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State space and model of trace space
How are they related?

State space =
a cube minus 4 obstructions

 

Trace space within in a torus
homotopy equivalent to a
wedge of two circles and a
point
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Motivation: Concurrency
Mutual exclusion

Mutual exclusion occurs, when n processes Pi compete for m
resources Rj .
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Only k processes can be served at any given time.
Semaphores!
Semantics: A processor has to lock a resource and to
relinquish the lock later on!
Description/abstraction Pi : . . .PRj . . .VRj . . . (E.W. Dijkstra)
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Schedules in "progress graphs"
The Swiss flag example

Unsafe

Un-
reachable
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PV-diagram from
P1 : PaPbVbVa

P2 : PbPaVaVb

Executions are directed
paths – since time flow is
irreversible – avoiding a
forbidden region (shaded).

Dipaths that are
dihomotopic (through
a 1-parameter deforma-
tion consisting of dipaths)
correspond to equivalent
executions.

Deadlocks, unsafe and
unreachable regions may
occur.
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Simple Higher Dimensional Automata
Semaphore models

A linear PV-program can be modelled as the complement of a
number of holes in an n-cube:
isothetic hyperrectangles R i

, 1 ≤ i ≤ l , in an n-cube:

X =~In \ F , F =
l⋃

i=1

R i
, R i =]ai

1, bi
1[× · · · ×]ai

n, bi
n[.

X inherits a partial order from~In.
More general PV-programs:

Replace~In by a product Γ1× · · · × Γn of digraphs.

Holes have then the form pi
1((0, 1))× · · · × pi

n((0, 1)) with
pi

j :
~I → Γj a directed (d-)path.
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Spaces of d-paths/traces, Dihomotopy

X a d-space, a, b ∈ X .

p :~I → X a d-path in X (continuous and “order-preserving”)
~P(X )(a, b) = {p :~I → X | p(0) = a, p(b) = 1, p a d-path}.
Trace space ~T (X )(a, b) = ~P(X )(a, b) modulo increasing
reparametrizations.
In most cases: ~P(X )(a, b) ≃ ~T (X )(a, b).
A dihomotopy on ~P(X )(a, b) is a map H :~I × I → X such that
Ht ∈ ~P(X )(a, b), t ∈ I.
Aim: Describe the homotopy type of ~P(X )(a, b); in particular its
path components, i.e., the dihomotopy classes of d-paths.
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Covers of X and of ~P(X )(0, 1)
by contractible or empty subspaces

X =~In \ F , F =
⋃l

i=1 R i
; 0, 1 the two corners.

Definition

For 1 ≤ ji ≤ n let

Xj1,...,jl = {x ∈ X | ∀i : xji ≤ ai
ji ∨ ∃k : xk ≥ bi

k}

= {x ∈ X | ∀i : x ≤ bi ⇒ xji ≤ ai
ji}

Examples:

~P(X )(0, 1) =
⋃

1≤j1,...,jl≤n

~P(Xj1,...,jl )(0, 1).
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More intricate subspaces
as intersections

Definition

For ∅ 6= J1, . . . , Jl ⊆ [1 : n] let

XJ1,...,Jl
=

⋂

ji∈Ji

Xj1,...,jl

= {x ∈ X | ∀i , ji ∈ Ji : x ≤ bi ⇒ xji ≤ ai
ji}

Question: For which J1, . . . , Jl ⊆ [1 : n] is
~P(XJ1,...,Jl

)(0, 1) 6= ∅?
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Bookkeeping with binary matrices

Ml ,n (vector space/Boolean algebra of) binary
l × n-matrices

MR
l ,n no row vector is the zero vector

MC
l ,n every column vector is a unit vector

Index sets ↔ Matrix sets

(P([1 : n]))l ↔ Ml ,n

J = (J1, . . . , Jl ) 7→ MJ = (mij), mij = 1⇔ j ∈ Ji

JM ← M JM
i = {j |mij = 1}

l-tuples of susbsets 6= ∅ ↔ MR
l ,n

{(K1, . . . , Kl )| [1 : n] =
⊔

Ki} ↔ MC
l ,n

XM := XJM
, ~P(XM)(0, 1) = ~P(XJM

)(0, 1).
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A combinatorial model and its geometric realization

Poset category – Combinatorics Prodsimplicial complex – Topology
C(X )(0, 1) ⊆ MR

l ,n ⊆ Ml ,n T(X )(0, 1) ⊆ (∆n−1)l

J ↔ M ∈ C(X )(0, 1) ∆
|J1|−1
J1

× · · · × ∆
|Jl |−1
Jl

⊆

T(X )(0, 1)

⇔ ~P(XM)(0, 1) 6= ∅.

Examples!!!
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Properties of the decomposition of path space

Theorem

1 ~P(X )(0, 1) =
⋃

1≤i≤l ,1≤ji≤n
~P(Xj1,...,jl )(0, 1).

2 For every M ∈ C(X )(0, 1):
~P(XM)(0, 1) is contractible.

Proof.

All XM , M ∈ MR
l ,n are closed under ∨ = max.

D-homotopy H(p, q) connecting p, q ∈ ~P(XM)(0, 1):
G(p, q) : p → p ∨ q, G(q, p) : q → p ∨ q,

H(p, q) = G(q, p) ∗G−(p, q)
G(p, q; t)(s) = p(s)∨ q(ts)

Contraction: Choose p ∈ ~P(XM)(0, 1). q 7→ H(p, q)
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Homotopy equivalence between path space and a
prodsimplicial complex

Theorem

~P(X )(0, 1) ≃ T(X )(0, 1) ≃ ∆C(X )(0, 1).

Proof.

Functors D, E , T : C(X )(0, 1)→ Top:
D(J1, . . . , Jl ) = ~P(XJ1,...,Jl

)(0, 1),

E(J1, . . . , Jl ) = ∆
|J1 |−1
J1

× · · · × ∆
|Jl |−1
Jl

,

T (J1, . . . , Jl ) = ∗

colim D = ~P(X )(0, 1), colim E = T(X )(0, 1),
hocolim T = ∆C(X )(0, 1).

The trivial natural transformations D ⇒ T , E ⇒ T yield:
hocolim D ∼= hocolim T ∼= hocolim E .

Projection lemma:
hocolim D ≃ colim D, hocolim E ≃ colim E .
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From C(X )(0, 1) to properties of path space
Questions answered by homology calculations

Is ~P(X )(0, 1)path-connected, i.e., are all (execution)
d-paths dihomotopic (lead to the same result)?

Determination of path-components?

Are components simply connected?
Other topological properties?

The prodsimplicial structure on C(X )(0, 1)↔ T(X )(0, 1) leads
to an associated chain complex of vector spaces.
There are fast algorithms to calculate the homology groups of
these chain complexes even for very big complexes.
For example: The number of path-components is the rank of
the homology group in degree 0.
For path-components, there might be faster “discrete” methods.
Even if “exponential explosion” prevents precise calculations,
inductive determination (round by round) of general properties
((simple) connectivity) may be possible.
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Deadlocks and unsafe regions determine C(X )

A dual view: extended hyperrectangles:
R i

j := [0, bi
1[× · · · × [0, bi

j−1[×]ai
j , bi

j [×[0, bi
j+1[× · · · × [0, bi

n[⊃

R i .
XM = X \

⋃

mij =1

R i
j .

Theorem

The following are equivalent:
1 ~P(XM)(0, 1) = ∅⇔ M 6∈C(X )(0, 1).
2 There is a map i : [1 : n]→ [1 : l ] such that mi(j),j = 1 and

such that
⋂

1≤j≤n R i(j)
j 6= ∅ – giving rise to a deadlock

unavoidable from 0.
3 Checking a bunch of inequalities:

There is a map i : [1 : n]→ [1 : l ] such that

ai(j)
j < bi(k)

j for all 1 ≤ j , k ≤ n.
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Partial orders and order ideals on matrix spaces
and an order preserving map Ψ

The partial order on 0, 1: 0 ≤ 0, 0 ≤ 1, 1 ≤ 1 extends to Ml ,n.
Consider Ψ : Ml ,n → Z/2, Ψ(M) = 1⇔ ~P(XJM )(0, 1) = ∅.

Ψ is order preserving, in particular:
Ψ−1(0), Ψ−1(1) are closed in opposite senses:
M ≤ N : Ψ(N) = 0⇒ Ψ(M) = 0, Ψ(M) = 1⇒ Ψ(N) = 1;
(thus T(X )(0, 1) prodsimplicial).

Ψ(M) = 1⇔∃N ∈ MC
l ,n such that N ≤ M, Ψ(N) = 1

D(X )(0, 1) = {N ∈ MC
l ,n|Ψ(N) = 1} – dead

C(X )(0, 1) = {M ∈ MR
l ,n|Ψ(M) = 0} – alive

Cmax(X )(0, 1) maximal such matrices
characterized by: mij = 1 apart from:
∀N ∈ D(X )(0, 1)∃!(i , j) : 0 = mij < nij = 1 Examples!.

Matrices in Cmax(X )(0, 1) correspond to maximal simplex
products in T(X )(0, 1).
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Which of the ln matrices in MC
l,n belong to D(X )(0, 1)?

A matrix M ∈ MC
l ,n is described by a (choice) map

i : [1 : n]→ [1 : l ], mi(j),j = 1.

M ∈ D(X )(0, 1)⇔ ai(j)
j < bi(k)

j for all 1 ≤ j , k ≤ n.
Requires to check a bunch of inequalities or rather order
relations.
Algorithmic organisation: Choice maps with the same image
give rise to the same upper bounds b∗j .
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From D(X ) to Cmax(X )
Minimal transversals in hypergraphs (simplicial complexes)

Algorithmics: Construct Cmax (X )(0, 1) incrementally (checking
for one matrix N ∈ D(X )(0, 1) at a time), starting with matrix 1:

1 Ni+1 6≤ M ∈ C i (X )⇒ M ∈ C i+1(X );

2 Ni+1 ≤ M ⇒ M is replaced by n matrices M j with one
additional 0. Examples!

A matrix in D(X )(0, 1) describes a hyperedge on the vertex set
[1 : l ]× [1 : n]; D(X )(0, 1) describes a hypergraph.
A transversal in a hypergraph is a vertex set that has
non-empty intersection with each hyperedge
↔ a matrix L such that ∀N ∈ D(X )(0, 1) ∃(i , j) : lij = nij = 1.
M = 1− L: ∀N ∈ D(X )(0, 1)∃(i , j) : 0 = mij < nij = 1.
Conclusion: Search for matrices in Amax (0, 1) corresponds to
search for minmal transversals in D(X )(0, 1).
In our case: All hyperedges have same cardinality n, include
one element per column.
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Extensions
1. Obstructions intersecting the boundary of In Components

More general semaphores
~P(X )(c, d) and iterative calculations

Same technique, modification of definition and calculation of
C(X ), D(X ) etc.

New light on definition and determination of components.
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Extensions
2a. Semaphores corresponding to non-linear programs:

Γ = ∏
n
j=1 Γj , state space X = Γ \ F , F product of generalized

hyperrectangles R i .
~P(Γ)(x, y) = ∏~P(Γj )(xj , yj ) – homotopy discrete!
Represent a path component C ∈ ~P(Γ)(x, y) by (regular)
d-paths pj ∈ ~P(Γj)(xj , yj ) – an interleaving.
The map c :~In → Γ, c(t1, . . . , tn) = (c1(t1), . . . , cn(tn)) induces
a homeomorphism ◦c : ~P(~In)(0, 1)→ C ⊂ ~P(Γ)(x, y).
Pull back F via c:
X̄ =~In \ F̄ , F̄ =

⋃
R̄ i

, R̄ i = c−1(R i) – honest hyperrectangles!
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Extensions
2b. Semaphores: Topology of components of interleavings

iX : ~P(X ) →֒ ~P(Γ).
Given a component C ⊂ ~P(Γ)(x, y).
The d-map c : X̄ → X induces a homeomorphism
c◦ : ~P(X̄ (0, 1)→ i−1

X (C) ⊂ ~P(X )(x, y).

C “lifts to X ”⇔ ~P(X̄ )(0, 1) 6= ∅; if so:

Analyse i−1
X (C) via ~P(X̄ )(0, 1).

Exploit relations between various components.
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Extensions
3. D-paths in pre-cubical complexes

Higher Dimensional Automaton: Pre-cubical complex with
preferred diretions. Geometric realization X with d-space
structure.

P(X )(x, y) is ELCX (equi locally convex). D-paths within a
specified “cube path” form a contractible subspace.

P(X )(x, y) has the homotopy type of a simplicial complex:
the nerve of an explicit category of cube paths (with
inclusions as morphisms).
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