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Problem: time-bound logic

= Propagation delays along connections and within

gates!

= Feedback — can hold state

= Race conditions:

= Hazards
= Glitches
= (scillations

= Lock-ups
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Example of timebound logic

0 1 > 0
Data P Output

Enable

This is an E flip-flop circuit, a basic memory
element. It's initially storing the value 0




Example of timebound logic
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If we change the Data input to 1, nothing
exciting happens...




Example of timebound logic

1 1 > 0
Data P Output

g 1 1 )

Enable

Pulsing the Enable input to 1 causes the
Data input to be “read” and “stored”...




Example of timebound logic
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... but it takes time... t=1




Example of timebound logic
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Example of timebound logic
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Example of timebound logic
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Can avoid race conditions by polling after transients
are finished

Unavoidable limitation: limited by the slowest circuit

Synchronous solution: circuits poll their inputs only
at specific points in time — a global clock

But...

Biggest single drain of power in modern CPUs 1s the
clock

Clock distribution and skew a major problem

Correcting clock skew requires additional circuitry and 1
power usage
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Example logic timeline
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Example logic timeline
(synchronous)
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Example logic timeline
(asynchronous)

Time
Read from memory Write
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Example logic timeline
(asynchronous)

Time
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Example logic timeline

(asynchronous)
e Read from memory Write g
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Example logic timeline
(asynchronous)

Time
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Example logic timeline
(asynchronous)
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Time
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Example logic timeline
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Example logic timeline
(asynchronous)
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Example logic timeline
(asynchronous)
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Asynchronous design

Typical of older bus architectures and of networks

Potential for significant power savings, space-on-
die, and speed in certain areas

Potential for better distribution of computation

Design elegance: fewer transistors needed, less to
break

Network communication becomes more natural

= Especially when latency 1s highly variable
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Asynchronous circuits are hard to design!

If you mistake a transient for the “final answer” of a
circuit, you're faced with

Hazards (uncertainties in output value)

Glitches (very short pulses, which might confuse the
underlying electronic technology)

Lock-ups (finite state machines getting stuck in a state
where they cannot exit)

Generally, all are the result of race conditions
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Example of a glitch
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Race condition between A and B
causes glitch!
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Limitations In current
methods

= Traditional asynchronous design requires either

= Very careful and exhaustive reasoning (time-dependent
theorem-provers, concurrency theory), or

= Detailed high-fidelity simulation (at sampling rate
determined by the “GCD” of the propagation speeds)

= Bookkeeping 1s difficult, but essential

= Difficult to test in stages, especially 1n testing response
of circuitry to glitches

= Exhaustive simulation 1s essentially impossible for large
designs (e.g. CPUs)
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Sheaf theory in logic circuits

= Provides some computational and conceptual tools
= It's primarily a bookkeeping mechanism

= Building-up local models (gates and wires) into
global ones (computational units)

= The primary tool for this local-to-global transition 1s
called cohomology

= Sheaf cohomology organizes the computations
effectively, and extracts lots of information!

= Hierarchical design can be examined by local sheat

cohomology and sheaf direct image functors s



A decidedly non-exhaustive list of some highlights:

Sheaves over categories of interacting objects
Bactawski, Goguen (1970s)

Concurrency & sheat theory (not cohomological)
Lillius (1993), Van Glabbeek (2006)

Constructible sheaves
Rota, Shapira, MacPherson (1960s)

Quantum graphs (original motivating example)
Gutkin, Smilanski (2001), Kuchment (2003)
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Our focus 1s more strongly on cohomology



A sheaf on a topological space X consists of

A contravariant functor F from Open(X) to some
subcategory of Set; this 1s a “sheaf of sets”

F(U) for open U 1s called the space of sections over U

The 1nclusion map UcCV 1s sent to a restriction map
F(V)=>F(U). Usually it 1s the restriction of functions.

Given a point p€X, the direct limit of F(U ), forall U_
satisfying p€U 1s called the stalk at p. It's a

generalization of the germ of a smooth function

And a gluing rule...
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Sheaves: gluing

= The gluing rule: if U and V are open sets, then two
sections defined on U and V that agree on UNV
come from a unique section defined on UUV
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Sheaves: gluing

= The gluing rule: if U and V are open sets, then two
sections defined on U and V that agree on UNV
come from a unique section defined on UUV

Base topological
space X
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The gluing rule: 1f U and V are open sets, then two
sections defined on U and V that agree on UNV
come from a unique section defined on UUV

FU)
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Sheaves: gluing

= The gluing rule: if U and V are open sets, then two
sections defined on U and V that agree on UNV
come from a unique section defined on UUV

FUU V)

/_-—\/

1

UuvV o

Base topological
space X




Examples and non-examples

Examples of sheaves:

= Locally constant functions on a topological space
= Continuous functions

= Analytic functions on a manifold

Non-examples (they violate the gluing rule):

= Constant functions

= [? functions on unbounded domains
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Suppose X has a tiltration, X <X <...cX 1n which

each Xi 1S “tame”

A sheaf F on X 1s constructible (with respect to the
filtration) 1f 1t 1s locally constant on each stratum:
X\X

] i-1
Constructible sheaves have constrained structure,
especially if the filtration 1s finite

In the case of topological graphs, we'll use the
natural filtration structure induced by the graph “



The cohomology functor 1s a tool for extracting
global information from a sheaf

Provided it's a sheaf of abelian groups

It 1s homotopy 1nvariant

It tells you all of the global sections, and
obstructions for extending local sections to global
ones

For instance H(X;F)=F(X) (all global sections)
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Select a cover { U(X} of X and form the sequence of

spaces and maps (the Cech cochain complex)

0 —>€BF(UO() —>69F(Uaﬂ UB)—>69F(U(XH Uﬁﬂ Uy)—>...

The maps are called “coboundaries” and come from
the differences between restrictions maps

The homology of this sequence is the Cech
cohomology ot F with respect to {U }.

Theorem: (Leray) If the cover is “good”, then the Cech
cohomology 1s a homotopy invariant, and therefore
independent of the choice of cover 46




Problems with logic and
sheaves

= If we use binary-valued (Zz—valued) sheaves 1n the

obvious way, we run into a problem: most logical
operations don't support the functoriality of any
sheaf 1n a way that's compatible with cohomology

- Put another way, logical operations aren't all Z -linear!

Not linear!
A A B C
A o <o 1T
o ) ‘ ’/
B |
B/
1 0 1
Logic circuit Connection 1 1 0

graph 47



A (standard) algebraic trick!

= Instead, consider any function between sets f:A—B

= Let R be a ring with unit, and R(A) be the R-module
generated by A

= That 1s, generators of R(A) are elements of A

= Then f lifts uniquely to an R-module homomorphism

Rf Notice that generally
R(A) —> R(B) we cannot recover a
/ unique element of B
(1 X)T (1X) T from R(B).
A > B But we can if we've

used Rfo(1x)
48



Our logical value 1s represented by an element of
Z ® (or R* where R is a ring with unit):

1(10),(01),(00),(1 1)}
A4

Logic 0 Logic1  Error state Uncertain truth value
Put another way, a logical value 1s ag+bQ, where

g=(1 0), represents a logic 0
0=(0 1), represents a logic 1
a,be”Z ,can be interpreted as a flag of whether Q or its

inverted copy ¢ 1s a possible realization of this value
49



Switching sheaves

= A switching sheaf over a directed
graph 1s constructible with respect
to stratification by the graph

\
structure and 1
: |
= Stalks over points 1n an edge are 222 | I
: I
= A stalk over a vertex is the tensor . ¢ ; )

product of n copies of 222, where n 1s

the incoming degree

= Restriction maps from an open set
containing a single vertex to a
connected set in the interior of an
edge are given by the diagram at right

Contraction
of A, C

The lift into
8 2
22 —>22 of

a logic
function
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The benefit of the sheat formalism 1s that usetul
sheaf functors are already well-known.

The direct image functor (pushforward) relates to
hierarchical design:

Consider a continuous map X—Y that collapses an
edge with distinct ends. This takes a constructible
sheaf /" on X to a constructible sheat f /" on Y.

For switching sheaves, this also induces an 1somorphism
on cohomology (by the Vietoris mapping theorem)

51

Big win conceptually and computationally!



Collapsed graphs

= We construct a spanning tree T for X, and a
sequence of trees T1’ T 5 e s T = T such that Ti+1 \ T1

consists of exactly one edge

= We can work with collapsed graphs X/T , on which
the cohomology 1s easier to compute

= Vietoris Mappring theorem: isomorphic cohomology

- N\

XIT, XIT




Cohomology of switching
sheaves

= As noted earlier, H(X;F)=F(X), so H’ is generated
by all of the allowable states of the logic circuit

= Switching sheaves don't incorporate time explicitly, but
one can still extract time-dependent information in H'...

= Appears to track hazard-related transitions between states
= HX;F)=0 for k>1, since dim X = 1
= H'(X;F) appears to describe the states related to

hazards
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Example: flip-flop
B

c A

T Q Transition out
of the hazard
state to the a
hold state
causes a race
condition

This is what traditional analysis gives...
5 possible states
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Conversion to graph

\
|
|

/

----§

y

Cech cochain complex:
0—-FUeeF Ve FIW-FUnWeFUNWeaeFVnIW)-0
0-Z 0Z 0Z ~Z 0Z foZ -0
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Flip-flop cohomology
B

c A H'(X:F)=Z

I-/"(X;F)gzz7

Generatedby: .. .0iuuunus
j1a®Bec | - a®bec+a®BaC *
T 1IAQB®c | " a®b®Cc+A®b®C -

94 3 @ E E E E EEE R ®

1a®beC | «

IARb®C 1 Thes% Is.t?tes qtgscribetth?th

I I possible transitions out of the
A®B® C' hazard state — something that

| S takes a bit more trouble to obtain

Q traditionally
(upper case means the generator

States from the corresponding to logical 1)
traditional approach
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Example: glitch generator

H°(X;F) is generated by

A+C+D®e
a+Cc+dxE

A+a+C+c+d®e+DQ®E
E H'(X;F)=Z, \

Hazard
transition
state

Cech cochain complex:
0—-FUeeF Ve FIW-FUnWeFUNWeaeFVnIW)-0
0-Z0Z oZ '~>Z *0Z foZ -0
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It's not immediately clear how one might store a
(representation of a) constructible sheaf in a
computer

One needs to specify a vector space for each open
set; there are various ways of doing this

The most obvious way to do this is to write the sheaf as a
function, but then how does one store a vector space?

Possibly use type-level programming in Haskell? We
could instantiate the sheaf as a type of Functor...

Seriously, though, 1t seems to be an impediment to
automating computation in constructible sheaves
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Category theory to the
rescue!

= It turns out that there's a different way:

= Theorem: (MacPherson) The category of
constructible sheaves on an abstract simplicial
complex K 1s 1somorphic to the category of
presheaves over a certain category associated to K

= By presheaf, we mean a contravariant functor from a
category to a subcategory of Set

= The category in question here 1s the face category:
objects are simplices, and morphisms describe
boundaries (i.e. A—B if B1s aface of A)

59



Simplicial complexes and
the face category

{B,C,D}

RN
ALY

Face category

C n . n
Simplicial
complex



Presheaves on a face
category

It our graph 1s a cell complex, we therefore only
need to know the restriction maps and the stalks
over each cell.

This seems like a minimal amount of information

Further, the construction 1s functorial, so we can
transfer computation of sheat cohomology to this
context

This relates to HDA 1n concurrency theory!
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Theoretical directions

Figure out how exactly glitches and hazards are
represented 1n the cohomology of a switching sheaf

Related: what is the physical meaning of H'(X;F)?

Extend edge collapse methodology to other direct
images; aiming towards a hierarchical approach to sheat
cohomology computation

Computational directions

Run some more complicated examples of cohomology

computations

Implement the cohomology computation on a computer N
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