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State space and model of trace space

How are they related?

O

\ { I Trace space within in a torus

[ ] [ homotopy equivalent to a
wedge of two circles and a
point

State space =
a cube minus 4 obstructions
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Motivation: Concurrency

Mutual exclusion

Mutual exclusion occurs, when n processes P; compete for m
resources R;.

3

Only k processes can be served at any giveLn time.
Semaphores!

Semantics: A processor has to lock a resource and to
relinquish the lock later on!

Description/abstraction P; : ... PR;...VR;... (E.W. Dijkstra)
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Schedules in "progress graphs"
The Swiss flag example

(O,
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PV-diagram from
P]_ . PanVbVa
P2 . PbPaVaVb

Y

T1

Executions are directed
paths — since time flow is
irreversible — avoiding a
forbidden region (shaded).
Dipaths that are
dihomotopic (through
a l-parameter deforma-
tion consisting of dipaths)
correspond to equivalent
executions.
Deadlocks, unsafe and
unreachable regions may
occur.



Simple Higher Dimensional Automata
Semaphore models

A linear PV-program can be modelled as the complement of a
number of holes in an n-cube:

isothetic hyperrectangles R', 1 < i < |, in an n-cube:

|
X =1"\F, F=[JR', R =Ja},bj[x - x]ah, bj].
i=1

X inherits a partial order from 1.
More general PV-programs:
@ Replace 1" by a product I'y x - - - x 'y of digraphs.

@ Holes have then the form p! ((0,1)) x - -- x p,((0, 1)) with
of : T — T a directed (d-)path.

Martin Raussen (Prod-)Simplicial models for trace spaces



Spaces of d-paths/traces, Dihomotopy

X a d-space, a,b € X.

p:1—Xa d-path in X (continuous and “order-preserving”)
P(X)(a,b) ={p:T— X|p(0) =a,p(b)=1,pad-path}.
Trace space T (X)(a,b) = P(X)(a, b) modulo increasing
reparametrizations

In most cases: P(X)(a,b) ~ T (X)(a,b).

A dihomotopy on P(X)(a,b) isamap H : T x | — X such that
H, € P(X)(a,b), t €.

Aim: Describe the homotopy type of P (X )(a, b); in particular its
path components, i.e., the dihomotopy classes of d-paths.
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Covers of X and of P(X)(0, 1)

by contractible or empty subspaces
X =1"\F,F =J!_; R';0,1 the two corners.

Definition

For1l <jj <nlet

Xpi = {XEX|Viix; <ajVv3IKk:xc>bi}
= {xeX|Vi:x<b' =x <aj}

Examples:

HH %‘ B = Tj

P(X)(0,1)

U

U ﬁ(lew-,h)(ov 1)-

1<jy,...,ji<n
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More intricate subspaces

as intersections

Definition

= {xeX|Vijed:x<b =x <a}

Question: For which Jq, ..., JC[l:n]is
P(X,,,..9)(0,1) # ©?
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Bookkeeping with binary matrices

M n (vector space/Boolean algebra of) binary
| x n-matrices

MR, no row vector is the zero vector
M, every column vector is a unit vector

Index sets « Matrix sets
(P(L:n]) < Mg
J=J1,....3) — M =(my), mj=1&]je
M= M I = {jm; =1}
I-tuples of susbsets # @ < M,
{(Ky,....K)[[1:n] = |Ki} < M5,

Xy = Xy, P(Xm)(0,1) = P(X,,)(0,1).
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A combinatorial model and its geometric realization

Poset category — Combinatorics Prodsimplicial complex — Topolog

C(X)(0,1) € MR, € My T(X)(0,1) C (A1)
J M eC(X)(0,1) AT ATt ¢
T(X)(0,1)

& P(Xu)(0,1) # @.

Examples!!!
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Properties of the decomposition of path space

0 P( )( ) U1<|<| 1<J,<np(xll ----- )(0 1)

@ ForeveryM € C(X)(0,1):
P(Xwm)(0, 1) is contractible.

@ All Xy, M € MR are closed under v = max.

@ D-homotopy H (p, q) connecting p,q € P (Xy)(0,1):
G(p.q):p—pVaG(ap):q—pVa,
H(p,d) = G(a,p) *G~(p.q)
G(p.g;t)(s) = p(s) Va(ts)

@ Contraction: Choose p € P(Xy)(0,1). q — H(p,q)
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Homotopy equivalence between path space and a
prodsimplicial complex

P(X)(0,1) ~ T(X)(0,1) ~ AC(X)(0,1).

@ Functors D, &,7 : C(X)(0,1) — Top:
D(Jq, ..., J) =P(Xy,,..5)(0,1),

@ colim D = P(X)(0,1), colim £ = T(X)(0,1),
hocolim 7 = AC(X)(0, 1).

@ The trivial natural transformations D = 7, £ = 7 yield:
hocolim D = hocolim 7 = hocolim £.

@ Projection lemma:
hocolim D ~ colim D, hocolim £ ~ colim £.
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From C(X)(0, 1) to properties of path space

Questions answered by homology calculations

@ Is P(X)(0, 1)path-connected, i.e., are all (execution)
d-paths dihomotopic (lead to the same result)?

@ Determination of path-components?

@ Are components simply connected?
Other topological properties?

The prodsimplicial structure on C(X)(0,1) < T(X)(0,1) leads
to an associated chain complex of vector spaces.

There are fast algorithms to calculate the homology groups of
these chain complexes even for very big complexes.

For example: The number of path-components is the rank of
the homology group in degree O.

For path-components, there might be faster “discrete” methods.
Even if “exponential explosion” prevents precise calculations,
inductive determination (round by round) of general properties
((simple) connectivity) may be possible.
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Deadlocks and unsafe regions determine C(X)

A dual view: extended hyperrectangles: .
Rj :=[0,by[x - x[0,b;_;[x]aj, bj[x[0, b 4[x - x[0,by[D
R'.

Xw =X\ |J R

mij:].

Theorem
The following are equivalent:
© P(Xw)(0,1) = @ = MgC(X)(0,1).
© Thereisamapi : [1 n] — [1:1] such that m;;); = 1 and

such that ﬂ1<]<n 7é @ — giving rise to a deadlock
unavoidable from 0
© Checking a bunch of inequalities:
Thereisamapi: [1:n] — [1:1] such that
all <bforalll <jk <n.

v
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Partial orders and order ideals on matrix spaces

and an order preserving map ¥

The partial orderon 0,1: 0 < 0,0 < 1,1 < 1 extends to M, ,,.
Consider ¥ : M, — Z/2, ¥(M) =1 < P(X;u)(0,1) = @.
@ Y is order preserving, in particular:
¥Y-1(0),¥1(1) are closed in opposite senses:
M<N:¥(N)=0=¥M)=0¥YM)=1=¥(N)=1;
(thus T(X)(0, 1) prodsimplicial).
@ ¥(M) =1<«3N e M suchthatN <M, ¥(N) =1

n
D(X)(0,1) = {N € MG [¥(N) = 1} - dead
C(X)(0,1) ={M e MR [¥(M) = 0} —alive
Cmax(X)(0,1) maximal such matrices
characterized by: m; = 1 apart from:
VN € D(X)(0,1)3!(i,j) : 0=m; <nj =1 Examples!.
Matrices in Cmax(X)(0, 1) correspond to maximal simplex
products in T(X)(0, 1).
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Which of the I" matrices in M5, belong to D(X)(0, 1)?

A matrix M € M,(fn is described by a (choice) map
Po[leon] — [1:0],m ;=1

M eD(X)(0,1) < a’ <™ forall1 <jk <n.

Requires to check a bunch of inequalities or rather order
relations.

Algorithmic organisation: Choice maps with the same image
give rise to the same upper bounds bj*.
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From D(X) to Crmax (X)

Minimal transversals in hypergraphs (simplicial complexes)

Algorithmics: Construct Cmax (X)(0, 1) incrementally (checking
for one matrix N € D(X)(0, 1) at a time), starting with matrix 1:

O N1 LM el (X)=M e C*H(X);
Q@ N, <M = M is replaced by n matrices MI with one
additional 0. Examples!

A matrix in D(X)(0, 1) describes a hyperedge on the vertex set
[1:1] x [1:n]; D(X)(0,1) describes a hypergraph.

A transversal in a hypergraph is a vertex set that has
non-empty intersection with each hyperedge

— amatrix L such that VN € D(X)(0,1) 3(i,j) : lj = nj = 1.
M=1—-L:VN € D(X)(O, 1)3(I,j) :0= m; < nj = T,
Conclusion: Search for matrices in Amax (0, 1) corresponds to
search for minmal transversals in D(X ) (0, 1).

In our case: All hyperedges have same cardinality n, include
one element per column.
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Extensions

1. Obstructions intersecting the boundary of I" Components

@ More general semaphores
@ P(X)(c,d) and iterative calculations

Same technique, modification of definition and calculation of
C(X), D(X) etc.
@ New light on definition and determination of components.
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Extensions

2a. Semaphores corresponding to programs:

r= Hjnzl I}, state space X =T'\ F,F product of generalized
hyperrectangles R'.

P(I)(x,y) =TIP(T i) (Xj,y;) —homotopy discrete!

Represent a path component C € P(I)(x,y) by (regular)
d-paths p; € P( i) (X, yj) — an interleaving.

Themapc: " —T, c(ty,. ... ta) = (ca(ta), ..., cn(tn)) induces
a homeomorphism oc : P(I")(0,1) — C C P(I')(x,y).

Pull back F via c:

X =1"\ F,F = JR',R" = ¢ 1(R) — honest hyperrectangles!

<
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Extensions
2b. Semaphores: Topology of components of interleavings

i : P(X) — P(I). )
Given a componentC C P(T')(x,y).
The d-map ¢ : X — X induces a homeomorphism
co: P(X(0,1) — iy }(C) C P(X)(x,y).
@ C “lifts to X” < P(X)(0,1) # @; if s0:
@ Analyse iy 1(C) via P(X)(0,1).
@ Exploit relations between various components.
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Extensions
3. D-paths in pre-cubical complexes

@ Higher Dimensional Automaton: Pre-cubical complex with
preferred diretions. Geometric realization X with d-space
structure.

@ P(X)(x,y) is ELCX (equi locally convex). D-paths within a
specified “cube path” form a contractible subspace.

@ P(X)(x,y) has the homotopy type of a simplicial complex:
the nerve of an explicit category of cube paths (with
inclusions as morphisms).
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