1⊗ γ) ◦ (γ ⊗ 1) ◦ (1⊗ γ)

γ ◦ γ = 2

(η ⊗ 1) ◦ γ = 1⊗ η
(1⊗ η) ◦ γ = η ⊗ 1

. . .

29 / 34

Higher-dimensional automata

To every, Petri net N we associate a higher-dimensional
automaton hda(N) consisting of

I a symmetric cubical set C

I labeled by events of the net λ : C → ! E

I with an initial position M0

30 / 34

Morphisms of Petri nets

I A morphism of cubical sets ϕ : C → C ′

sends n-cells to n-cells respecting source and target.

If ϕ(a) and ϕ(b) are causally dependent C ′,
a and b should be causally dependent in C

I A Petri net N = (P,M0,E ,pre,post) consists of
I a set P of places
I an initial marking M0 ∈ NP

I a set E of events
I a precondition function pre : E → NP

I a postcondition function post : E → NP

A morphism of Petri nets ϕ : N → N ′ should be a pair of
functions

I ϕP : P → P ′

I ϕE : E → E ′

preserving the initial marking, pre- and postconditions.

⇒ We cannot unfold Petri nets!

31 / 34

Morphisms of Petri nets

I A morphism of cubical sets ϕ : C → C ′

sends n-cells to n-cells respecting source and target.

If ϕ(a) and ϕ(b) are causally dependent C ′,
a and b should be causally dependent in C

I A Petri net N = (P,M0,E , pre,post) consists of
I a set P of places
I an initial marking M0 ∈ NP

I a set E of events
I a precondition function pre : E → NP

I a postcondition function post : E → NP

A morphism of Petri nets ϕ : N → N ′ should be a pair of
functions

I ϕP : P → P ′

I ϕE : E → E ′

preserving the initial marking, pre- and postconditions.

⇒ We cannot unfold Petri nets!

31 / 34

Morphisms of Petri nets

I A morphism of cubical sets ϕ : C → C ′

sends n-cells to n-cells respecting source and target.

If ϕ(a) and ϕ(b) are causally dependent C ′,
a and b should be causally dependent in C

I A Petri net N = (P,M0,E , pre,post) consists of
I a set P of places
I an initial marking M0 ∈ NP

I a set E of events
I a precondition function pre : E → NP

I a postcondition function post : E → NP

A morphism of Petri nets ϕ : N → N ′ should be a pair of
functions

I ϕP : P → P ′

I ϕE : E → E ′

preserving the initial marking, pre- and postconditions.

⇒ We cannot unfold Petri nets!

31 / 34

Morphisms of Petri nets

I A morphism of cubical sets ϕ : C → C ′

sends n-cells to n-cells respecting source and target.
If a and b are independent in C ,
ϕ(a) and ϕ(b) should be independent in C ′

I A Petri net N = (P,M0,E , pre,post) consists of
I a set P of places
I an initial marking M0 ∈ NP

I a set E of events
I a precondition function pre : E → NP

I a postcondition function post : E → NP

A morphism of Petri nets ϕ : N → N ′ should be a pair of
functions

I ϕP : P → P ′

I ϕE : E → E ′

preserving the initial marking, pre- and postconditions.

⇒ We cannot unfold Petri nets!

31 / 34

Morphisms of Petri nets

I A morphism of cubical sets ϕ : C → C ′

sends n-cells to n-cells respecting source and target.
If ϕ(a) and ϕ(b) are causally dependent C ′,
a and b should be causally dependent in C

I A Petri net N = (P,M0,E , pre,post) consists of
I a set P of places
I an initial marking M0 ∈ NP

I a set E of events
I a precondition function pre : E → NP

I a postcondition function post : E → NP

A morphism of Petri nets ϕ : N → N ′ should be a pair of
functions

I ϕP : P → P ′

I ϕE : E → E ′

preserving the initial marking, pre- and postconditions.

⇒ We cannot unfold Petri nets!

31 / 34

Morphisms of Petri nets

I A morphism of cubical sets ϕ : C → C ′

sends n-cells to n-cells respecting source and target.
If ϕ(a) and ϕ(b) are causally dependent C ′,
a and b should be causally dependent in C

I A Petri net N = (P,M0,E , pre,post) consists of
I a set P of places
I an initial marking M0 ∈ NP

I a set E of events
I a precondition function pre : E → NP

I a postcondition function post : E → NP

A morphism of Petri nets ϕ : N → N ′ should be a pair of
functions

I ϕP : P ← P ′

I ϕE : E → E ′

preserving the initial marking, pre- and postconditions.

⇒ We cannot unfold Petri nets!

31 / 34

Morphisms of Petri nets

I A morphism of cubical sets ϕ : C → C ′

sends n-cells to n-cells respecting source and target.
If ϕ(a) and ϕ(b) are causally dependent C ′,
a and b should be causally dependent in C

I A Petri net N = (P,M0,E , pre,post) consists of
I a set P of places
I an initial marking M0 ∈ NP

I a set E of events
I a precondition function pre : E → NP

I a postcondition function post : E → NP

A morphism of Petri nets ϕ : N → N ′ should be a pair of
functions

I ϕP : P ← P ′

I ϕE : E → E ′

preserving the initial marking, pre- and postconditions.
⇒ We cannot unfold Petri nets!

31 / 34

The adjunction

This way we get two categories

I higher-dimensional automata

I Petri nets

and an adjunction between them

pn(C)→ N

C → hda(N)

with

HDA

pn
,,⊥ PN

hda

ll

32 / 34

From HDA to Petri nets
To every HDA C , we associate a Petri net pn(C) whose

I events are labels of C

I places are regions R of C :
I for every 0-cell x , an integer R(x)
I for every label a, a pair of integers (R ′(a),R ′′(a))

such that for every 1-cell y ,

R ′(λ(y)) = R(ε−(y)) R ′′(λ(y)) = R(ε+(y)) . . .

−1, +0 −2, +3

z

3

y14

b
>>}}}}}}}
∼ y2

a
``AAAAAAA

2

x

a

``AAAAAAA b

>>}}}}}}}
−2, +3

3

−1, +0

33 / 34

From HDA to Petri nets
To every HDA C , we associate a Petri net pn(C) whose

I events are labels of C
I places are regions R of C :

I for every 0-cell x , an integer R(x)
I for every label a, a pair of integers (R ′(a),R ′′(a))

such that for every 1-cell y ,

R ′(λ(y)) = R(ε−(y)) R ′′(λ(y)) = R(ε+(y)) . . .

−1, +0 −2, +3

z

3

y14

b
>>}}}}}}}
∼ y2

a
``AAAAAAA

2

x

a

``AAAAAAA b

>>}}}}}}}
−2, +3

3

−1, +0

33 / 34

Results
An adjunction

I An extension Winskel’s “2-dimensional” adjunction between
safe Petri nets and asynchronous transition systems

I A cleaner setting (no partial functions for example)

I This adjunction is not very “precise”

I Project: relate models of parallelism in higher dimension
(Petri nets, HDA, event structures, . . .)

Future works
We can apply methods from topology:

I category of components

I homology

I . . .

and from Petri nets

I semi-linear invariants on places

I . . .

34 / 34

Results
An adjunction

I An extension Winskel’s “2-dimensional” adjunction between
safe Petri nets and asynchronous transition systems

I A cleaner setting (no partial functions for example)

I This adjunction is not very “precise”

I Project: relate models of parallelism in higher dimension
(Petri nets, HDA, event structures, . . .)

Future works
We can apply methods from topology:

I category of components

I homology

I . . .

and from Petri nets

I semi-linear invariants on places

I . . .
34 / 34

