Constructible sheaves and their cohomology for asynchronous logic and computation

14 January 2010

Michael Robinson

Acknowledgements

- This is a preliminary report on progress in a larger project on applied sheaf theory
 - More substantial results are to come!
- It's joint work with
 - Robert Ghrist (Penn)
 - Yasu Hiraoka (Hiroshima)
- The focus is on logic here, but is part of
 - AFOSR MURI on Information Dynamics in Networks
 - PI: Rob Calderbank (Princeton)

Logic gates

Logic gates

Logic gates

Problem: time-bound logic

- Propagation delays along connections and within gates!
- Feedback can hold state
- Race conditions:
 - Hazards
 - Glitches
 - Oscillations
 - Lock-ups

This is an E flip-flop circuit, a basic memory element. It's initially storing the value 0

If we change the Data input to 1, nothing exciting happens...

Pulsing the Enable input to 1 causes the Data input to be "read" and "stored"...

... but it takes time... t=1

... but it takes time... t=2

... but it takes time... t=3

... and will hold the new value!

Synchronous design

- Can avoid race conditions by polling after transients are finished
 - Unavoidable limitation: limited by the slowest circuit
- Synchronous solution: circuits poll their inputs only at specific points in time – a global clock
- But...
 - Biggest single drain of power in modern CPUs is the clock
 - Clock distribution and skew a major problem
 - Correcting clock skew requires additional circuitry and power usage

Asynchronous design

- Typical of older bus architectures and of networks
- Potential for significant power savings, space-ondie, and speed in certain areas
- Potential for better distribution of computation
- Design elegance: fewer transistors needed, less to break
- Network communication becomes more natural
 - Especially when latency is highly variable

Problems!

- Asynchronous circuits are hard to design!
- If you mistake a transient for the "final answer" of a circuit, you're faced with
 - Hazards (uncertainties in output value)
 - Glitches (very short pulses, which might confuse the underlying electronic technology)
 - Lock-ups (finite state machines getting stuck in a state where they cannot exit)
- Generally, all are the result of race conditions

Example of a glitch

causes glitch!

Limitations in current methods

- Traditional asynchronous design requires either
 - Very careful and exhaustive reasoning (time-dependent theorem-provers, concurrency theory), or
 - Detailed high-fidelity simulation (at sampling rate determined by the "GCD" of the propagation speeds)
- Bookkeeping is difficult, but essential
 - Difficult to test in stages, especially in testing *response* of circuitry to glitches
 - Exhaustive simulation is essentially impossible for large designs (e.g. CPUs)

Sheaf theory in logic circuits

- Provides some computational and conceptual tools
 - It's primarily a bookkeeping mechanism
- Building-up local models (gates and wires) into global ones (computational units)
 - The primary tool for this local-to-global transition is called *cohomology*
 - Sheaf cohomology organizes the computations effectively, and extracts lots of information!
 - Hierarchical design can be examined by *local* sheaf cohomology and sheaf direct image functors

Past work

A decidedly non-exhaustive list of some highlights:

- Sheaves over categories of interacting objects
 - Bacławski, Goguen (1970s)
- Concurrency & sheaf theory (not cohomological)
 - Lillius (1993), Van Glabbeek (2006)
- Constructible sheaves
 - Rota, Shapira, MacPherson (1960s)
- Quantum graphs (original motivating example)
 - Gutkin, Smilanski (2001), Kuchment (2003)
- Our focus is more strongly on cohomology

Sheaves: definition

A sheaf on a topological space X consists of

- A contravariant functor F from Open(X) to some subcategory of Set; this is a "sheaf of sets"
 - F(U) for open U is called the space of sections over U
 - The inclusion map $U \subset V$ is sent to a *restriction map* $F(V) \rightarrow F(U)$. Usually it is the restriction of functions.
 - Given a point $p \in X$, the direct limit of $F(U_{\alpha})$, for all U_{α} satisfying $p \in U_{\alpha}$ is called the *stalk* at p. It's a generalization of the germ of a smooth function
- And a gluing rule...

• The gluing rule: if U and V are open sets, then two sections defined on U and V that agree on $U \cap V$ come from a unique section defined on $U \cup V$

Base topological space *X*

Examples and non-examples

Examples of sheaves:

- Locally constant functions on a topological space
- Continuous functions
- Analytic functions on a manifold

Non-examples (they violate the gluing rule):

- Constant functions
- L^2 functions on unbounded domains

Constructible sheaves

- Suppose *X* has a filtration, $X_0 \subset X_1 \subset ... \subset X_k$ in which each X_i is "tame"
- A sheaf F on X is constructible (with respect to the filtration) if it is locally constant on each stratum: $X_i \setminus X_{i-1}$
- Constructible sheaves have constrained structure, especially if the filtration is finite
- In the case of topological graphs, we'll use the natural filtration structure induced by the graph

Cohomology

- The cohomology functor is a tool for extracting global information from a sheaf
 - Provided it's a sheaf of abelian groups
 - It is homotopy invariant
- It tells you all of the global sections, and obstructions for extending local sections to global ones
 - For instance $H^0(X;F) \cong F(X)$ (all global sections)

Čech cohomology

• Select a cover $\{U_{\alpha}\}$ of X and form the sequence of spaces and maps (the Čech cochain complex)

$$0 \to \oplus F(U_{\alpha}) \to \oplus F(U_{\alpha} \cap U_{\beta}) \to \oplus F(U_{\alpha} \cap U_{\beta} \cap U_{\gamma}) \to \dots$$

- The maps are called "coboundaries" and come from the differences between restrictions maps
- The homology of this sequence is the Čech cohomology of F with respect to $\{U_{\alpha}\}$.
 - Theorem: (Leray) If the cover is "good", then the Čech cohomology is a homotopy invariant, and therefore independent of the choice of cover

Problems with logic and sheaves

- If we use binary-valued (\mathbb{Z}_2 -valued) sheaves in the obvious way, we run into a problem: most logical operations don't support the functoriality of any sheaf in a way that's compatible with cohomology
 - Put another way, logical operations aren't all \mathbb{Z}_2 -linear!

A (standard) algebraic trick!

- Instead, consider any function between sets $f:A \rightarrow B$
- Let *R* be a ring with unit, and *R*(*A*) be the *R*-module generated by *A*
 - That is, generators of R(A) are elements of A
- Then f lifts uniquely to an R-module homomorphism

Lifted logic values

• Our logical value is represented by an element of \mathbb{Z}_2^2 (or \mathbb{R}^2 where \mathbb{R} is a ring with unit):

- Put another way, a logical value is aq+bQ, where
 - $q=(1\ 0)$, represents a logic 0
 - $Q=(0\ 1)$, represents a logic 1
 - $a,b \in \mathbb{Z}_2$ can be interpreted as a flag of whether Q or its inverted copy q is a *possible realization* of this value

Switching sheaves

- A *switching sheaf* over a directed graph is constructible with respect to stratification by the graph structure and
 - Stalks over points in an edge are \mathbb{Z}_2^2
 - A stalk over a vertex is the tensor product of n copies of \mathbb{Z}_2^2 , where n is the incoming degree
 - Restriction maps from an open set containing a single vertex to a connected set in the interior of an edge are given by the diagram at right

Contraction of A, C

The lift into $\mathbb{Z}_2^8 \rightarrow \mathbb{Z}_2^2$ of a logic function

Edge collapse

- The benefit of the sheaf formalism is that useful sheaf functors are already well-known.
- The direct image functor (pushforward) relates to hierarchical design:
- Consider a continuous map $X \rightarrow Y$ that collapses an edge with distinct ends. This takes a constructible sheaf F on X to a constructible sheaf f on Y.
 - For switching sheaves, this also induces an isomorphism on cohomology (by the Vietoris mapping theorem)
- Big win conceptually and computationally!

Collapsed graphs

- We construct a spanning tree T for X, and a sequence of trees $T_1, T_2, \dots, T_N = T$ such that $T_{i+1} \setminus T_i$ consists of exactly one edge
- We can work with collapsed graphs X/T_i , on which the cohomology is easier to compute
 - Vietoris Mappring theorem: isomorphic cohomology

Cohomology of switching sheaves

- As noted earlier, $H^0(X;F) \cong F(X)$, so H^0 is generated by all of the allowable states of the logic circuit
 - Switching sheaves don't incorporate time explicitly, but one can still extract time-dependent information in H^0 ...
 - Appears to track hazard-related transitions between states
- $H^k(X;F)=0$ for k>1, since dim X=1
- $H^1(X;F)$ appears to describe the states related to hazards

Example: flip-flop

This is what traditional analysis gives... 5 possible states

Conversion to graph

Čech cochain complex:

$$0 \rightarrow F(U) \oplus F(V) \oplus F(W) \rightarrow F(U \cap V) \oplus F(U \cap W) \oplus F(V \cap W) \rightarrow 0$$
$$0 \rightarrow \mathbb{Z}_{2}^{8} \oplus \mathbb{Z}_{2}^{2} \oplus \mathbb{Z}_{2}^{2} \oplus \mathbb{Z}_{2}^{2} \oplus \mathbb{Z}_{2}^{2} \oplus \mathbb{Z}_{2}^{2} \oplus \mathbb{Z}_{2}^{2} \rightarrow 0$$

Flip-flop cohomology

Example: glitch generator

 $H^0(X;F)$ is generated by

A+a+C+c+d⊗e+D⊗E

$$H^1(X;F) \cong \mathbb{Z}_2$$
Hazard transition state

Čech cochain complex:

$$0 \rightarrow F(U) \oplus F(V) \oplus F(W) \rightarrow F(U \cap V) \oplus F(U \cap W) \oplus F(V \cap W) \rightarrow 0$$
$$0 \rightarrow \mathbb{Z}_{2}^{2} \oplus \mathbb{Z}_{2}^{2} \oplus \mathbb{Z}_{2}^{4} \rightarrow \mathbb{Z}_{2}^{2} \oplus \mathbb{Z}_{2}^{2} \oplus \mathbb{Z}_{2}^{2} \rightarrow 0$$

Computational aspects

- It's not immediately clear how one might store a (representation of a) constructible sheaf in a computer
- One needs to specify a vector space for each open set; there are various ways of doing this
 - The most obvious way to do this is to write the sheaf as a function, but then how does one store a vector space?
 - Possibly use type-level programming in Haskell? We could instantiate the sheaf as a type of Functor...
- Seriously, though, it seems to be an impediment to automating computation in constructible sheaves

Category theory to the rescue!

- It turns out that there's a different way:
- Theorem: (MacPherson) The category of constructible sheaves on an abstract simplicial complex *K* is isomorphic to the category of *pre*sheaves over a certain category associated to *K*
 - By presheaf, we mean a contravariant functor from a category to a subcategory of Set
 - The category in question here is the face category: objects are simplices, and morphisms describe boundaries (i.e. $A \rightarrow B$ if B is a face of A)

Simplicial complexes and the face category

Simplicial complex

Face category

Presheaves on a face category

- If our graph is a cell complex, we therefore only need to know the restriction maps and the stalks over each cell.
- This seems like a minimal amount of information
- Further, the construction is functorial, so we can transfer computation of sheaf cohomology to this context
- This relates to HDA in concurrency theory!

What's next?

- Theoretical directions
 - Figure out how exactly glitches and hazards are represented in the cohomology of a switching sheaf
 - Related: what is the physical meaning of $H^1(X;F)$?
 - Extend edge collapse methodology to other direct images; aiming towards a hierarchical approach to sheaf cohomology computation
- Computational directions
 - Run some more complicated examples of cohomology computations
 - Implement the cohomology computation on a computer