
Aalborg University – Architektur og Design - Exercise by Dario Parigi

Miniproject 3-TILING IN GRASSHOPPER

What you will learn

1. combine transformations (rotation and

translation)

2. master grasshopper tree data

structures management

List of relevant components used

HexGrid

Rotate

Move

Polygon

Eval

Graph Mapper

Cross product

Aalborg University – Architektur og Design - Exercise by Dario Parigi

Introduction

The art of designing tiling and patterns has a long history and is therefore well developed.

Planar transformation are an effective tool for positioning objects in the plane. But hey are also very

useful in creating regular tessellations and tiling. In this miniproject we learn and apply the basics of

designing tiles by implementing the following work by M.C: Escher.

Procedure to create the tile

The tile is based on the geometry of three different starting curves, generated along hexagon sides ab,

cd, ef. To create the curves for each of the three sides we generate intermediate points, move the points

along the direction orthogonal to the side itself (and belonging to the plane where the hexagon lies), and

generate a new curve across the new points position. We start from generating the curve along hexagon

side ab.

1. Use a Polygon (Curve>primitive) to create a hexagon and set the hexagon size to a desired value

2. Select side ab, by using explode (curve > util) and one list item component with the appropriate index.

3. Generate equally spaced points on the side ab with the Eval component. Select Reparametrize (right

click C input of Eval) to set the domain of the curve from 0 to 1 and use the Range component to

generate equally spaced numbers between this domain (and consequently equally spaced points on the

side ab).

4. Determine a unit direction vector to be used for the points displacement. The direction vector should

be orthogonal to the side ab and comprised in the xy plane where the hexagon lies. You can determine

the direction vector with the use of cross product between the side itself (when connected to a cross

product, grasshopper automatically convert a segment to a unit vector that has the segment direction)

and another vector: which one and why? The result of the cross product is the direction vector, that

you should reset to length 1, with Unit vector (Vector>Vector) to have the unit direction vector.

5. Create the displacement vectors for the point on the side ab by multiplying the unit direction vector

with a list of numbers that contains as many numbers as the points on the segment. The values of the

Aalborg University – Architektur og Design - Exercise by Dario Parigi

numbers determine the magnitude of displacement vectors, and they can be set by you arbitrarily: a

component Graph mapper (params>util) can be used to conveniently create and edit a set of numbers

with the help of a graphic interface. Hint: use a Bezier graph type (right click>Graph type), and hold

the two extremities to a value=0. The component remap a series of numbers according to the graph

type, comprised in a domain by default set between 0 and 1. If you reuse the same Range component

used in step 3 for generating the points through the Eval component, you will generate a list of numbers

matching the list of points. You can increase or decrease the numbers values by multiplying them with

a factor using a multiplication component.

6. Displace the points with the displacement vectors just created in step 5.

7. Use Interpolate curve to generate the new curve geometry comprised by the side end points.

8. To create the segment along the side fa, you should rotate this curve by 120 degrees CCW

(counterclockwise) around vertex a

Aalborg University – Architektur og Design - Exercise by Dario Parigi

9. Repeat the procedure with the other two sides cd and ef . Each one should have a dedicated “graph

mapper” component so you can change the geometry of each segment independently from the others.

10. Use a Merge (sets>tree) and join curves component (Curve>Util) to respectively collect and join in

a single component the six curves in a CCW (counter clockwise) or CW (clockwise) order. and a planar

Srf (surface>freeform) to create a surface for the tile

Procedure to create the tiling

11. The tiling is based on a hexagonal pattern. To recreate it, you should create a 2d grid with hexagonal

cells, where each point at the hexagons center is the center point of a tile. In order to define the grid

parametrically, the spacing of the points in the grid should be based on the dimensions of the tile. This

will ensure that when changing the tile dimension, the geometric compatibility between adjacent tiles

is maintained.

Use a Hexgrid component (vector>Grid>hexagonal) to create the starting grid of points (P output). The

points in the P output are organized in branches.

HINT: Use a starting point in the P input so that the grid does not interfere in the Rhino canvas with the

drawing of the tile.

Branch1

Branch2

Branch3

Branch4

Branch5

Branch6

Branch7

Aalborg University – Architektur og Design - Exercise by Dario Parigi

12. By looking at the original tiling, we can recognize the following tile disposition scheme:

Please note that tiles disposition is regular but varies in odd and

even columns, and according to the tile color. Each tile colour

represent a different tile rotation: the green tile is not rotated, the

red tile is rotated 120 degrees CCW, and the white tile is rotated

240 degrees CCW.

Use the scheme as reference for the next steps.

13. We´ll first work on the red tiles in the odd columns. The red tile rotation is 120 degrees CCW (use a

rotate component)

Isolate, among all the tiles center points (P output of HexGrid component) the ones that are the center

points of the red tiles in the odd columns with Cull pattern component (sets>sequence) and a culling

C
o

lu
m

n
 1

 (
o

d
d
 c

o
lu

m
n

)


C
o
lu

m
n
 2

 (
ev

en
 c

o
lu

m
n
)


C
o
lu

m
n
 3

 (
o
d
d
 c

o
lu

m
n
)


C
o
lu

m
n
 4

 (
ev

en
 c

o
lu

m
n
)


C
o
lu

m
n
 5

 (
o
d
d
 c

o
lu

m
n
)


C
o
lu

m
n
 6

 (
ev

en
 c

o
lu

m
n
)


C
o
lu

m
n
 7

 (
o
d
d
 c

o
lu

m
n
)


C
o
lu

m
n
 8

 (
ev

en
 c

o
lu

m
n
)


C
o
lu

m
n
 9

 (
o
d
d
 c

o
lu

m
n
)


Aalborg University – Architektur og Design - Exercise by Dario Parigi

pattern provided with boolean toggle components (params>input) collected into a merge component

(Double clicking on a boolean toggle to change its value from true to false and vice-versa). Cull pattern

component removes elements in a list according to the supplied repeating culling pattern, where false

delete the element, and true keeps the element.

In this case we remove the points that are not the center point of a red tile using the repeating pattern

“false-true-false”.

- Because this pattern scheme applies only to odd

column, we should eliminate the points sitting in the even

columns. To do so flip the tree data structure, and apply a

cull pattern “true false”.

The points you have left now are the center points of the

red tiles in the odd columns.

14. Use a similar procedure but with different cull patterns to isolate the center points of the red tiles

in the even columns.

15. Now you can merge the two resulting sets of points (center points of the red tiles in the odd and even

columns). In order to place the red tile on these points use a move component, with the red tile in the G

input and the red tile center point in the T input. Colour the tile with a preview component.

Aalborg University – Architektur og Design - Exercise by Dario Parigi

16. Repeat similar procedures for the green and white tiles in the odd and even columns to obtain the

complete tiling.

17. Can you find alternative methods to create the pattern? In case of affirmative answer pinpoint the

advantages and limits of alternative methods. F. ex, could you simplify/reduce the number of

components used?

18. Optional: can you design/reproduce other tilings and patterns, using a similar grasshopper definition?

