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Concurrent computations

Programs tend to be concurrent

> processes, multi-core processors, networks, etc.

This raises new problems
» concurrent accesses to resources
» deadlocks

> etc.

A geometrical approach

» in order to regulate and verify concurrent programs,
we should study their geometry
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An adjunction

Petri nets

a very well-known
and studied model

+— Cubical Sets

a geometrical
model
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An adjunction

Petri nets «— Cubical Sets
a very well-known a geometrical
and studied model model
pn(C) — N

C — cs(N)
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Petri nets

An abstract representation of processes focused on resources:

O
o[

Petri net: a graph whose vertices are either
> places (containing tokens)

> events (or transitions)
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Typical situations

Petri nets can express causality:

OO0

Possible runs:
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Typical situations

Petri nets can express causality:

O+O5-O

Possible runs: ab
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Typical situations

Petri nets can express conflict:

oL [

jol

Possible runs:

6
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Typical situations

Petri nets can express conflict:

Possible runs: a
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Typical situations

Petri nets can express conflict:

Possible runs: a or b
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Typical situations

Petri nets can express independence:

Possible runs: ab or ba or aa or bb
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Typical situations

Petri nets can express independence:

Possible runs: ab or ba or aa or bb
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Typical situations

Petri nets can express independence:

Possible runs: ab or ba or aa or bb
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Typical situations

Petri nets can express loops:

Possible runs: aaaaaaa...
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Taking multiplicities in account

More generally we consider nets in which a transition might need
or produce multiple tokens of the same place:

34



Taking multiplicities in account

More generally we consider nets in which a transition might need
or produce multiple tokens of the same place:
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Petri nets, formally

A Petri net (P, My, E, pre, post) consists of

v

a set P of places

an initial marking My € NP

a set E of events (or transitions)

a precondition function pre : E — NP

a postcondition function post : E — NP
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Transitions

States
The “state” of a Petri net is a marking M € NP .
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Transitions

States
The “state” of a Petri net is a marking M € NP.

Transitions
Given an event e and two markings M; and M, there is a
transition

My -5 Mo

when there exists a marking M such that

M; = M +pre(e) and My = M + post(e)
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Transitions

States
The “state” of a Petri net is a marking M € NP.

Transitions
Given an event e and two markings M; and M, there is a
transition

My -5 Mo

when there exists a marking M such that

M; = M +pre(e) and My = M + post(e)

Runs
A run
er e €n
My — My — Mr... M,_1 — M,

is a finite sequence of transitions from the initial marking M.
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Semantics of Petri nets

To every Petri net N we want to associate a semantics [N] which
describes precisely the dynamic behavior of the net.
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Semantics of Petri nets

To every Petri net N we want to associate a semantics [N] which
describes precisely the dynamic behavior of the net.

Idea 1
[N] should be the set of words of events labeling a run of N.

[IN] = {e,a,b,ab,ba, aa bb}
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Semantics of Petri nets

To every Petri net N we want to associate a semantics [N] which
describes precisely the dynamic behavior of the net.

Idea 1
[N] should be the set of words of events labeling a run of N.

[IN] = {e,a,b,ab,ba, aa bb}

» We loose too much structure by forgetting about states!
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Semantics of Petri nets

Idea 2
[N] should be a graph whose

» vertices are reachable markings

» edges are transitions, labelled by events
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Semantics of Petri nets

Idea 2
[N] should be a graph whose

> vertices are reachable markings

> edges are transitions, labelled by events
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Semantics of Petri nets

Idea 2
[N] should be a graph whose

> vertices are reachable markings

> edges are transitions, labelled by events

oo z
A

X

13 /34



Semantics of Petri nets

Idea 2
[N] should be a graph whose

» vertices are reachable markings

» edges are transitions, labelled by events

oo z
A

» We loose structure by forgetting about concurrency!

X
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Taking concurrency in account

RS

2 S
N N

<
[}



Taking concurrency in account

A

2 S
N N

(x:=3|x:=4) VS. (x:=3|y:=4)



Taking concurrency in account

A

SN N
N N

(x:=3|x:=4) VS. (x:=3|y:=4)



Taking concurrency in account

» We can now distinguish between an “empty square” and a
“filled square”.
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Taking concurrency in account

» We can now distinguish between an “empty square” and a
“filled square”.
» We should also go on in higher dimensions:

a b c a b c
@ VS.
empty cube VS. filled cube

Nt - —|-

ey
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From Petri nets to Cubical Sets

So, to every Petri net we associate a
Cubical Set
which is like a simplicial set with squares instead of triangles
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So, to every Petri net we associate a
Cubical Set
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whose arrows are labeled by events
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From Petri nets to Cubical Sets

So, to every Petri net we associate a
Cubical Set
which is like a simplicial set with squares instead of triangles
whose arrows are labeled by events
with an initial position.

16 /34



Simplicial sets

> Recall that a (augmented) simplicial set is a

functor S : A°P — Set.
> A is the category of finite ordinals and increasing functions.
» Geometric intuition:

0 1 2 3

ALY
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Simplicial sets

> Recall that a (augmented) simplicial set is a
functor S : A°? — Set.

> A is the category of finite ordinals and increasing functions.

» Geometric intuition:

0 1 2 3

ANWAY

» The arrows of A are generated by

":n—n+1 and oM :in+2—-n+1
with n € N and 0 < j < n, subject to equations

n+lcn _ ¢n+lgn
orttor = amtlar
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Cubical sets

» A cubical set is a functor C : (0°° — Set.

» Geometric intuition:

0 1 2 3
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Cubical sets

» A cubical set is a functor C : (0°° — Set.

» Geometric intuition:

0 1 2 3

» The category [ is generated by

g, :n—n+1 87_

:n—n+1 ni:n+1l—n
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Cubical sets

» A cubical set is a functor C : (0°° — Set.

» Geometric intuition:

0 1 2 3

» The category [ is generated by

ai_:n—>n+1 5,*

:n—n+1 ni:n+1l—n

source target degeneracy
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The cubical category

The category [ is the category generated by

+ .

g, :n—n+1 e :n—n+1 ni:n+l—n

subject to the equations

55-"5? = 5?5}"_1 with i <j, a,8 € {—,+}

6?771',1 if i<y
ne® = <id ifi=j  withae{— +}
ef'n; ifi>j
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Labeled cubical sets

A labeled cubical set on an alphabet ¥ is
» a cubical set C : [1°P — Set

> together with a labeling morphism A : C — 'L
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What should 'Y look like if ¥ = { a,b }?
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Labeled cubical sets

A labeled cubical set on an alphabet ¥ is
» a cubical set C : [1°P — Set

> together with a labeling morphism A : C — 'L

What should 'Y look like if ¥ = { a,b }?

/\
\/

15(0) 15(1)
{*} {*,a,b}
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Labeled cubical sets

A labeled cubical set on an alphabet ¥ is
» a cubical set C : [1°P — Set

> together with a labeling morphism A : C — 'L

What should 'Y look like if ¥ = { a,b }?
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1'5(0) 15 (1) 15(2)

{*}  {*ab} {xab,abba}
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Labeled cubical sets

A labeled cubical set on an alphabet ¥ is
» a cubical set C : [1°P — Set

> together with a labeling morphism A : C — 'L

What should 'Y look like if ¥ = { a,b }?

/\
\/

1'5(0) 15 (1) 15(2)

{*}  {*ab} {xab,abba}
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Technically

» Defining ! ¥ involves
» defining all the !’ X(n)
» defining the generators for maps
> verifying the equations.

» We have two possible labels for the preceding square.
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A monoidal definition of cubical sets

The cubical category [J is a monoidal category:

» We have a tensor product ®

22 /34



A monoidal definition of cubical sets

The cubical category [J is a monoidal category:

» We have a tensor product ®

m14f>n1

22 /34



A monoidal definition of cubical sets

The cubical category [J is a monoidal category:

» We have a tensor product ®

my

n

ml—f>n1
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A monoidal definition of cubical sets

The cubical category [J is a monoidal category:

» We have a tensor product ®

my + my ny+ n
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A monoidal definition of cubical sets

The cubical category [J is a monoidal category:

» We have a tensor product ®

my + my ny+ n

» We also have a unit object: 0
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A monoidal definition of cubical sets

The category [ is the category generated by

g, :n—n+1 67rzn—>n+1 ni:n+l—n
subject to the equations
gf‘gl,ﬁ = 5[.65‘-;.3‘_1 with / <_j, Ot,ﬂ € {—,+}
nni = Ni-1n; with 7 > j
efnji—1 i<y
ne® = qid ifi=j with o € {—, +}

ey if P>
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A monoidal definition of cubical sets

The category [ is the monoidal category generated by
e :0—-1 et:0—1 n:1—0
subject to the equations

noe = idy = noe
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A monoidal definition of cubical sets

» A monoidal functor between monoidal categories is a functor
which preserves tensor product.
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A monoidal definition of cubical sets

» A monoidal functor between monoidal categories is a functor
which preserves tensor product.

» In particular, functors from [ are often monoidal:
consider the functor F : [0 — Top defined by

0 1 2 3
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A monoidal definition of cubical sets

» A monoidal functor between monoidal categories is a functor
which preserves tensor product.

» In particular, functors from [ are often monoidal:
consider the functor F : [0 — Top defined by

0 1 2 3

We have
F(2+1) = F(2)x F(1)
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Cubical objects

A cubical set is a functor
C : " — Set

When this functor is monoidal, this is exactly the same as a
cubical object.
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Cubical objects

A cubical set is a functor
C : " — Set

When this functor is monoidal, this is exactly the same as a
cubical object.

Cubical objects
A cubical object (A,e~,e™,n) in a monoidal category C is an
object A of C together with morphisms

e tA—| et A= n:l—A

such that

25 /34



Cubical objects
Cubical objects
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Cubical objects

Cubical objects
A cubical object (A,e~,e™,n) in a monoidal category C is an
object A of C together with morphisms

e A= et A= n:l—A

such that

The labeling cubical set
(Set, x, 1) is a monoidal category.
The object 1 = {x*} is terminal in Set. Take

> 7n:1— (1+ X) the injection
» ¢, : (1 +X) — 1 the terminal arrow
This defines the cubical set ! X.

25 /34



The labeling cubical set

We can give an explicit description of ! %:

> the elements of ! X(n) are words a; - a2+ - - ap,
where a; € £ & {x}

» . g?r

|

remove the i-th letter

> 1; inserts a * at the i-th position
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Symmetric cubical sets

Should we label the tile by ab or by ba?

/\
\/
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Symmetric cubical sets

Should we label the tile by ab or by ba?

/\
\/

In fact, we should keep both possibilities and remember that they

are “almost the same”: Set is a symmetric monoidal category

AxB = BxA
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Symmetric cubical sets

A symmetric cubical set is a symmetric monoidal functor
C: D(_)gp — Set

where s is the free symmetric monoidal category on .
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Symmetric cubical sets

The category Us is the symmetric monoidal category generated by
e :0—-1 et:0—-1 n:1—0
subject to the equations

noe = idg = noe
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Symmetric cubical sets

The category U is the monoidal category generated by
e :0—-1 et:0—1 n:1—0 v:2—2

subject to the equations

noe~ = idg = mnoe’
(r®1l)o(l®y)o(y®l) = (1®y)o(vy®@1)o(l®7y)
Yoy = 2
m®l)oy = 1®n

(Ien)oy = 1ol
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Higher-dimensional automata

To every, Petri net N we associate a higher-dimensional
automaton hda(N) consisting of

» a symmetric cubical set C
> labeled by events of the net A: C — | E

» with an initial position My
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Morphisms of Petri nets

» A morphism of cubical sets o : C — C’
sends n-cells to n-cells respecting source and target.
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Morphisms of Petri nets

» A morphism of cubical sets ¢ : C — C’
sends n-cells to n-cells respecting source and target.

» A Petri net N = (P, My, E, pre, post) consists of
» aset P of places
> an initial marking My € NP
» aset E of events
» a precondition function pre : E — N”
» a postcondition function post : E — NP
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Morphisms of Petri nets

» A morphism of cubical sets ¢ : C — C’
sends n-cells to n-cells respecting source and target.

» A Petri net N = (P, My, E, pre, post) consists of
» aset P of places
> an initial marking My € NP

a set E of events

a precondition function pre : E — N”

a postcondition function post : E — NP

vV vy

A morphism of Petri nets ¢ : N — N’ should be a pair of
functions

> op: P — P
» o E— F'

preserving the initial marking, pre- and postconditions.
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Morphisms of Petri nets

» A morphism of cubical sets ¢ : C — C’
sends n-cells to n-cells respecting source and target.
If a and b are independent in C,
©(a) and (b) should be independent in C’
» A Petri net N = (P, My, E, pre, post) consists of
» aset P of places
> an initial marking My € NP
> a set E of events
» a precondition function pre : E — N”
» a postcondition function post : E — NP

A morphism of Petri nets ¢ : N — N’ should be a pair of
functions

> op: P — P
» pe: E— E'

preserving the initial marking, pre- and postconditions.
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Morphisms of Petri nets

» A morphism of cubical sets ¢ : C — C’
sends n-cells to n-cells respecting source and target.
If p(a) and p(b) are causally dependent C’,
a and b should be causally dependent in C
» A Petri net N = (P, My, E, pre, post) consists of
» aset P of places
> an initial marking My € NP
» aset E of events
» a precondition function pre : E — N”
» a postcondition function post : E — NP

A morphism of Petri nets ¢ : N — N’ should be a pair of
functions

> op: P — P
» pe: E— E'

preserving the initial marking, pre- and postconditions.
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sends n-cells to n-cells respecting source and target.
If p(a) and p(b) are causally dependent C’,
a and b should be causally dependent in C
» A Petri net N = (P, My, E, pre, post) consists of
» aset P of places
> an initial marking My € NP
» aset E of events
» a precondition function pre : E — N”
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A morphism of Petri nets ¢ : N — N’ should be a pair of
functions
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» pe: E— E'

preserving the initial marking, pre- and postconditions.
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Morphisms of Petri nets

» A morphism of cubical sets o : C — C’
sends n-cells to n-cells respecting source and target.
If p(a) and p(b) are causally dependent C’,
a and b should be causally dependent in C
» A Petri net N = (P, My, E, pre, post) consists of
» aset P of places
> an initial marking My € NP
» aset E of events
» a precondition function pre : E — N”
» a postcondition function post : E — NP

A morphism of Petri nets ¢ : N — N’ should be a pair of
functions

> pp: P— P’

» pe: E— E'
preserving the initial marking, pre- and postconditions.
= We cannot unfold Petri nets!
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The adjunction

This way we get two categories
» higher-dimensional automata
» Petri nets

and an adjunction between them

pn(C) — N
C — hda(N)
with
pn

HDAZ | PN
hda
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From HDA to Petri nets

To every HDA C, we associate a Petri net pn(C) whose
» events are labels of C
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From HDA to Petri nets

To every HDA C, we associate a Petri net pn(C) whose

> events are labels of C
> places are regions R of C:
» for every O-cell x, an integer R(x)
» for every label a, a pair of integers (R'(a), R”(a))
such that for every 1-cell y,

R(AMy) =R(E(v))  R'(AMy) =R ()

sy
Y
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Results
An adjunction
» An extension Winskel’s “2-dimensional” adjunction between
safe Petri nets and asynchronous transition systems
> A cleaner setting (no partial functions for example)
» This adjunction is not very “precise”

» Project: relate models of parallelism in higher dimension
(Petri nets, HDA, event structures, ...)
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Results
An adjunction
» An extension Winskel’s “2-dimensional” adjunction between
safe Petri nets and asynchronous transition systems
> A cleaner setting (no partial functions for example)
» This adjunction is not very “precise”

» Project: relate models of parallelism in higher dimension
(Petri nets, HDA, event structures, ...)

Future works
We can apply methods from topology:
» category of components
» homology
> ...
and from Petri nets
» semi-linear invariants on places
> ...
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