Constructible sheaves and
their cohomology for
asynchronous
logic and computation

14 January 2010

Michael Robinson

Penn

Acknowledgements

= This 1s a preliminary report on progress in a larger
project on applied sheaf theory

= More substantial results are to come!
= It's joint work with
= Robert Ghrist (Penn)

= Yasu Hiraoka (Hiroshima)

= The focus 1s on logic here, but 1s part of

= AFOSR MURI on Information Dynamics in Networks
= PI: Rob Calderbank (Princeton)

Logic gates

AND OR

N “ NAND D NOR

A change
occurs...

Logic gates

Propagation delay
varies from device to
device

... eventually
changes the
output

)

NOT

Problem: time-bound logic

= Propagation delays along connections and within

gates!

= Feedback — can hold state

= Race conditions:

= Hazards
= Glitches
= (scillations

= Lock-ups

)

D,

D,

D

Example of timebound logic

0 1 > 0
Data P Output

Enable

This is an E flip-flop circuit, a basic memory
element. It's initially storing the value 0

Example of timebound logic

ol
ata Output
D,
1
e L)

Enable

If we change the Data input to 1, nothing
exciting happens...

Example of timebound logic

1 1 > 0
Data P Output

g 1 1)

Enable

Pulsing the Enable input to 1 causes the
Data input to be “read” and “stored”...

Example of timebound logic

1 Frl b
Data 3 Output

Enable

... but it takes time... t=1

Example of timebound logic

s

L 0
Data

Can de-
enable at
this time

\

B

#

Enable

Output

... but it takes time... t=2

11

Example of timebound logic

1 j 1
Data

D

o
0
Enab

e

... but it takes time... =3

12

Example of timebound logic

207

/'Data

Dafa IS now
ignored

0

=)

1
j Output
¥

Enable

—

... and will hold the new value!

13

Can avoid race conditions by polling after transients
are finished

Unavoidable limitation: limited by the slowest circuit

Synchronous solution: circuits poll their inputs only
at specific points in time — a global clock

But...

Biggest single drain of power in modern CPUs 1s the
clock

Clock distribution and skew a major problem

Correcting clock skew requires additional circuitry and 1
power usage

4

Time

BUS
Var 1
Var 2
Output

Clock

Example logic timeline
(synchronous)

Read from memory

Write

Memory

Var 1

Var 2

Computation

N

Output

-

15

Example logic timeline

(synchronous)
e Read from memory Write g
sus AT o AB

Var 1

Clock

Memory

Var2 Y

Output 4—/

Ay e
Computation

Time

BUS
Var 1
Var 2
Output

Clock

Example logic timeline
(synchronous)

Read from memory

>
Write

Memory

a

Var 2

Computation

Output

-

17

Time

BUS
Var 1
Var 2
Output

Clock

Example logic timeline

(synchronous)

Read from memory

Memory

-/ Computation

Output

-

18

Example logic timeline
(synchronous)

Time >

Read from memory Write

sus AT . mB

Var 1
Var 2

Output

s -’
19
Output

Clock

Time

BUS
Var 1
Var 2
Output

Clock

Example logic timeline
(synchronous)

-

Read from memory Write

Memory

e —
o -

20

Time

BUS
Var 1
Var 2
Output

Clock

Example logic timeline

(synchronous)

Read from memory Write

Memory

o -

21

Example logic timeline
(asynchronous)

Time
Read from memory Write

Var 1
Var 2

Output
Mem TX

CPU Ack

CPU TX

Done

Computation

A Var 1
‘ Var 2
Output 4—/

N

Memory

Example logic timeline
(asynchronous)

Time

Read from memory Write

Var 1
Var 2

Output
Mem TX

CPU Ack

CPUTX
Done

A VERTS
Computation
Memory ‘ Var2 ¥ P
Output 4—/

Example logic timeline

(asynchronous)
e Read from memory Write g
BUS _
Var 1

Output S mB

Mem TX

CPU Ack
CPUTX
Done

A VERTS
Computation
Memory ‘ Var2 ¥ P
Output 4—/

Example logic timeline
(asynchronous)

Time
Read from memory Write

Var 1
Var 2

Output
Mem TX

CPU Ack

CPUTX
Done

Var2 Y

Output 4—/

Memory Computation

Example logic timeline
(asynchronous)

Time >

Read from memory Write

Var 2

Output
Mem TX

CPU Ack
CPUTX
Done

5 Ve
Memory ‘ -/V Computation
Output 4—/

Time

BUS
Var 1
Var 2

Output

Mem TX
CPU Ack

CPUTX
Done

Example logic timeline
(asynchronous)

Read from memory

>
Write

Memory

. BUS |

Output

e

27

Time

BUS
Var 1
Var 2

Output

Mem TX
CPU Ack

CPUTX
Done

Example logic timeline
(asynchronous)

Read from memory Write

Memory

)

28

Example logic timeline
(asynchronous)

Time

Read from memory Write

Var 1

Var 2

Output
Mem TX

CPU Ack

CPUTX
Done

-
Memory -/v

Example logic timeline
(asynchronous)

Time

Read from memory Write

Var 1
Var 2

Output
Mem TX

CPU Ack

CPUTX
Done

-
Memory -/v

Asynchronous design

Typical of older bus architectures and of networks

Potential for significant power savings, space-on-
die, and speed in certain areas

Potential for better distribution of computation

Design elegance: fewer transistors needed, less to
break

Network communication becomes more natural

= Especially when latency 1s highly variable

31

Asynchronous circuits are hard to design!

If you mistake a transient for the “final answer” of a
circuit, you're faced with

Hazards (uncertainties in output value)

Glitches (very short pulses, which might confuse the
underlying electronic technology)

Lock-ups (finite state machines getting stuck in a state
where they cannot exit)

Generally, all are the result of race conditions

32

Example of a glitch

) >
] C

? Input signal
B /

- Qutput signal

/

Glitch is one
propagation delay
wide

—p [

Race condition between A and B
causes glitch!

33

Limitations In current
methods

= Traditional asynchronous design requires either

= Very careful and exhaustive reasoning (time-dependent
theorem-provers, concurrency theory), or

= Detailed high-fidelity simulation (at sampling rate
determined by the “GCD” of the propagation speeds)

= Bookkeeping 1s difficult, but essential

= Difficult to test in stages, especially 1n testing response
of circuitry to glitches

= Exhaustive simulation 1s essentially impossible for large
designs (e.g. CPUs)

34

Sheaf theory in logic circuits

= Provides some computational and conceptual tools
= It's primarily a bookkeeping mechanism

= Building-up local models (gates and wires) into
global ones (computational units)

= The primary tool for this local-to-global transition 1s
called cohomology

= Sheaf cohomology organizes the computations
effectively, and extracts lots of information!

= Hierarchical design can be examined by local sheat

cohomology and sheaf direct image functors s

A decidedly non-exhaustive list of some highlights:

Sheaves over categories of interacting objects
Bactawski, Goguen (1970s)

Concurrency & sheat theory (not cohomological)
Lillius (1993), Van Glabbeek (2006)

Constructible sheaves
Rota, Shapira, MacPherson (1960s)

Quantum graphs (original motivating example)
Gutkin, Smilanski (2001), Kuchment (2003)

36

Our focus 1s more strongly on cohomology

A sheaf on a topological space X consists of

A contravariant functor F from Open(X) to some
subcategory of Set; this 1s a “sheaf of sets”

F(U) for open U 1s called the space of sections over U

The 1nclusion map UcCV 1s sent to a restriction map
F(V)=>F(U). Usually it 1s the restriction of functions.

Given a point p€X, the direct limit of F(U), forall U_
satisfying p€U 1s called the stalk at p. It's a

generalization of the germ of a smooth function

And a gluing rule...

37

Sheaves: gluing

= The gluing rule: if U and V are open sets, then two
sections defined on U and V that agree on UNV
come from a unique section defined on UUV

38

Sheaves: gluing

= The gluing rule: if U and V are open sets, then two
sections defined on U and V that agree on UNV
come from a unique section defined on UUV

Base topological
space X

39

The gluing rule: 1f U and V are open sets, then two
sections defined on U and V that agree on UNV
come from a unique section defined on UUV

FU)

1

Base topological .
space X

IR
o
RN
S Tl IKKIIA
S I SRR
O0000KANN

5
2900
&5
&K
S0%eS
RS
XX
355
255
0.0
55
2%

BN
0% %%
&2
%%
0e%%
o%e%%
09%%
X KKK
0%%
094 %%
056%%
$9%%
056%%
XK
09%%
XX
o
XX

osogssasessseseetel
RR0RIANXRANKN
CRRRRRRRRRKA
R AIEIRIEE
XXRRHIIRIHIHRAXIIAIAXKY

IS
K5

0
o

L
2%
L5
V% %%
35
ARKKKKK

S

&

41

t U and V are open sets, then two

1

ned on U and V that agree on UNV

The gluing rule

fi

sections de
come from a un

1que section defined on UUV

Base topological

space X

Sheaves: gluing

= The gluing rule: if U and V are open sets, then two
sections defined on U and V that agree on UNV
come from a unique section defined on UUV

FUU V)

/_-—\/

1

UuvV o

Base topological
space X

Examples and non-examples

Examples of sheaves:

= Locally constant functions on a topological space
= Continuous functions

= Analytic functions on a manifold

Non-examples (they violate the gluing rule):

= Constant functions

= [? functions on unbounded domains

43

Suppose X has a tiltration, X <X <...cX 1n which

each Xi 1S “tame”

A sheaf F on X 1s constructible (with respect to the
filtration) 1f 1t 1s locally constant on each stratum:
X\X

] i-1
Constructible sheaves have constrained structure,
especially if the filtration 1s finite

In the case of topological graphs, we'll use the
natural filtration structure induced by the graph “

The cohomology functor 1s a tool for extracting
global information from a sheaf

Provided it's a sheaf of abelian groups

It 1s homotopy 1nvariant

It tells you all of the global sections, and
obstructions for extending local sections to global
ones

For instance H(X;F)=F(X) (all global sections)

45

Select a cover { U(X} of X and form the sequence of

spaces and maps (the Cech cochain complex)

0 —>€BF(UO() —>69F(Uaﬂ UB)—>69F(U(XH Uﬁﬂ Uy)—>...

The maps are called “coboundaries” and come from
the differences between restrictions maps

The homology of this sequence is the Cech
cohomology ot F with respect to {U }.

Theorem: (Leray) If the cover is “good”, then the Cech
cohomology 1s a homotopy invariant, and therefore
independent of the choice of cover 46

Problems with logic and
sheaves

= If we use binary-valued (Zz—valued) sheaves 1n the

obvious way, we run into a problem: most logical
operations don't support the functoriality of any
sheaf 1n a way that's compatible with cohomology

- Put another way, logical operations aren't all Z -linear!

Not linear!
A A B C
A o <o 1T
o) ‘ ’/
B |
B/
1 0 1
Logic circuit Connection 1 1 0

graph 47

A (standard) algebraic trick!

= Instead, consider any function between sets f:A—B

= Let R be a ring with unit, and R(A) be the R-module
generated by A

= That 1s, generators of R(A) are elements of A

= Then f lifts uniquely to an R-module homomorphism

Rf Notice that generally
R(A) —> R(B) we cannot recover a
/ unique element of B
(1 X)T (1X) T from R(B).
A > B But we can if we've

used Rfo(1x)
48

Our logical value 1s represented by an element of
Z ® (or R* where R is a ring with unit):

1(10),(01),(00),(1 1)}
A4

Logic 0 Logic1 Error state Uncertain truth value
Put another way, a logical value 1s ag+bQ, where

g=(1 0), represents a logic 0
0=(0 1), represents a logic 1
a,be”Z ,can be interpreted as a flag of whether Q or its

inverted copy ¢ 1s a possible realization of this value
49

Switching sheaves

= A switching sheaf over a directed
graph 1s constructible with respect
to stratification by the graph

\
structure and 1
: |
= Stalks over points 1n an edge are 222 | I
: I
= A stalk over a vertex is the tensor . ¢ ;)

product of n copies of 222, where n 1s

the incoming degree

= Restriction maps from an open set
containing a single vertex to a
connected set in the interior of an
edge are given by the diagram at right

Contraction
of A, C

The lift into
8 2
22 —>22 of

a logic
function

50

The benefit of the sheat formalism 1s that usetul
sheaf functors are already well-known.

The direct image functor (pushforward) relates to
hierarchical design:

Consider a continuous map X—Y that collapses an
edge with distinct ends. This takes a constructible
sheaf /" on X to a constructible sheat f /" on Y.

For switching sheaves, this also induces an 1somorphism
on cohomology (by the Vietoris mapping theorem)

51

Big win conceptually and computationally!

Collapsed graphs

= We construct a spanning tree T for X, and a
sequence of trees T1’ T 5 e s T = T such that Ti+1 \ T1

consists of exactly one edge

= We can work with collapsed graphs X/T , on which
the cohomology 1s easier to compute

= Vietoris Mappring theorem: isomorphic cohomology

- N\

XIT, XIT

Cohomology of switching
sheaves

= As noted earlier, H(X;F)=F(X), so H’ is generated
by all of the allowable states of the logic circuit

= Switching sheaves don't incorporate time explicitly, but
one can still extract time-dependent information in H'...

= Appears to track hazard-related transitions between states
= HX;F)=0 for k>1, since dim X = 1
= H'(X;F) appears to describe the states related to

hazards

53

Example: flip-flop
B

c A

T Q Transition out
of the hazard
state to the a
hold state
causes a race
condition

This is what traditional analysis gives...
5 possible states

54

Conversion to graph

\
|
|

/

----§

y

Cech cochain complex:
0—-FUeeF Ve FIW-FUnWeFUNWeaeFVnIW)-0
0-Z 0Z 0Z ~Z 0Z foZ -0

55

Flip-flop cohomology
B

c A H'(X:F)=Z

I-/"(X;F)gzz7

Generatedby: .. .0iuuunus
j1a®Bec | - a®bec+a®BaC *
T 1IAQB®c | " a®b®Cc+A®b®C -

94 3 @ E E E E EEE R ®

1a®beC | «

IARb®C 1 Thes% Is.t?tes qtgscribetth?th

I I possible transitions out of the
A®B® C' hazard state — something that

| S takes a bit more trouble to obtain

Q traditionally
(upper case means the generator

States from the corresponding to logical 1)
traditional approach

56

Example: glitch generator

H°(X;F) is generated by

A+C+D®e
a+Cc+dxE

A+a+C+c+d®e+DQ®E
E H'(X;F)=Z, \

Hazard
transition
state

Cech cochain complex:
0—-FUeeF Ve FIW-FUnWeFUNWeaeFVnIW)-0
0-Z0Z oZ '~>Z *0Z foZ -0

57

It's not immediately clear how one might store a
(representation of a) constructible sheaf in a
computer

One needs to specify a vector space for each open
set; there are various ways of doing this

The most obvious way to do this is to write the sheaf as a
function, but then how does one store a vector space?

Possibly use type-level programming in Haskell? We
could instantiate the sheaf as a type of Functor...

Seriously, though, 1t seems to be an impediment to
automating computation in constructible sheaves

58

Category theory to the
rescue!

= It turns out that there's a different way:

= Theorem: (MacPherson) The category of
constructible sheaves on an abstract simplicial
complex K 1s 1somorphic to the category of
presheaves over a certain category associated to K

= By presheaf, we mean a contravariant functor from a
category to a subcategory of Set

= The category in question here 1s the face category:
objects are simplices, and morphisms describe
boundaries (i.e. A—B if B1s aface of A)

59

Simplicial complexes and
the face category

{B,C,D}

RN
ALY

Face category

C n . n
Simplicial
complex

Presheaves on a face
category

It our graph 1s a cell complex, we therefore only
need to know the restriction maps and the stalks
over each cell.

This seems like a minimal amount of information

Further, the construction 1s functorial, so we can
transfer computation of sheat cohomology to this
context

This relates to HDA 1n concurrency theory!

61

Theoretical directions

Figure out how exactly glitches and hazards are
represented 1n the cohomology of a switching sheaf

Related: what is the physical meaning of H'(X;F)?

Extend edge collapse methodology to other direct
images; aiming towards a hierarchical approach to sheat
cohomology computation

Computational directions

Run some more complicated examples of cohomology

computations

Implement the cohomology computation on a computer N

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62

