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1Curves in Plane
and Space

1.1 Vector functions and parametrized curves

You have certainly encountered curves before. Simple examples are straight lines,
circles, ellipses; more complex ones the trajectory of a spacecraft or of a charged
particle in an electromagnetic field. We want to describe a framework that allows
us to describe and investigate general curves in plane and space.

1.1.1 Parametrization by vector functions

Many plane curves can be described as the graph of a function f : [a, b] → R.
But such a simple curve as a plane circle cannot! And for space curves, it is
obvious that one has to find other means of description.

Illustration 1.1 graph of a function, circle, and space curve - do it yourself...

We let Rn = {[x1, x2, . . . , xn]| xi ∈ R denote ordinary n-dimensional space

equipped with the orthonormal basis {ei|1 ≤ i ≤ n}, eij = δij =

{
1 i = j

0 i 6= j.

Definition 1.2 Let I ⊂ R denote an open interval.
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8 CHAPTER 1. CURVES IN PLANE AND SPACE

1. Any function r : I → Rn is called a vector function. A vector function can
be described in coordinates as

r(t) =
∑

i

ri(t)ei = [r1(t), . . . , rn(t)], t ∈ I.

2. A vector function r : I → Rn, r(t)[r1(t), . . . , rn(t)] is called smooth (C∞)
if the coordinate functions ri(t) are infinitely many times differentiable on
I. Its derivative r′ : I → Rn is defined as r′(t) = [r′1(t), . . . , r

′
n(t)], t ∈ I.

Remark 1.3 An interval J can be of the form ]a, b[, ]a, b], [a, b[ or [a, b] for real
numbers a, b. One can extend Def. 1.2 and define curves on intervals, which
are not open - by requiring r to be continuous on J and smooth on the interior.
We may also consider intervals of the form ] − ∞, b[, ] − ∞, b], ]a,∞[, ]a,∞]
and ] −∞,∞[= R. The interior int(J) removes boundary points from J ; f.ex.,
int([a, b]) =]a, b[. This is needed to extend Def. 1.2 to general intervals, since
differentiability makes only sense on open intervals!

1.1.2 Parametrized curves

Let us get started with some examples: A line in Euclidean n-space through P
in direction x ∈ Rn \ {0} can be parameterized by the vector function

r : R → Rn, r(t) =
−−→
OPt =

−→
OP + tx, t ∈ R.

The vector function c : [0, 2π] → R2, c(t) = [cos t, sin t], represents a circle C in
the Euclidean plane with radius 1 and the origin as its center: The circle consists

of all points Pt with
−−→
OPt = c(t). In both cases, you may imagine the arrow

−−→
OPt

pointing at Pt at time t.

Remark, that a circle cannot be represented as the graph of a function f : R → R:
There are two elements y = ±

√
1− x2 corresponding to an element x ∈ (−1, 1)

with [x, y] ∈ C. In space, it is even less reasonable to represent curves as graphs
of functions.

Example 1.4 The vector function r : R → R3, r(t) = [a cos t, a sin t, bt] repre-
sents a helix winding around a cylinder of radius a with the z-axis as the central
axis – above, resp. below a circle of radius a. The helix will be used as one of our
central examples throughout this chapter.



1.1. VECTOR FUNCTIONS AND PARAMETRIZED CURVES 9

–6
–4

–2
0

2
4

6

–6
–4

–2
0

2
4

6

–6

–4

–2

0

2

4

6

8

10

12

Figure 1.1: A helix

Illustration 1.5 Better have an applet here: An interval, the circle/helix, and
a scrollbar allowing to scroll a point one the interval, the corresponding point on
the helix, and an arrow from the origin to that point (moving when scrolled!) See
the geometric lab.

Definition 1.6 A smooth vector function r : I → Rn is called a parametrization
of the curve

C = {Pt ∈ Rn|−−→OPt = r(t), t ∈ I}

The curve C consists thus of all the points Pt “pointed to” by arrows
−−→
OPt = r(t).

Often, you will imagine I as a time interval, and the curve given by a “particle”
at position Pt at time t.

Example 1.7 (important general example): Is it always possible to represent a
the graph of a function f : I → R in the plane by a (vector function) parametriza-
tion? Yes! Here is the recipe:

The curve C = {[x, f(x)] ∈ R2|x ∈ I} can be parameterized by the vector function
r : I → R2, r(t) = [t, f(t)], t ∈ I. Then, the points Pt : [t, f(t)] run through all
the points on the curve C. For instance, r(t) = [t, sin t] is a parametrization of
the graph of the sine-function.

Illustration 1.8 Scrollable interval and arrows to the graph.
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1.1.3 Fundamental properties of smooth vector functions

Since we shall express geometric properties of curves using vector functions and
their derivatives (up to degree 3), a brief investigation into properties of such
vector functions will prove to be a good investment. The following rules apply
to vector functions and ordinary functions that can be described as composites
(sums, products, dot products, cross=wedge-products, composite of maps) of
vector functions (and ordinary functions). Make sure that you understand the
meaning of each term!

Proposition 1.9 Let I, J ⊆ R denote intervals; moreover, let r1, r2 : I → Rn

denote smooth vector functions, and let f : I → R and s : J → I denote
(ordinary) smooth functions. The derivatives of compound functions satisfy the
following rules at every t ∈ int(I):

1. (r1 ± r2)
′(t) = r′1(t)± r′2(t);

2. (fr1)
′(t) = f ′(t)r1(t) + f(t)r′1(t);

3. (r1 · r2)′(t) = r′1(t) · r2(t) + r1(t) · r′2(t);

4. (r1 × r2)
′(t) = r′1(t)× r2(t) + r1(t)× r′2(t);

5. (The chain rule) (r1 ◦ s)′(t) = s′(t)r′1(s(t)), t ∈ J .

Proof: Having described vector functions by their coordinates, the proofs are
straightforward implications of the rules for derivatives of ordinary smooth func-
tions. Note, that the rules for the dot product (3.) and the cross product (4.)
have the form of the ordinary product rule, again. Note that the terms in (3.)
are ordinary smooth functions!

✷

1.1.4 An important consequence

The following consequence of the derivation rules above is completely elementary,
but nevertheless a technically very important device:

Proposition 1.10 (The fundamental trick).
Let c ∈ R denote a constant, and I ⊆ R an interval.

1. Let r1, r2 : I → Rn denote two smooth vector functions with
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r1(t) · r2(t) = c for every t ∈ I.

Then, r′1(t) · r2(t) + r1(t) · r′2(t) = 0 for every t ∈ int(I).

2. Let r : I → Rn denote a smooth vector function with constant length |r(t)| =
c for every t ∈ I. Then r(t) · r′(t) = 0 for every t ∈ int(I).
In particular, r′(t) is perpendicular on r(t) for every t ∈ int(I).

Proof: Apply the product rule (1.9.3) for vector functions.

✷

1.2 Tangents, velocity, and length

1.2.1 Secants and tangents

For the graph of a function f : I → R, the secant through [x0, f(x0)] and
[x1, f(x1)] with x0 6= x1 is defined as the line through these two points on the
graph. The tangent to the graph at [x0, f(x0)] is defined as the limit position of
these secant lines when x1 tends to x0 – if such a limit position exists. We know
that it exists when f is smooth; in that case it is the line through [x0, f(x0)] with
slope f ′(x0).

It is not very difficult to generalise these concepts to curves (in the plane, in
3-space or in n-space) given by a smooth parametrization. In fact, smoothness
is not quite enough to guarantee the existence of a tangent line at every point.
This can be seen in

Example 1.11 Let C denote the curve given by the parametrization r : R →
R2, r(t) = [1 + t2, 1 + t3], cf. Fig. 1.2. Apparently, this curve has a singularity

at the point
−−→
OP0 = [1, 1]. The secant lines do have a limit position, which is the

horizontal line through P0. But this line is not a good approximation to the curve
near P0. Points in the 2. quadrant in the line do not approximate the curve.

Illustration 1.12 Scroll on the tangent line and on the curve using the differ-
ential, both at P0 and at P1.

But in most cases, a tangent line yields a good approximation, e.g., at the point
P1 : [2, 2] for the curve above. Why do we find different behaviour? Let us
calculate derivatives:

r′(t) = [2t, 3t2]; r′(0) = 0 r′(1) = [1, 1] 6= 0!
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Figure 1.2: A curve with a singular point

Definition 1.13 1. A smooth vector function r : I → Rn is called a regular

parametrization of the curve C = {Pt ∈ Rn|−−→OPt = r(t), t ∈ I} if and only
if r′(t) 6= 0 for all t ∈ int(I).

2. A subset C ⊂ Rn is called a regular curve if there is a regular parametriza-

tion r : I → Rn with C = {Pt ∈ Rn|−−→OPt = r(t), t ∈ I}.

Remark 1.14 1. There is nothing like the parametrization of a curve. You
can move along a curve at different speed, and speed need not be constant.

2. A regular curve may have a non-regular parametrization. This is the case
for the circle with the parametrization c(t) = [cos t2, sin t2], t ∈ R. Why?

3. The curve C from Ex. 1.11 does not possess any regular parametrization.

Tangents of regular curves

Given a (regular) curve C with a regular parametrization r : I → Rn, it is easy to
show that it has a tangent line at every point Pt ∈ C, t ∈ int(I) and to determine

it: Given a point Pt0 ∈ C with r(t0) =
−−→
OPt0, t0 ∈ int(I). To get the tangent line

to C at Pt0 , we only need a parallel vector as a limit vector from suitable parallel

vectors of secant lines nearby. The secant between Pt0 and Pt with r(t) =
−−→
OPt

has parallel vector
−−−→
Pt0Pt =

−−→
OPt −

−−→
OPt0 = r(t)− r(t0) (for Pt0 6= Pt). For t→ t0,



1.2. TANGENTS, VELOCITY, AND LENGTH 13

this difference vector gets shorter and shorter and thus tends to 0, hence does
not give information on the direction of a possible tangent. Instead, we look at

the unit parallel vector
−−−→
Pt0Pt

|−−−→Pt0Pt|
= r(t)−r(t0)

|r(t)−r(t0)| and its limit position for t→ t0.

Illustration 1.15 Applet with secants and tangents – See the geometric lab..

Proposition 1.16 Let r : [a, b] → Rn denote a regular parametrization of a

curve C. Let t0 ∈ (a, b) and
−−→
OPt0 = r(t0). Then, the curve has a tangent

line at Pt0 with parallel vector r′(t0). A parametrization for the tangent line is
t(t) = r(t0) + tr′(t0).

Proof: For a regular parametrization, we take the limit of the unit direction
vectors for t→ t0+ from the left:

lim
t→t0+

−−−→
Pt0Pt

|−−−→Pt0Pt|
= lim

t→t0+

r(t)− r(t0)

|r(t)− r(t0)|
=

limt→t0+
r(t)−r(t0)
t−t0

limt→t0+
|r(t)−r(t0)|

t−t0

=
r′(t0)

|r′(t0)|,

and similarly,

lim
t→t0−

−−−→
Pt0Pt

|−−−→Pt0Pt|
= − r′(t0)

|r′(t0)|.
(Why does this not work for r′(t0) = 0?). In particular, these two limit vectors
are the two unit vectors parallel to r′(t0). Hence the line through Pt0 with parallel
vector r′(t0) is a limit for the secant lines through Pt0 – and thus rightly qualifies
as the tangent line.

✷

Illustration 1.17 Applet firing tangents from points at a regular curve given by
a parametrization after choice. Including coordinates of position and direction.

Remark that a regular curve has a tangent vector at each point. On the other
hand, a curve with a non-regular parametrization may have tangent lines, but
Ex. 1.11 shows that there may be points without a tangent line (regardless the
parametrization). In many cases, one can still define semi-tangents using the
limits

lim
t→t0+

r(t)− r(t0)

|r(t)− r(t0)|
, resp. lim

t→t0−

r(t)− r(t0)

|r(t)− r(t0)|
as the definition. See also Exc. 1.2.3.?.
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1.2.2 Velocity and arc length

Speed and unit tangent vectors

Proposition 1.16 shows that the derivative r′(t) of a regular parametrization of
a curve C contains the geometric information needed to determine the tangent
lines to C. But there is more (non-geometric) information hidden in the vector
function r′(t). If you imagine r(t) tracing the trajectory of a particle at time t,
differentation should have something to do with the speed of that motion, as well.

How can one grasp the speed of a smooth vector function? As for functions of

one variable, we look at the quotient
|−−−→Pt0Pt|
|t−t0| = |r(t)−r(t0)|

|t−t0| . For t → t0, we obtain

the limit limt→t0
|r(t)−r(t0)|

|t−t0| = | limt→t0
r(t)−r(t0)
t−t0 | = |r′(t0)|.

Definition 1.18 Let r : I → Rn denote a smooth vector function. At t0 ∈ int(I),

it has speed v(t0) = r′(t0) and unit tangent vector t(t0) =
r′(t0)
|r′(t0)| . In particular,

r′(t0) = v(t0)t(t0) for all t0 ∈ int(I).

Illustration 1.19 Parametrization: Interval, derivatives, tangents and speed curve.

Reparametrizations

How are different parametrizations of the same regular curve related to each
other? Well, they should give rise to the same tangent lines along the curve,
whereas speed functions can be entirely different. Here is a method to reparam-
eterise a regular curve with a given regular parametrization r : I → Rn: Choose
a (strictly monotone) smooth bijective1 function f : J → I from an interval
J such that f ′(t) > 0 for all t ∈ int(J). Then the composite vector function
r1 = r ◦ f : J → Rn parametrizes C – since r1(t) = r(f(t)) or r(u) = r1(f

−1(u)),
and it is regular (Why? The chain rule in Prop. 1.9.5.)

Illustration 1.20 Two intervals, a reparametrization, and the motion along the
curve. (three moving spots)

We use this approach to make the definition of a regular curve from Def. 1.13
more precise. Remark first that we may define an equivalence relation on reg-
ular parametrisations: r ≃ r1 if and only if r1 is a reparametrization of r;
cf. Exc. 1.2.3.?.

11-1 and onto
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Definition 1.21 A regular curve is an equivalence class of regular parametrisa-
tions under the equivalence class ≃ above.

Since we only allow reparametrization functions f with f ′ > 0 everywhere, we
can speak about an orientation (order) on the curve: r(t0) comes before r(t1) if
and only if t0 < t1.

Arc Length

Let r : I → Rn denote a smooth vector function that is a regular parameterisation
of a regular curve C ⊂ Rn.

Definition 1.22 The length l(C) of the curve C is defined as the non-negative
real number

∫
I
|r′(t)| dt.

For r(t) = [x1(t), . . . , xn(t)], we obtain:

l(C) =

∫

I

√
(x′1(t))

2 + · · ·+ (x′n(t))
2 dt.

Example 1.23 1. For the helix from Ex. 1.4 with parametrization r : R →
R3, r(t) = [a cos t, a sin t, bt], we calculate:

|r′(t)| =
√
(a sin t)2 + (a cos t)2 + b2 =

√
a2 + b2.

Hence, one turn around the helix has length

l = s(2π) =

∫ 2π

0

√
a2 + b2dt = 2π

√
a2 + b2.

Remark that you obtain the familiar formula for the arc length of a circle
in case b = 0.

2. For the graph of a function f : [a, b] → R from Ex. 1.7 with parametrization
r : [a, b] → R2, r(t) = [t, f(t)], a ≤ t ≤ b, we calculate the length l of the
graph as follows:

|r′(t)| = |[1, f ′(t)]| =
√

1 + (f ′)2(t), and hence l =
∫ b
a

√
1 + (f ′)2(t)dt.

The last example shows, that it is very often difficult or impossible to calculate
the length of a curve in explicit terms. Many of the integrands involving square
roots do not have explicit antiderivatives!
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Here is a motivation for Def. 1.22: For t ∈ Ī, let It = I∩] − ∞, t] denote the
part of the interval containing numbers less than or equal to t. Then, the vector
function rt : It → Rn, rt(u) = r(u) is a regular parametrization of a section Ct
of the curve C. Let s(t) denote the length of Ct. The function s : I → R is
called the arc length function of the parametrization. Note that s is monotonous:
Increasing t yields increasing s(t)!

Arc length s(t) and speed v(t) of the parametrization r should be related by the
property: s′(t) = v(t) = |r′(t)|, and hence s(t) =

∫
I
|r′(t)| dt+c, c a real constant.

For t0 = inf I, the length of the empty curve Ct0 has to be zero, hence c = 0.

Illustration 1.24 Scrollable interval, parametrization, section Ct, functions s(t)
and s′(t).

If the concept of length has any value, it should be independent of the choice of a
regular parametrization of a given curve. This is indeed the case; see Exc. 1.2.3.6.

Unit Speed Parametrization

It is somehow awkward to have too many parametrizations for the same curve.
For theoretical purposes, one needs a particular nice one:

Definition 1.25 A vector function ral : I → Rn is called a unit speed parametriza-
tion if its speed satisfies v(s) = |r′al(s)| = 1 for every s ∈ int(I).

In other words, the derivative of ral is the unit tangent vector t(s) at every
element s ∈ I : t(s) = r′al(s). It has the following property which explains its
second name – an arc length parametrization:

Proposition 1.26 For t0 ≤ t1 ∈ I, the arc length function s associated with a
unit speed parametrization has the property: s(t1)− s(t0) = t1 − t0.

Proof: s(t1)− s(t0) =
∫
It1

|r′al(s)| ds−
∫
It1

|r′al(s)| ds =
∫ t1
t0

|r′al(s)| ds =
∫ t1
t0
ds =

t1 − t0.

✷
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Example 1.27 The parametrization r(t) = [a cos t, a sin t, bt] for the helix from
Ex. 1.4 yields (cf. Ex. 1.23): v(t) = |r′(t)| =

√
a2 + b2; in particular, it is a

constant function. Hence, starting at t = 0, the arc length function is given as
s(t) =

√
a2 + b2t; and thus its inverse is t(s) = s√

a2+b2
. Substituting t(s) into the

parametrization r yields the arc length parametrization for the helix, to wit:

ral(s) = r(t(s)) = [a cos
s√

a2 + b2
, a sin

s√
a2 + b2

, b
s√

a2 + b2
].

Remark 1.28 1. The following gives an easy intuitive idea for the arc length
parametrization of a given curve: Imagine a piece of rope with a scale (start-
ing at 0) and bend it along the curve (without stretching!) Then, ral(s) is
the vector from the origin to the point corresponding to the mark s on the
scale.

2. The advantage of the arc length parametrization is that it focusses on the
geometric properties of the curve rather than the infinitely many possible
different modes (with varying speed, acceleration etc.) to run through it.
Using this parametrization, it will be much easier to define entities like the
curvature; on the other hand, for concrete calculations, one usually does
not dispose of a concrete arc length parametrization.

Does a regular curve always admit a unit speed parametrization? Well, in most
cases, it is not possible to write down an explicit unit speed parametrization using
familiar functions as components. Nevertheless, a unit speed parametrization
always exists:

To find it, let us first assume that there is a unit speed parametrization ral :
I → Rn representing a curve C. Let f : J → I denote any bijection with
f ′(t) > 0 giving rise to the (re)parametrization r = ral ◦ f of the curve C. The
two parametrizations are linked via the arc length function s : J → [0, l(C)]
associated to the parametrization r, to wit:

r(t) = ral(s(t)).

(“At time t, we trace the point at distance s(t) from t he start point”). How
could one (re)construct ral given r? Well, if the function s had an inverse t :
[0, l(C)] → J , then

ral(s) = ral(s(t(s))) = r(t(s)). (1.1)

Illustration 1.29 Scrollable s and t-intervals and parametrization.
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The function s : J → R, s(t) =
∫
I
|r′(t) dt has the derivative s′(t) = |r′(t)| =

f ′(t) > 0, and hence s is strictly increasing. Therefore, it has in fact a smooth
inverse, and we can use (1.1) as the definition of an arc length (unit speed)
parametrization. Remark that we have shown the existence of a unit speed
parametrization using the existence of a function t inverse to s. In most cases, it
is not possible to give a formula for t(s) in terms of well-known functions. Just
try for the graph of a differentiable function (cf. Ex. 1.7).

As you may have observed by now, it is customary to use the parameter s for an
arc length parameter, and t for an arbitrary parameter. Whenever s is used in
this text, we talk about a unit speed parametrization.

A geometric property of unit speed parametrizations

The following property of unit speed parametrizations is the main reason why
geometers like them so much. It is an immediate consequence of the fundamental
trick (Prop. 1.10):

Proposition 1.30 Let r : I → Rn denote a unit speed parametrization. Then,

r′′(s) · r′(s) = 0 for all s ∈ int(I).

In geometric terms, the acceleration vector r′′(s) is always perpendicular on the
tangent vector r′(s).

1.2.3 Exercises

1. Calculate tangents of several curves and use applet to show them.

2. Determine a parametrization for the tangent line to the graph of the func-
tion f :]a, b[→ R (with parametrization r :]a, b[→ R2, r(t) = [t, f(t)] at
t0 ∈]a, b[. Is the result familiar?

3. How can you determine from r′(t0) whether the curve C has a horizon-
tal/vertical tangent at Pt0?

4. Why can the curve from Ex. 1.11 not have any regular parametrization at
P0 : [1, 1]?

5. Show that the relation ≃ on regular parametrisations (r ≃ r1 if and only if
there is a bijective function f : J → I with f ′(t) > 0 for every t ∈ int(J)
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with r1 = r ◦ f) is an equivalence relation (i.e., reflexive, symmetric, and
transitive).

One may change the definition of ≃ by allowing bijective reparametrisations
f with f ′(t) 6= 0 for every t ∈ int(J). How is the geometric meaning
changed?

6. Show that the length of a regular curve C is independent of the choice of a
regular parametrization.
(Hint: Let r : I → Rn denote a regular parametrization of C, let f :
J → I denote a real function such that r1 = r ◦ f : J → Rn is a regular
reparametrization of C. Using the chain rule for derivatives and substitution
for integals, show, that

∫

J

|r′1| du =

∫

I

|r′| dt.)

7. Find a unit speed parametrization of the regular space curve C given by
the parametrization r(t) = [t,

√
6
2
t2, t3], t ∈ R.

1.3 Curvature

From now on, we restrict ourselves to (regular) plane and space curves, given by
regular smooth parametrizations r : I → Rn, n = 2 or n = 3.

What should the curvature of a curve be? Well, a line is not curved at all; its
curvature has to be zero. A circle with a small radius is more ”curved” than a
circle with a large radius. Circles and lines have constant curvature. Curves that
are not (pieces of) circles or lines will have a curvature varying from point to
point.

1.3.1 Approximating and osculating circles

A tangent line to a curve C can be defined as the limit of the secant lines through
two points on the curve. In much the same spirit, one can define curvature circles
(= osculating circles) as the limit circles of circles passing through three points
on the curve. The curvature of C at a point P is then defined as the inverse of
the radius of this curvature circle at P .

Let C denote a plane or space curve given by a unit speed parametrization r : I →
Rn, n = 2 or n = 3. Let s0 ∈ int(I) and Ps0 the point on C with r(s0) =

−−−→
OPs0.
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To construct the curvature circle at Ps0, choose s1 and s2 close to s0 such that
Ps0, Ps1 and Ps2 are not contained in a line (This is possible unless the curve is
coinciding with a line close to Ps). In Exc. 1.3.7.?, you are invited to show that
there exists exactly one circle through the points Ps0, Ps1 and Ps2; we denote its
center by C(s0, s1, s2).

The idea is to find a limit circle when both s1 and s2 approach s0. To this end,
we investigate the real smooth function

d(s) = (r(s)− C(s0, s1, s2)) · (r(s)− C(s0, s1, s2)).

Its geometric meaning is the square of the distance between Ps and C(s0, s1, s2).
By definition, d(s0) = d(s1) = d(s2), i.e., the square of the radius of the circle
through these three points. By Rolle’s theorem for smooth functions in one
variable, there exist two intermediate values t1, t2 such that d′(t1) = d′(t2), and,
moreover an intermediate value u such that d′′(u) = 0. The derivatives of d can
be calculated as

d′(s) = 2r′(s) · (r(s)− C(s0, s1, s2)), resp. (1.2)

d′′(s) = 2(r′′(s) · (r(s)− C(s0, s1, s2)) + 2r′(s) · r′(s)
= 2(r′′(s) · (r(s)− C(s0, s1, s2)) + 2. (1.3)

To obtain the last equality, we used that r is a unit speed parametrization. At
s = u, we obtain in particular: r′′(u) · (r(u)− C(s0, s1, s2)) = −1.

Illustration 1.31 Circles through 3 points on the curve converging to osculating
circle. The function d and intermediate points. See geometric lab.

Now, let s1 and s2 tend to s0 to get a limiting curvature circle with centre C(s0)
and radius ρ(s0). You are invited to show the existence of this curvature circle
in Exc. 1.3.7.1. When s1 and s2 tend to s, t1, t2 and u tend to s0, as well.
This allows us to derive from (1.2), that r′(s0) · (r(s0) − C(s0)) = 0, and that
r′′(s0) · (r(s0)− C(s0)) = −1.

We obtain the following geometric implications:

Lemma 1.32 • The tangent line to C at Ps0 (parallel to t(s0) = r′(s0)) is

perpendicular to the radial vector
−−−−→
Ps0Cs0 and, for a plane curve

• The acceleration vector t′(s0) = r′′(s0) is perpendicular to r′(s0) according
to Prop. 1.30, and hence, it has to be parallel to r(s0)− C(s0); calculating
lengths, we obtain: |r′′(s0)| |r(s0) − C(s0)| = 1, i.e., |t′(s0)| = |r′′(s0)| =

1
ρ(s0)

. The length of the acceleration vector is thus inverse to the radius of
curvature at s0.
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This length |t′(s0)| = |r′′(s0)| is the absolute value of the curvature of the plane
curve C at Ps0. We shall introduce a refinement, the signed curvature for plane
curves in the next Sect. 1.3.2.

Illustration 1.33 Curve, r′(s0), r(s0)− C(s0), r
′′(s0), |r′′(s0)|. Scrollable.

For a space curve C, one can follow the same line of argument; we need the
existence of the osculating plane and its properties to complete the description
of the curvature for space curves. See Sect. 1.4.1.

1.3.2 Principal normals and curvature functions

Let C be a regular smooth curve in the plane or in 3-space with unit speed
parametrization r : I → Rn, n = 2 or 3. By Def. 1.25 – and its explanation, the
vector t(s) = r′(s) is a unit tangent vector to the curve at the point Ps. The
vector function t : I → Ri is called the unit tangent vector field moving along the
curve. We are now going to analyse the information hidden in the derived vector
field t′ = r′′ along the curve C. An application of Prop. 1.30 yields:

Corollary 1.34 1. At every point Ps of the curve, the derivative t′(s) is per-
pendicular to t(s) : t′(s) · t(s) = 0.

2. For a plane curve C the vectors t′(s) and t̂(s) are parallel.

Definition 1.35 1. The vector t′(s) is called the curvature vector at the point

Ps on C with
−−→
OPs = r(s).

2. A point Ps on C is called an inflection point if t′(s) = 0.

3. The principal normal vector n(s) to the curve at Ps is defined as follows:

(a) For a plane curve C let n(s) = t̂(s).

(b) For a space curve C let n(s) = t′(s)
|t′(s)| at every non-inflection point

Ps ∈ C.

Definition 1.36 The curvature κ(Ps) of the curve C at the point Ps is defined
as follows:

1. For a plane curve C let

t′(s) = κ(s)n(s), (1.4)

and thus κ(s) = ±|t′(s)|.
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2. For a space curve C let

κ(s) = |t′(s)| ≥ 0. (1.5)

and thus for κ(s) 6= 0 : t′(s) = κ(s)n(s).

ρn

P
n t ρn

Q
n

t

C

Figure 1.3: Tangent and principal normal vectors and osculating circles at points
P and Q

Remark 1.37 1. By Cor. 1.34, tangent and principal normal vectors are per-
pendicular to each other at every point of the curve: t(s) ·N(s) = 0.

2. An inflection point Ps on C is characterised by the property κ(s) = 0.

Illustration 1.38 Moving tangent, t′(s),n(s), osculating circle; view inflection
points; moreover, plot curvature.

Here are several motivations for the definition of the curvature above:

1. The magnitude |t′(s)| of the derivative t′(s) measures the rate of change
of the direction of the tangent vector field t(s) – since its length |t′(s)| is
constant. The faster the direction of the tangent vector changes, the more
curved is the curve.
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2. Let us calculate the curvature for a plane circle with radius R. With center
at the origin, the arc length parametrization of the circle is given by ral(s) =
[R cos s

R
, R sin s

R
]. We calculate:

t(s) = [− sin
s

R
, cos

s

R
], t′(s) = [− 1

R
cos

s

R
,− 1

R
sin

s

R
] =

1

R
t̂(s),

and according to (1.4), κ(s) = 1
R

for every s. Hence, the curvature of a
circle is constant and in inverse proportion to its radius – as it should!

For a general curve C, the curvature at a point P is in inverse proportion
to the radius of the best approximating circle at P , the so-called osculating
circle, cf. Fig. 1.3 and Sect. 1.3.1.

1.3.3 Tangent and normal indicatrix and curvature

In the plane, a unit vector field v : I → R2 takes values in the unit circle
S1 := {[x, y] ∈ R2| x2 + y2 = 1} = {[cos(θ), sin(θ)]| θ ∈ R}. It can thus be seen
as a continuous map v : I → S1; if the curve does not have double points2, one
may view it as a map from C to S1, the so-called indicatrix. We shall later use a
similar point of view to define the Gauss map on a surface.

Both the unit tangent vector field t(s) and the principal normal vector field t̂(s)
give rise to (perpendicular) tangent and normal indicatrices.

Illustration 1.39 Tangent and normal indicatrices of a plane curve; simultane-
ously moving points on interval, curve and S1.

To relate to curvature calculations, we choose a description of the unit tangent
vector field as t(s) = [cos θ(s), sin θ(s)] with θ(s) the angle between t(s) and the
horizontal vector i, i.e., cosθ(s) = t(s) · i3. A calculation of t′(s) using the chain
rule (Prop. 1.9(5)) yields:

t′(s) = θ′(s)[− sin θ(s), cos θ(s)] = θ′(s)t̂(s), (1.6)

and hence: κ(s) = θ′(s). Hence, the curvature measures the rate of change for
the angle between tangents, as it should. Moreover, we get an explanantion for
the sign of the curvature of a plane curve, to wit:

Corollary 1.40 Near the point Ps, a plane curve C is curved

2and neither converges to a point already on the curve at an end of the interval
3This can easily be done locally and then “lifted” along the entire curve. Try Exc. 1.3.7.
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• counter-clockwise if and only if κ(s) > 0,

• and clockwise if and only if κ(s) < 0.

In Fig. 1.3, the curvature is negative at P and positive at Q.

Illustration 1.41 Banchoff’s curvature caterpillar. One needs to explain, that
n′(s) = −κ(s)t(s) – Exc. 1.3.7.?!

Indicatrices for space curves will be covered in Sect. 1.4.1.

1.3.4 Acceleration and curvature calculation

The definition of curvature above uses the unit speed parametrization of a given
curve. But in general, you have only a regular parametrization r : J → Rn at
hand. In this case, the curvature at a given point P is “hidden” in the accel-
eration vector at that point. Let us first compare the derivatives of different
parametrizations of the same curve C:

Let r : J → Rn denote a regular smooth parametrization, let s : J → I = s(J) ⊂
R denote the associated arc length function s(t) =

∫ t
I
|r′(u)| du. Let ral : I → Rn

the unit speed (arc length) reparametrization (cf. Sect. 1) with the property

r(t) = ral(s(t)).

Let us calculate the derivatives of the parametrization r(t) using the chain rule
and the product rule from Prop. 1.9 and the definition of curvature from Def. 1.36:

r′(t) = s′(t)r′al(s(t)) = v(t)t(t);

r′′(t) = v′(t)r′al(s(t)) + (s′(t))2r′′al(s(t)) = v′(t)t(t) + v(t)2κ(t)n(t). (1.7)

(If Pt ∈ C ⊂ Rn is the point with
−−→
OPt = r(t), then v(t) is the speed at Pt

associated to the parametrization, a(t) = v′(t) = s′′(t) is the scalar acceleration
at Pt, t(t) is the unit tangent vector to C at Pt, κ(t) the curvature of C and n(t)
the principal normal vector to C at Pt.)

Before using (1.7) to calculate the curvature of a given curve, let us look at the
following attractive interpretation in mechanics : Equation (1.7) yields a decom-
position of the acceleration vector a(t) = r′′(t) into a tangential component at(t)
and a normal component an(t) :

a(t) = at(t) + an(t) = v′(t)t(t) + v2(t)κ(t)n(t).
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In particular, the magnitude of the tangential component is: |at(t)| = v′(t), which
is the scalar accelaration, i.e., the rate of change of the speed. The magnitude
of the normal component is: |an(t)| = v2(t)κ(t). Hence, the force acted upon a
particle normal to its path is proportional to the square of its speed and to the
curvature of the curve. This is intuitively known to every car driver; when you
drive through a narrow curve, you have to slow down drastically in order to avoid
strong normal forces.

Curvature formulas

Proposition 1.42 1. Let C be a plane curve with parametrization r : J →
R2. Its curvature κ(t) at a point Pt with

−−→
OPt = r(t) is given by

κ(t) =
[r′(t), r′′(t)]

|r′(t)|3 . (1.8)

The numerator [r′(t), r′′(t)] is the plane product of the vectors r(t), r′(t) ∈
R2.

More explicitly, for r(t) = [x(t), y(t)], t ∈ J , we obtain:

κ(t) =

∣∣∣∣
x′(t) x′′(t)
y′(t) y′′(t)

∣∣∣∣
(
√
x′(t)2 + y′(t)2)3

. (1.9)

2. Let C be a space curve with parametrization r : J → R3. Its curvature κ(t)

at a point Pt with
−−→
OPt = r(t) is given by

κ(t) =
|r′(t)× r′′(t)|

|r′(t)|3 . (1.10)

More explicitly, for r(t) = [x(t), y(t), z(t)], t ∈ J , we obtain:

κ(t) =
|[x′(t), y′(t), z′(t)]× [x′′(t), y′′(t), z′′(t)]|

(
√
x′(t)2 + y′(t)2 + z′(t)2)3

. (1.11)

Proof:

1. Using properties of the determinant of a (2×2)-matrix and (1.7), we obtain:
[r′(t), r′′(t)] = [v(t)t(t), v′(t)t(t)+ v2(t)κ(t)t̂(t)] = [v(t)t(t), v2(t)κ(t)n(t)] =
v3(t)κ(t)[t(t), t̂(t)] = v3(t)κ(t).
(The last equation uses that the plane product of a unit vector and its hat
vector is one, since it measures the (signed) area of the rectangle spanned
by both vectors.)
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2. Using properties of the cross product and (1.7), we obtain:
r′(t)×r′′(t) = v(t)t(t)×(v′(t)t(t)+v2(t)κ(t)n(t)) = v(t)t(t)×v2(t)κ(t)n(t) =
v3(t)κ(t)(t(t)× n(t)).
The vector t(t)× n(t) is a unit vector, since t(t) and n(t) are mutually or-
thogonal unit vectors. Therefore, the vector r′(t)×r′′(t) has length v3(t)κ(t).

✷

Example 1.43 1. An ellipse E with semi-axes a and b has a parametrization
r(t) = [a cos t, b sin t], t ∈ [0, 2π]. We calculate:

r′(t) = [−a sin t, b cos t],
r′′(t) = [−a cos t,−b sin t],

[r′(t), r′′(t)] =

∣∣∣∣
−a sin t −a cos t
b cos t −b sin t

∣∣∣∣ = ab.

Since |r′(t)| =
√
a2(sin t)2 + b2(cos t)2, we obtain:

κ(t) =
ab

(a2(sin t)2 + b2(cos t)2)
3
2

. (1.12)

2. The curve Cf given as the graph of a function f : [a, b] → R (Ex. 1.7) can be
parameterised by the vector function r : [a, b] → R2 given as r(t) = [t, f(t)].
We calculate: r′(t) = [1, f ′(t)], r′′(t) = [0, f ′′(t)]; hence, [r′(t), r′′(t)] =
f ′′(t), |r′(t)| =

√
1 + (f ′(t))2, and

κ(Pt) =
f ′′(t)

√
1 + (f ′(t))2

3 . (1.13)

In particular, Cf is curved counter-clockwise at Pt if f
′′(t) > 0 and clockwise

if f ′′(t) < 0 (Cor. 1.40).

3. Let r denote the parametrization for a helix from Ex. 1.4 given as

r(t) = [a cos t, a sin t, bt], a, b > 0.

Its derivatives (velocity and acceleration vectors) are calculated as

r′(t) = [−a sin t, a cos t, b];
r′′(t) = [−a cos t,−a sin t, 0]. (1.14)
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Figure 1.4: Ellipse and curvature function

Hence,

|r′(t)| =
√
a2 + b2;

r′(t)× r′′(t) = [ab sin t,−ab cos t, a2];
|r′(t)× r′′(t)| = a

√
a2 + b2. (1.15)

The curvature of the helix at Pt is calculated as

κ(t) =
a
√
a2 + b2

√
a2 + b2

3 =
a

a2 + b2
. (1.16)

Note, that the curvature is constant along the helix. For b = 0, we get as a
special case the curvature 1

a
of a circle with radius a.

Osculating Circles

In Sect. 1.3.1, we motivated the curvature concept via the radii of osculating
circles approximating the curve. Having determined the curvature of a curve
with a given parametrization, we can now determine the osculating circles for a
plane curve C given by a regular smooth parametrization r : I → R2.
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Proposition 1.44 The osculating circle at Pt with
−−→
OPt = r(t) has radius ρ(t) =

1
|κ(t)| and center Ct with

−−→
PtCt =

1
κ(t)

n(t).

Proof: Exc. 1.3.7.?. Use Lemma 1.32.

✷

In a similar way, one can determine the osculating circles along a space curve. In
that case, one has to use that the osculating circle through Pt is contained in the
osculating plane ω(t) through Pt (cf. Sect. 1.4.1).

The Evolute Curve

From a given curve C, one may obtain a new curve EC , the evolute of C, by
associating to every point P ∈ C the corresponding centre of curvature CP , i.e.,
the center of the osculating circle through P . It is easy to translate the description
of this center in 1.44 into a parametrization of EC :

Corollary 1.45 Let C be a curve with parametrization r : I → R2. The follow-
ing is a parametrization for the evolute EC of C:

e(t) = r(t) +
n(t)

κ(t)
= r(t) +

|r′(t)|3
[r′(t), r′′(t)]

r̂′(t)

|r′(t)| = r(t) +
|r′(t)|2

[r′(t), r′′(t)]
r̂′(t).

Example 1.46 1. The evolute of a cycloid is a translated cycloid.

2. The evolute of an ellipse is an astroid. Using Cor. 1.45, we obtain the
parametrization e(t) = [a

2−b2
a

(cos t)3, b
2−a2
b

(sin t)3].

Illustration 1.47 Replace figure by an applet producing moving osculating cir-
cles and the evolute (as done by Robert for a specific curve)

Proposition 1.48 Let C denote a regular plane curve with constant curvature
κ. For κ = 0, C is a straight line segment; for κ 6= 0, C is contained in a circle.

Proof: Let r denote a unit speed parametrization of C. If κ = 0, then r′′ = 0

(why?), and r′(s) is a constant vector v. Hence, r(s) = sv+b for some constant
vector b; the image of an interval is thus contained in a straight line.
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Figure 1.5: Ellipse with osculating circles and evolute

Now suppose κ 6= 0. The evolute curve of a circle is a constant point e(t) = e.
Let us first show, that the evolute curve of C is constant, too: By Cor. 1.45, it is
given by e(s) = r(s) + n(s)

κ
. Hence,

e′(s) = r′(s) +
n′(s)

κ
= t(s)− κ

κ
t(s) = 0.

(The middle equation stems from Exc. 1.3.7.?(c)). As a result, e(s) is a constant

vector e, and r(s) − e = n(s)
κ

has constant length |r(s) − e| = 1
|κ| . Hence, the

image of r is contained in the circle with center at e and radius 1
|κ| .

✷

1.3.5 The Curvature Function characterizes a Plane Curve

We have seen how to associate to a curve its curvature function.

Illustration 1.49 Again. Curve and asociated curvature function.

Is it possible to somehow reverse this process? More precisely: Let k : I → R

denote a continuous function. Is there always a plane curve C (with unit speed
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parametrization r : I → R2) realizing this function as the curvature function
associated to C? How many such curves are there?

The answer is, that there is always such a curve, and it is uniquely determined
up to a rigid motion of the plane, i.e., up to a combination of a translation
and a rotation. First of all, it is clear, that a translation, resp. a rotation does
not change the curvature function κ. On the other hand the following iterative
construction shows why one should expect the existence of a curve with given
curvature function4:

Choose a start point P0 and a start direction given by a unit vector v0 (this choice
corresponds to the choice of a translation and a rotation). Draw a circular arc of
length s through P0 with tangent vector v0 and radius ρ0 = 1

κ(0)
. At the end of

this little circle you obtain a point Ps and a tangent direction vs. Continue with
a circular arc of length s through Ps with tangent vector vs and radius ρs =

1
κ(s)

and obtain an end point P2s and an end direction v2s. Keep on. The resulting
curve will not be smooth everywhere, but for small s, the curvature will be a step
function close to the original κ. Before the computer age, this method was in fact
sometimes used to graph a curve given by a parametrization!

Illustration 1.50 Curve consisting of circular arcs and curvature step function

Let us now transform this intuitive reasoning into a theorem with a strict proof:
Let I ⊂ R2 denote an open interval, let Ck(I,Rn) denote the continuous (vec-
tor) functions r : I → Rn that are k times differentiable on I with continuous
derivatives5.

Theorem 1.51 (The fundamental theorem for plane curves) Let k : I →
R denote a smooth function. Then there is a curve with unit speed parametriza-
tion r : I → R2 with curvature function κ(s) = k(s), s ∈ I. Furthermore, any
two such curves differ by a proper rigid motion.

Proof:

Existence Let k : I → R denote a smooth function and let s0 ∈ I. Define

1. an angle function ϕ : I → R as ϕ(s) =
∫ s
s0
k(u) du + ϕ0 for arbitrary

ϕ0 ∈ R; this function satisfies ϕ′ = k by the fundamental theorem of
calculus.

4Another way to introduce this construction is: How to find a curve whose curvature function
is a step function

5Should we introduce this notation earlier?
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2. a unit vector function t : I → S1 ⊂ R2 by t(s) = [cosϕ(s), sinϕ(s)]

3. a vector function r : I → R2 by
r(s) = [

∫ s
s0
cosϕ(u) du + x0,

∫ s
s0
sinϕ(u) du + y0]

To summarize, the parametrization r is essentially constructed by a double
integration of the function k.

Let us check that the curvature function κ : I → R associated to r

agrees with the function k: By the fundamental theorem of calculus again,
we have that r′(s) = t(s), s ∈ I. And t′(s) = d

ds
[cosϕ(s), sinϕ(s)] =

ϕ′(s)[− sinϕ(s), cosϕ(s)] = k(s)t̂(s) = k(s)n(s). Hence κ(s) = k(s), s ∈ I.

Uniqueness up to a rigid motion The equations

t′ = κn

n′ = −κt

can be summarized in a matrix equation F′ = FA with
F(s) = [t(s)n(s)] ∈ SO(2) and the skew-symmetric (!) matrix

A(s) =

[
0 −κ(s)

κ(s) 0

]
.

Let r1, r2 denote two parametrizations with κ1(s) = κ2(s) =: κ(s). The
associated matrices satisfy: F′

1 = F1A and F′
2 = F2A with the same

matrix A(s) on the right hand side. Consider the matrix function M(s) =
F1(s)F

T
2 (s) : I → SO(2) and calculate its derivative with respect to s:

M′(s) = F′
1(s)F

T
2 (s) + F1(s)F

′T
2 (s) = F1(s)A(s)FT2 (s) + F1(s)A

T (s)FT2 (s)

= F1(s)(A(s) +AT (s))FT2 (s) = 0

since A(s) is skew-symmetric. We conclude that M(s) = M a constant
matrix. In particular, F1(s) = F1(s)F

T
2 (s)F2(s) = MF2(s).

Now consider the curves given by r1 and Mr2 (after applying the rotation
M to r2). Then

d
ds
Mr2 = Mt2 is the first column of the matrix MF2 = F1,

and hence (Mr2)
′ = r′1. As a consequence, there exists a constant vector

x = [x0, y0] such that r1 = Mr2 + x.

✷

This result might seem merely academic; but certain curves are constructed in
this way for practical purposes. Roads leading to or from a highway frequently
consist of parts with curvature increasing (or decreasing) at a constant rate. On
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such a road, the driver has to turn his/her driving wheel at a constant rate. An
example of a function increasing with a constant rate is κ(s) = s. The resulting
curve in Fig. 1.6 is called a clothoid curve – it has κ(s) = s as the associated
curvature function, and you have probably experienced it as a driver!

–0.8

–0.6

–0.4

–0.2

0

0.2

0.4

0.6

0.8

–1 –0.5 0.5 1

Figure 1.6: Curve with κ(s) = s, −3 ≤ s ≤ 3

Illustration 1.52 Applet: Parametrization of κ, graph of κ, choice of coordi-
nates of start point and start angle yield curve.

1.3.6 The local canonical form of a plane curve

Locally, a smooth vector function can be approximated by correponding Taylor
polynomials. Let us try to rediscover curvature of a plane curve in the 2nd degree
Taylor polynomium of a (unit speed) parametrization r : I → R2. For simplicity,
assume that 0 ∈ int(I), and (possibly after a rigid motion of the plane), that
r(0) = 0, that r′(0) = t(0) = [1, 0], and that the curve has curvature κ at the
origin. As a result of Def. 1.36, we obtain the 2nd derivative r′′(0) = κt̂(0) = [0, κ].
In particular, the 2nd degree Taylor polynomial is of the form

r
(2)
(0)(s) = [0, 0] + [1, 0]s+ [0, κ]

s2

2
= [0,

κ

2
s2].

This representation (plus the corresponding error term) is known as the local
canonical form of the curve in a neighbourhood of P0 = O. It represents a
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parabola with curvature κ at its top point at O. The sign of κ determines, whether
this approximating parabola (and the original curve close to P0) is situated in
the upper or in the lower half-plane. This corresponds to the result in Cor. 1.40.

Illustration 1.53 Curves and 2nd degree Taylor polynomials at various points.

1.3.7 Exercises

1. Given three points P,Q,R ∈ R2, not contained in a line l ⊂ R3. Show:

(a) There is a unique circle containing P,Q,R. Find the center C(P,Q,R)
and the radius ρ(P,Q,R) of this circle.

(b) Show that C(Ps0, Ps1, Ps2) and ρ(Ps0 , Ps1, Ps2) converge when s1 and
s2 tend to s0.

2. (a) Let C be the (spiral) curve given by the regular parametrization r :
]ε,∞[→ R2, r(t) = [t cos t, t sin t], ε > 0. Determine the velocity r′(t),
the speed v(t) = |r′(t)| and the unit tangent vector field t(t) associated
to this parametrization. Plot the x-coordinate of t(t). Determine an
angle function θ :]ε,∞[→ R such that t(t) = [cos(θ(t)), sin(θ(t))].
You cannot get the curvature function immediately by differentiating
θ, since r is not a unit speed parametrization.

(b) Calculate the associated curvature function κ(t) and show that limt→∞ κ(t) =
0.

(c) Determine a parametrization for Cs evolute curve EC .

3. Let C denote a plane curve with unit speed parametrization and associated
unit tangent and normal vector fields t(s) and n(s) = t̂(s). Show (using
Prop. 1.10):

(a) n′(s) · n(s) = 0.

(b) n′(s) · t(s) = −κ(s).
(c) n′(s) = −κ(s)t(s).

4. (a) Show Prop. 1.44 about evolute curves using Lemma 1.32.

(b) Let C denote a regular plane curve with evolute EC . Assume C given
by a unit speed parametrization, and that κ is a smooth function of the
parameter s. Show that the derivative of the associated parametriza-
tion for EC at CPs

is given by −κ′(s)
κ(s)

n(s).
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(c) Show that EC is regular except at the points CPs
corresponding to

points Ps ∈ C with critical values of κ, i.e., κ′(s) = 0.

(d) Let Ps ∈ C and CPs
∈ EC be two associated points on C and its

evolute curve EC such that κ′(s) 6= 0. Show that the tangent lines to
C at P and to EC at CPare perpendicular to each other.

(e) An exercise on involutes, e.g., the involute of a circle.

5. Reprove Prop. 1.48 using Thm. 1.51.

1.4 Space Curves

1.4.1 Moving frame, osculating plane and associated in-

dicatrices

The moving frame

One of the major methods investigating curves (and later on surfaces) is to choose
a nice perspective. In technical terms, we need at every point of the curve under
investigation a basis of R2, resp. R3 adapted to the local situation. For a plane
curve C given by a (unit speed) parametrization r and a point P ∈ C with−→
OP = r(s), this moving frame is given by the unit tangent vector t(s) and its
hat vector t̂(s), providing us in fact with a moving orthonormal basis of R2 at
every point of the curve.

For a space curve C given by a (unit speed) parametrization r, we need three
(mutually orthogonal unit) basis vectors at every point P ∈ C. One of them
should again be the tangent vector to the curve. What to choose for the two other
basis vectors? In the following, we have to assume, that the point P ∈ C (with−→
OP = r(s)) is a non-inflection point; cf. Def. 1.35. In that case, we are provided
with the principal normal vector n(s) given by t′(s) = κ(s)n(s). By definition,
the principal normal vector n(s) is a unit vector; moreover, it is perpendicular to
the unit tangent vector t(s) at P by Rem. 1.37. This leaves us with almost no
choice for the third vector in an orthonormal basis:

Definition 1.54 Let r : I → R3 denote a unit speed parametrization of a space

curve C; assume that Ps ∈ C given by
−−→
OPs = r(s) is a non-inflection point. The

moving frame at Ps consists of

• the unit tangent vector t(s) = r′(s);
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• the principal normal vector n(s) = r′′(s)
|r′′(s)| ;

• the binormal vector b(s) = t(s)× n(s).

Illustration 1.55 Moving frame moving along a space curve choosen by the user.

For explicit calculations using a regular (non unit-speed) parametrization of a
space curve C, we have to find formulas for the three vectors in the moving frame:
Let r denote such a regular parametrization, and let t(t),n(t),b(t) denote the

moving frame vectors at a non-inflection point Pt ∈ C with
−−→
OPt = r(t).

Remark 1.56 1. The planes sp(r′(t), r′′(t)) and sp(t(t),n(t)) agree; this is
an easy consequence of (1.7).

2. The determination of the moving frame at the point Pt with
−−→
OPt = r(t) is

thus usually performed in the following three steps:

1. t(t) =
r′(t)

|r′(t)| ;

2. b(t) =
r′(t)× r′′(t)

|r′(t)× r′′(t)| ;

3. n(t) = b(t)× t(t).

Example 1.57 Let us again look at a helix with parametrization r(t) = [a cos t, a sin t, bt],
a, b > 0. (cf. Ex. 1.4 and 1.43). Using the formulas from Rem. 1.56, we obtain

at Pt with
−−→
OPt = r(t):

t(t) =
1√

a2 + b2
[−a sin t, a cos t, b];

b(t) =
1√

a2 + b2
[b sin t,−b cos t, a]; (1.17)

n(t) = [− cos t,− sin t, 0].

In particular, at every point Pt along the curve, the principal normal vector n(t)
is parallel to the XY -plane pointing from the curve in direction of the z−axis.

Similar to Sect. 1.3.3, one can visualise the moving frame by three curves, their
indicatrices. This time, those curves will be contained in the unit 2-sphere
S2 := {[x, y, z] ∈ R3|x2 + y2 + z2 = 1} ⊂ R3; the tangent, principal and binor-
mal vector fields can be viewed as maps t,n,b : I → S2; they have moreover the
property of hitting mutually perpendicular vectors at any time.

Illustration 1.58 3 indicatrices of the same curve (chosen by the user) marked
by points in 3 colours travelling on a unit sphere while another point moves along
the curve.



36 CHAPTER 1. CURVES IN PLANE AND SPACE

Normal and osculating planes

Each pair of two out of the three vectors in the moving frame of a space curve C
span a plane; at least two of them deserve to be mentioned here. We get a more
adequate geometric picture when these planes are translated into parallel planes
through the point P ∈ C at which they are defined (just as the tangent line at
P is obtained from the 1-dimensional subspace sp(t) by translation into P ).

Let again r : I → R3 denote a regular parametrization of a space curve C and

Pt ∈ C denote the point Pt with
−−→
OPt = r(t). The normal plane ηt at Pt is the

plane through Pt normal to the tangent vector t(t), or equivalently, with parallel
plane sp(n(t),b(t)).

The osculating plane ωt at Pt is the plane through the non-inflection point Pt nor-
mal to the binormal vector b(t), or equivalently, with parallel plane sp(n(t),b(t)),
or equivalently, with parallel plane sp(r′(t), r′′(t)); cf. Rem. 1.56.1. It is in fact
the best approximating plane to the curve near Pt.

t

n
b

ω

η

Figure 1.7: Moving frame, osculating plane and normal plane

1. It contains both the tangent line, and for every regular parametrization the
line through Pt parallel to the acceleration vector r′′(t). In a physical sense,



1.4. SPACE CURVES 37

the kinematic forces pull within the osculation plane regardless the speed
with which the curve is run through.

2. An alternative and geometric appealing construction of the osculating plane
ωt at Pt is as follows: Choose two points Pt1 , Pt2 ∈ C close to Pt. If
the three points Pt, Pt1, Pt2 are not contained in a line, they determine a
plane ω(t, t1, t2) ⊂ R3 containing those three points. When t1 and t2 tend
to t, these plane tends to a limit plane, which is the osculating plane;
cf. Exc. 1.4.5.?

Illustration 1.59 Moving normal and osculating planes along a (user chosen)
space curve.

Proposition 1.60 A point x = [x, y, z] is contained in the osculating plane ωt
at Pt ∈ C with

−−→
OPt = r(t) if and only if

b(t) · x = b(t) · r(t),

or equivalently, if the matrix



x− r(t)
r′(t)
r′′(t)


 is singular.

Proof: Exc. 1.4.5.?.

✷

Example 1.61 The osculating plane to the helix from Ex. 1.57 at Pt is given by
the equation

b(t) · [x, y, z] = b(t) · −−→OP0, i.e.

b sin t · x− b cos t · y + a · z = abt

or by the parametrization

r(u, v) = [a cos t, a sin t, bt]+u[−a sin t, a cos t, b]+v[−a cos t,−asint, 0], (u, v) ∈ R2.

Also for a space curve, the osculating circle along a space curve C at P ∈ C is
the circle best approximating C at P . The circle through three points on C is of
course contained in the plane determined by the three points. As the limit circle,
the osculating circle at P is contained in the limit position for those planes, i.e.,
the osculating plane. Given a parametrization r for the curve, we have thus the
following analogue of Prop. 1.44 determining the osculating circle at P :
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Proposition 1.62 The osculating circle at Pt with
−−→
OPt = r(t) is contained in

the osculating plane ωt determined by Prop. 1.60. It has radius ρ(t) = 1
κ(t)

, center

Ct with
−−→
PtCt =

1
κ(t)

n(t).

Illustration 1.63 Osculating circle along a space curve (like the one done by
Robert).

1.4.2 Torsion and Frenet’s equations

Let r : I → R3 denote the unit-speed parametrization of a curve, and let
t,n,b : I → R3 the associated moving frame (unit tangent, principal normal
and binormal vector fields). At every (non-inflection) point r(s) along the curve,
we can form the 3× 3 Frenet-matrix

F(s) = [t(s),n(s),b(s)]

with the three moving frame vectors as the column vectors of F(s). Since the three
vectors are mutually perpendiuclar unit vectors, the matrix F(s) is an orthogonal
matrix for every s ∈ I, i.e., it satisfies

I = FT (s)F(s) = F(s)FT (s). (1.18)

Moreover, F(s) has determinant 1, since detF(s) = (t(s) × n(s)) · b(s) =
b(s) · b(s) = 1. A matrix satisfying (1.18) with determinant 1 is called spe-
cial orthogonal ; we write F(s) ∈ SO(3).

To see, how the moving frame changes along the curve given by the parametriza-
tion r, we want to determine the derivative of the matrix F(s), i.e., the matrix

F′(s) = [t′(s),n′(s),b′(s)]

with the differentials of the moving frame vectors as columns.

Since F(s) is orthogonal, it is also invertible; in fact F−1(s) = FT (s). Hence, with
the matrix A(s) = FT (s)F′(s), we get an equation

F′(s) = F(s)FT (s)F′(s) = F(s)A(s). (1.19)

We want to determine the matrix A(s) relating F(s) and F′(s):

Lemma 1.64 The matrix A(s) is skew-symmetric for every s ∈ I, i.e.,

A(s) +AT (s) = 0.



1.4. SPACE CURVES 39

Proof: By definition, A(s) = FT (s)F′(s) and hence AT (s) = F′T (s)F(s). As a
result,

A(s) +AT (s) = FT (s)F′(s) + F′T (s)F(s) =
d

ds
(FT (s)F(s)) =

d

ds
I = 0.

✷

It is easy to determine the 1st column of the matrix A(s): By the definition of
curvature, we have (Def. 1.36): t′(s) = 0·t(s)+κ(s)·n(s)+0·b(s). Combining this
with the skew-commutativity of the matrix A(s) (Lemma 1.64), we can determine
most of the entries of that matrix, to wit:

A(s) =




0 −κ(s) 0
κ(s) 0 −?(s)
0 ?(s) 0


 .

Definition 1.65 Let Ps ∈ C denote a non-inflection point on a regular space

curve C given by a unit speed parametrization r such that
−−→
OPs = r(s). The

torsion of C at Ps is defined by the equation

b′(s) = −τ(s)n(s). (1.20)

Before interpreting this new invariant, let us note that we have proved

Theorem 1.66 (Frenet’s equations)

t′(s) = κ(s)n(s)

n′(s) = −κ(s)t(s) +τ(s)b(s)

b′(s) = −τ(s)n(s) .

Corollary 1.67

A(s) =




0 −κ(s) 0
κ(s) 0 −τ(s)
0 τ(s) 0


 .
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Figure 1.8: Frenet’s equations
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Torsion: Interpretation and Calculation

The binormal vector b(s) is by definition a unit vector orthogonal to the osculat-
ing plane ωPs

. Hence, the torsion as (the negative of) the rate of change of b(s) is
equivalent to the rate of change of ωPs

; hence it measures, how quickly the oscu-
lating plane changes when moving away from Ps along the curve, or equivalently,
how quickly the curve disappears or twists away from ωPs

, in particular:

Proposition 1.68 A space curve C without inflection points is contained in a
plane if and only if its torsion is 0 everywhere.

Proof: Let r : I → R3 denote a unit speed parametrization of the curve C.

If C is contained in a plane π ⊂ R3, then r(s) − r(0) and all derivatives ri(s)
are contained in a parallel 2-dimensional vector space α ⊂ R3. In particular, the
binormal b(s) is a continuous vector function with values among the two vectors
of length one perpendicular to α. Hence, b(s) is a constant vector, b′(s) = 0,
and hence τ(s) ≡ 0.

From τ(s) = 0, we conclude from the last equation in Thm. 1.66, that b′(s) = 0,
and hence that the binormal vector b(s) = b is constant along C. Let s0 ∈ I.
The plane through r(s0) perpendicular to b is given by the equation

(x− r(s0)) · b = 0. (1.21)

We show, that all vectors x = r(s), x ∈ I satisfy (1.21): This is obviously true
for x = r(s0). Moreover, the function (r(s)− r(s0)) · b has derivative r′(s) · b =
t(s) · b = 0, i.e., it is constant with constant 0.

✷

Remark 1.69 The curvature of a space curve C at a point P was defined to
be non-negative; its torsion can be both positive, negative or zero. The sign in
( 1.20) is somehow arbitrary, and some authors write τ(s) instead of our −τ(s).

Frenet’s equations (Thm. 1.66) can be used to derive a formula for the torsion
τ(P ) at a point P on our curve C in terms of the first three derivatives of a
parametrization r of the curve.

Proposition 1.70 Let C be a curve with regular parametrization r, and let Pt ∈
C be a non-inflection point given by

−→
OP = r(t). Then,

τ(P ) =
(r′(t)× r′′(t)) · r′′′(t)

|r′(t)× r′′(t)|2 =
[r′(t), r′′(t), r′′′(t)]

|r′(t)× r′′(t)|2 .

(The last numerator is the determinant of the matrix with the three derivatives
as row vectors.)
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Proof: We reuse the formulas (1.7) for the velocity and the acceleration vector
in the following form:

r′(t) = v(t)t(s(t));

r′′(t) = v′(t)t(s(t)) + v2(t)κ(s(t))n(s(t)). (1.22)

A calculation of their cross product yields:

r′(t)× r′′(t) = v3(t)κ(s(t))b(s(t)), (1.23)

and thus,

(r′(t)× r′′(t)) · r′′′(t) = v3(t)κ(s(t))(b(s(t)) · r′′′(t)). (1.24)

To calculate b(s(t)) · r′′′(t), note first that b(s(t)) · r′′(t) = 0, since r′′(t) is con-
tained in the osculating plane ωP at P , cf. Rem. 1.56. Hence, we may use
first the fundamental trick (Lemma 1.10) and then the last of Frenet’s equations,
cf. Thm. 1.66, to obtain:

b(s(t)) · r′′′(t) = −v(t)b′(s(t)) · r′′(t) = v(t)τ(s(t))(n(s(t)) · r′′(t)).

Applying the second equation in (1.22) once again, we derive:

b(s(t)) · r′′′(t) = v3(t)κ(s(t))τ(s(t)). (1.25)

Substituting (1.25) into (1.24), we obtain:

(r′(t)× r′′(t)) · r′′′(t)) = v3(t)κ(s(t))(b(s(t)) · r′′′(t)) = v6(t)κ2(s(t))τ(s(t)).

On the other hand, (1.23) tells us, that |r′(t) × r′′(t)|2 = v6(t)κ2(s(t)), which
implies the formula in Prop. 1.70 for the torsion τ(Pt) = τ(s(t)).

✷

Remark 1.71 From (1.25), we deduct that the torsion τ(Pt) has the same sign
as the entity b(P )·r′′′(s) – since both speed v and curvature κ are positive entities.
this observation can be given the following interpretation:

Euclidean space E3 is divided into two half-spaces by the osculating plane ωP .
The torsion τP is positive, if and only if r′′′(t) lies in the half space that b(P )
points into, i.e., if the piece of curve given by r(t + ε) for small values ε > 0 is
contained in that half-space. It is negative, if and only if r′′′(t) and thus the piece
of curve given by r(t+ ε) for small values ε > 0 is contained on the opposit half-
space. The absolute value of the torsion τ(P ) measures, given κ(P ), how fast the
curve twists away from ωP into one or the other half-space. See also Sect. 1.4.4.
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Example 1.72 For the helix from Ex. 1.4 with parametrization r : R → R3, r(t) =
[a cos t, a sin t, bt], we calculate using the results of Ex. 1.43.3:

r′′′(t) = [a sin t,−a cos t, 0];
r′(t)× r′′(t) = [ab sin t,−ab cos t, a2];

(r′(t)× r′′(t)) · r′′′(t) = a2b;

τ(P ) =
b

a2 + b2
. (1.26)

Note, that both curvature (cf. (1.16)) and torsion are constant along the helix.

Illustration 1.73 Space curve with attached curvature and torsion plots and at-
tached tangent and binormal indicatrix.

1.4.3 Curvature and torsion functions characterize a space

curve

We saw in Sect. 1.3.5 that a plane curve is characterized (up to a rigid motion)
by its curvature function. This is no longer true for a space curve: A circle and a
helix can have the same constant curvature function, cf.Ex. 1.43.3. But a result
similar to Thm. 1.51holds if the torsion function is adjoined as an additional
invariant:

Theorem 1.74 (The fundamental theorem for space curves) Let κ̄, τ̄ :
(a, b) → R denote smooth functions with κ̄(s) > 0 for all a < s < b. Then, there
is a curve with unit speed parametrization r : (a, b) → R3, whose curvature and
torsion functions are κ̄, resp. τ̄ . Furthermore, any two such curves differ by a
proper rigid motion.

Proof:

Existence Consider the function

A(s) =




0 −κ̄(s) 0
κ̄(s) 0 −τ̄ (s)
0 τ̄ (s) 0




with κ̄(s) and τ̄ (s) as in Thm. 1.74. Remark that A(s) is a skew-symmetric
matrix for every a < s < b.
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In our first step, we attempt to find a moving frame {t̄(s), n̄(s), b̄(s)} sat-
isfying the Frenet equations from Thm. 1.66. With

F(s) = [t̄(s), n̄(s), b̄(s)]

we look for a solution of the system of linear differential equations that in
matrix form reads as:

F′(s) = F(s)A(s). (1.27)

That system consists of one linear! differential equation for each entry in
the matrix F′(s), nine in total. By an important result in the theory of
ordinary differential equations, such a system has always a unique solu-
tion {t̄(s), n̄(s), b̄(s)} defined on the entire interval (a, b) with given initial
values [t̄(s0), n̄(s0), b̄(s0)].

What initial values [t̄(s0), n̄(s0), b̄(s0)] may one choose “legally”? Well,
they ought better arise as a moving frame, i.e., the matrix

F(s0) = [t̄(s0), n̄(s0), b̄(s0)]

needs to be a special orthogonal matrix F(s0) ∈ SO(3), i.e., F(s0)
TF(s0) = I

and detF(s0) = 1.

Lemma 1.75 The matrix solutions F(s) of (1.27) are special orthogonal
for all s, i.e., F(s)FT (s) = I and detF(s) = 1 for all a < s < b.

Proof: (of Lemma 1.75:) We want to show that the matrix-valued function
G(s) = F(s)FT (s) takes the constant value G(s) = I for all a < s < b. To
obtain this result, we differentiate G(s) and obtain:

G′(s) = F′(s)FT (s) + F(s)F′T (s).

Since F(s) solves (1.27) above, we have

G′(s) = F(s)A(s)FT (s)+F(s)AT (s)FT (s) = F(s)(A(s)+AT (s))FT (s) = 0.

(The last equation relies on A(s) being skew-symmetric.) We conclude that
the matrix-valued function G(s) is constant and takes the value G(s0) = I

everywhere on the interval (a, b). The determinant of a matrix function is
continuous. Since the determinant of an orthogonal matrix can only take
the values 1 or−1, it must take the constant value detF(s) = detF(s0) = 1.

✷
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Using the first column t̄(s) of the solution matrix F (s), we define the (unit-
speed parametrization! of the) curve r(s), by integration:

r(s) =

∫ s

s0

t̄(t)dt. (1.28)

Let us find first the moving frame {t(s),n(s),b(s)} and then the curvature
and torsion functions κ(s), resp. τ(s) associated to the curve given by 6.3:

Lemma 1.76 t(s) = t̄(s), n(s) = n̄(s), b(s) = b̄(s).
κ(s) = κ̄(s), τ(s) = τ̄ (s) for all a < s < b.

Proof: (of Lemma 1.76:) By the fundamental theorem of Analysis, t(s) =
r′(s) = t̄(s). In particular, r is a unit speed parametrization. Moreover,
κ(s)n(s) = t′(s) = t̄′(s) = κ̄(s)n̄(s). The first equation reflects the defini-
tion of curvature, the last one the fact that t̄(s) is the first column in the
solution of (1.27). The vectors n(s) and n̄(s) are both unit vectors – by
definition, resp. by Lemma 1.75. Since κ(s) and κ̄(s) are both positive for
all s, we conclude that n(s) = n̄(s) and hence κ(s) = κ̄(s).

Since F(s) is special orthogonal, b(s) = t(s)× n(s) = t̄(s) × n̄(s) = b̄(s).
From the definition of torsion, resp. from (1.27), we conclude:
−τ(s)n(s) = b′(s) = b̄′(s) = −τ̄ (s)n̄(s) and hence: τ(s) = τ̄(s).

✷

Uniqueness Let r1, r2 : (a, b) → R3 denote two unit-speed parametrizations
with the same associated curvature and torsion functions, i.e., κ1(s) = κ2(s)
and τ1(s) = τ2(s) for all s ∈ (a, b). The associated Frenet matrices

F1(s) = [t1(s),n1(s),b1(s)] and F2(s) = [t2(s),n2(s),b2(s)]

are both contained in SO(3), and they satisfy equations (1.19)

F′
1(s) = F1(s)A(s) and F′

2(s) = F2(s)A(s)

with the same matrix function

A(s) =




0 −κ(s) 0
κ(s) 0 −τ(s)
0 τ(s) 0


 .
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Consider the matrix function M(s) = F2(s)F
−1
1 (s) = F2(s)F

T
1 (s). We wish

to show that M(s) is constant and differentiate:

M′(s) = F′
2(s)F

T
1 (s) + F2(s)F

′T
1 (s) = F2(s)A(s)FT1 (s) + F2(s)A

T (s)FT1 (s)

= F2(s)(A(s) +AT (s))FT1 (s) = 0.

Hence M(s) = M ∈ SO(3) is a constant special orthogonal matrix satisfy-
ing MF1(s) = F2(s)F

T
1 (s)F1(s) = F2(s), and in particular

Mt1(s) = t2(s),Mn1(s) = n2(s),Mb1(s) = b2(s).

The first of these equations shows that

(Mr1(s))
′ = M(r1(s))

′ = Mt1(s) = t2(s) = r2(s)
′.

In particular, the vector function s 7→ r2(s)−Mr1(s) has derivative 0, and
hence the vector v = r2(s)−Mr1(s) is constant. This leads to:

r2(s) = Mr1(s) + v,

i.e. the curve given by r2(s) is the result of a rotation (given by the matrix
M) and a translation (given by the vector v) performed on the curve given
by r1(s).

✷

1.4.4 The local canonical form of a space curve

Here is yet another way to grasp the meaning of the curvature and the torsion of a
(space) curve C. For simplicity, we assume C given a unit speed parameterisation
r : I → R3 with I an interval containing s = 0 in its interior. Furthermore,
we assume (after a rigid motion in space), that P0 = O and that the Frenet
moving frame vectors at O coincides with the coordinate unit vectors, i.e., t(0) =
i, n(0) = j, and b(0) = k. We want to analyse the curve C close to the point
P0 ∈ E3 by looking at the 3rd degree Taylor polynomium of the (components of
the) vector function r at O:

r
(3)
0 (s) = r(0) + sr′(0) +

s2

2
r′′(0) +

s3

6
r′′′(0). (1.29)
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By our assumptions and using Frenet’s 2nd equation from Thm. 1.66 we obtain6:

r(0) = 0,

r′(0) = t(0) = [1, 0, 0],

r′′(0) = t′(0) = κn(0) = [0, κ, 0],

r′′′(0) = (κn)′(0) = κ′n(0) + κn′(0) = κ′n(0) + κ(−κt(0) + τb(0)) = [−κ2, κ′, κτ ].

Substituting this into (1.29), we get for the 3rd degree Taylor polynomial:

r
(3)
0 (s) = [s− κ2s3

6
,
κs2

2
+
κ′s3

6
,
κτs3

6
].

This representation (plus the corresponding error term) is known as the local
canonical form of the curve in a neighbourhood of P0 = O. Remark, that the
torsion only enters as a coordinate of b. Since κ is assumed to be positive (com-
pare Rem. 1.71):

Corollary 1.77 The osculating plane ωO divides Euclidean space into two half-
spaces. If τ > 0, the curve C runs into the half-space containing the binormal
vector b for t > 0; if τ < 0, it leaves that half-space for t > 0.

The following figure shows a curve with given values κ and τ and its projections
on the three planes spanned by two out of three of the vectors {t,n,b} from the
Frenet frame:

1.4.5 Exercises

1. Given three points P,Q,R ∈ R3, not contained in a line l ⊂ R3. Show:

(a) There is a unique plane ωP,Q,R containing P,Q,R. Determine a unit
normal vector NP,Q,R to ωP,Q,R.

(b) Let P = Ps0, Q = Ps1 and R = Ps2 as in Sect. 1.3.1and Sect. 1.4.1.
Show that the planes ωPs0 ,Ps1 ,Ps2

converge to a limit plane ωs0 (the
osculating plane).
(Hint: Consider the planes sp(r(s1)− r(s0), r(s2)− r(s1)) and

sp( r(s1)−r(s0)
s1−s0 ,

r(s2)−r(s1
s2−s1

− r(s1)−r(s0)
s1−s0

s1−s0 ). Show that the two planes agreee, and
that the latter converges to sp(r′(s0), r

′′(s0)).

2. Show Prop. 1.60.

6We use the abbreviations: κ = κ(0), κ′ = κ′(0), and τ = τ(0).
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3. What is the limit position of the circles through three points on a curve at
an inflection point?

4. Show that a space curve has constant positive curvature and constant tor-
sion if and only if it is a helix.
(Use Thm. 1.74).

5. A space curve C is called a generalised helix if there is a unit vector u ∈ R3

(its axis) such that the angle θ between tangent lines along the curve C and
u is constant. Show:

(a) A helix is a generalised helix.

(b) A curve with parametrization r(t) = [x(t), y(t), z(t)] such that y′(t)2 =
2x′(t)z′(t) for all t is a generalised helix with axis u = [1, 0, 1].

(c) A space curve without inflection points is a generalised helix if and
only if the quotient τ

κ
is constant.

Hints: Let {t,n,b} denote the moving frame along C. Show for a gener-
alised helix without inflection points:

• n · u = 0.

• u = cos θt+ sin θb

• cot θ = τ
κ
.

Reverse this reasoning for a curve with constant τ
κ
using appropriate defi-

nitions of θ and u.

1.5 Global properties

Until now, we have focussed on local properties of curves, determined at a point
by an arbitrarily small portion of the curve around it. The following section
deals with global geometric properties of closed smooth curves having a periodic
parametrization r : R → R3 with period L, i.e., r(t+ L) = r(t). (Of course, one
may restrict attention to a closed interval of size L as the domain. But we need
also the (coinciding!) derivatives at the ends of such an interval.) Most results
in this section are given without proofs.
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1.5.1 The four-vertex theorem for plane curves

Definition 1.78 Let C denote a plane smooth closed curve.

1. C is called an oval if its oriented curvature is either non-negative or non-
positive everywhere, i.e., if it turns either clockwise or anti-clockwise.

2. A point P0 on C is called a vertex if one has for some (and thus any!)

smooth parametrization r : R → R2 of C with r(t0) =
−−→
OP0 : κ

′(t0) = 0.

It is clear, that the differentiable curvature function κ attains both a maximal
and a minimal value within a period interval. Hence, an oval must have at least
two vertices.

Example 1.79 An ellipse is an oval. Remark that its curvature has two maxima
and two minima (within a period), cf. Fig. 1.4.

The following much more general result is true:

Theorem 1.80 (Four vertex theorem) Let C denote an oval with smooth
parametrization r : R → R2 and period L. Then C has at least four vertices,
i.e., for every a ∈ R, there exist a ≤ t1 < t2 < t3 < t4 < a+L such that κ′(s) = 0.

Illustration 1.81 closed curves and their vertices, ovals and non-ovals.

1.5.2 Total curvature and Fenchel’s theorem

Definition 1.82 Let C denote a closed smooth curve with unit speed parametriza-
tion r of period L. Its total curvature is defined as

K(C) =

∫ a+L

a

κ ds.

For a plane curve– using oriented curvature as in Sect. 1.35 – there is a clean
characterization of the total curvature: Let θ(a) denote the angle between i =
[0, 1] ∈ R2 and t(a) = r′(a). There is a continuous angle function θ : R → R

extending θ(a) such that θ(s) is the angle between i and t(s). (Remark that θ(s)
is only well-determined up to integer multiples of 2π; the continuity of θ requires
to do a particular choice once θ(a) has been selected.) The integer θ(a+L)−θ(a)

2π
is

called the winding number w(C) of the curve C (with period L).
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Proposition 1.83

K(C) = 2πw(C).

In particular, w(C) is well-determined, i.e., independent of the choice of a.

Proof: In Sect. 1.3.3, we got for a plane curve with unit speed parametrization,
that oriented curvature satisfies: κ(s) = θ′(s). We can apply the fundamental
theorem in Calculus to yield:

K(C) =

∫ a+L

a

κds = [θ(s)]a+La = θ(a + L)− θ(a).

✷

Illustration 1.84 closed curves, turning tangent, angle function, total curva-
ture, winding number

The total curvatures of space curves are usually less rigid. Let us nevertheless
report on the following results:

Theorem 1.85 (Fenchel’s theorem) The total curvature of every closed smooth
curve C satisfies:

K(C) ≥ 2π.

Equality holds if and only if C is an oval plane curve (in some plane in R3).

(This result does not contradict Prop. 1.83: for a plane non-oval curve, oriented
curvature switches sign, while the curvature of the same curve regarded as a space
curve has constant sign and thus greater total curvature!)

Total curvature for space curves carries even more information. A space curve is
called unknotted if it can be continuously deformed into the plane unit circle and
knotted else.

Theorem 1.86 (Fary-Milnor theorem) For a knotted closed curve C, the
total curvature satisfies:

K(C) ≥ 4π.

Illustration 1.87 closed unknotted and notted curves and their total curvatures.

1.5.3 Exercises

1. Determine the total curvature of the plane curve “figure 8” (with a double
point).
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2Surfaces in space

2.1 Surfaces in space – definitions and examples

2.1.1 Parametrized and regular surfaces

Definitions and their interpreation

We saw in the last chapters how to make a precise formalism covering the idea
of a curve, i.e., a line which one bends and twists in plane or space. Here we
want to make precise what we mean by a surface in space. To start with, one
could think of this as a plane which is then bent, twisted and stretched at will in
3-space, but we have to be more precise.

If we imitate the definition of a curve, a surface should be the image of a function
f(u, v) = (f1(u, v), f2(u, v), f3(u, v)) of two variables, where we would then have
to impose suitable restrictions on the fi.

The differentiability is easy to generalize, but what should we ask for to get
the equivalent of α′(t) 6= 0? Remember the derivative of a function of several
variables:

Definition 2.1 Let f : U ⊆ Rn → Rk be a differentiable function of n variables.
The differential dfq of f at q ∈ U is the linear map from Rn to Rk given by the
Jacobi matrix Dfq of f at q:

dfq(v1, . . . , vn) =




∂f1
∂x1

(q) ∂f1
∂x2

(q) . . . ∂f1
∂xn

(q)
∂f2
∂x1

(q) ∂f2
∂x2

(q) . . . ∂f2
∂xn

(q)
...

. . .
...

∂fk
∂x1

(q) ∂fk
∂x2

(q) . . . ∂fk
∂xn

(q)







v1
v2
...
vn
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It turns out that the proper equivalent to the requirement α′(t) 6= 0 in the case
of a function f(u, v) of two variables into R3 is to require injectivity of the linear
map Dfq : R

2 → R3 at every point q in the domain of f .

This approach is taken at several places in the history of differential geometry
and it leads to

Definition 2.2 A parametrized surface is a map f : U → R3, where U ⊆ R2

is an open subset, f is a smooth map and the differential df(u,v) : R2 → R3 is
injective for all (u, v) ∈ U .

Example 2.3 Examples of such surfaces are in Fig. 2.1. We give parametriza-
tions of them here:

• U = R2, f(u, v) = (u, v, u2 + v2)

• U = {(u, v) ∈ R2|u 6= 0 and u 6= 1}

f(u, v) =





(u+ 1, v, 0) for u < 0
(0, v, u) for 0 < u < 1
(0, v, 1− u) foru > 1

• U = R2, f(u, v) = (µ1(u), µ2(u), v) where µ(u) = (1, u) for u ≤ 0 and

µ(u) = (cos(2πe−
1
u2 ), sin(2πe−

1
u2 )) for u > 0.

Figure 2.1: Parametrized surfaces. The last two are not regular surfaces

This is almost, but still not quite, the kind of surfaces we have in mind. We want
a surface to be a subset of R3 which “looks like a plane” locally, i.e., for a small
enough neighbourhood in R3 at each of its points. The last two examples above
do not satisfy this requirement on the “intersection” line. No matter how small
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a neighbourhood we take, within R3, around p = (0, v, 0) in Example 1.3.2 or
around p = (1, 0, v) in Example 1.3.3, the surface looks like the intersection of two
planes in a line. To avoid such “singular” points, we will impose an additional
requirement (3. below) that might look complicated to start with – until the
reader gets used to it:

Definition 2.4 A subset S ⊂ R3 is a regular surface if for any point p ∈ S there
is an open subset V ⊆ R3 containing p, an open subset U ⊆ R2 and a bijective
map x : U → S ∩ V such that

1. x is smooth: If x(u, v) = (x1(u, v), x2(u, v), x3(u, v)), then each xi has
partial derivatives of all orders.

2. x is regular: For any point (u, v) ∈ U , the differential dx(u,v) : R
2 → R3 is

injective.

3. x : U → S ∩ V is a homeomorphism: For any open subset Ũ ⊂ U there is
an open subset Ṽ ⊆ R3 such that x(Ũ) = Ṽ ∩ S.

The map x is called a parametrization, a coordinate system or a coordinate chart
around p. The set V ∩ S is called a coordinate neighborhood of p.

Figure 2.2: A regular surface and a coordinate system

Remember that a homeomorphism is a bijective continuous map with a continuous
inverse. The open sets of S are, by definition, those of the form Ṽ ∩S with Ṽ ⊂ R3

open. A map between f : X → Y between topological spaces (such as U and
V ∩ S) is continuous if f−1(Z) ⊂ X is continuous for every open subset Z ⊂ Y .
The reader will check easily that the requirement in Definition 2.4.3. is equivalent
to the continuity of the inverse x−1 of the parametrization x. You should perhaps
also investigate why this requirement is not satisfied in Examples 1.3.2 and 1.3.3
(or have a look at Example 2.8).
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Condition 2 can be formulated in various ways, as the reader may recall from
linear algebra. Here are a few options: The Jacobi matrix Dxq is defined as

Dxq =




∂x1
∂u

(q) ∂x1
∂v

(q)
∂x2
∂u

(q) ∂x2
∂v

(q)
∂x3
∂u

(q) ∂x3
∂v

(q)


 .

Tence the following are equivalent:

• Dxq is injective.

• The two column vectors of Dxq are linearly independent.

• At least one pair of row vectors of Dxq is linearly independent.

• At least one of the 2-by-2 submatrices

(
∂x1
∂u

(q) ∂x1
∂v

(q)
∂x2
∂u

(q) ∂x2
∂v

(q)

)
,

(
∂x1
∂u

(q) ∂x1
∂v

(q)
∂x3
∂u

(q) ∂x3
∂v

(q)

)
,

(
∂x2
∂u

(q) ∂x2
∂v

(q)
∂x3
∂u

(q) ∂x3
∂v

(q)

)

has non-zero determinant.

Lemma 2.5 With notation from above, let x : U → V ∩ S be a continuous
bijection and suppose there is a continuous map F : V → R2 such that F|V ∩S =
x−1, then x satisfies 2.4.3

Proof: Let Ũ ⊆ U be an open subset. Since F is continuous, Ṽ = F−1(Ũ) is
open in R3. We have to see that x(Ũ) = Ṽ ∩ S

⊆ Let q ∈ Ũ . Then q = F (x(q)), so x(q) ∈ F−1(Ũ) = Ṽ and clearly x(q) ∈ S.

⊇ Let r ∈ Ṽ ∩ S. Then x−1(r) = F (r) ∈ Ũ , and r = x(x−1(r)).

✷

To give the reader another picture of what 2.4.3 means, we state the following
lemma:

Lemma 2.6 Let x : U → V ∩ S be a coordinate system on a regular surface S.
Suppose (qn)n∈IN in x(U) ⊆ S ∩ V converges (as a sequence in R3) to q ∈ S ∩ V ,
then the sequence (x−1(qn))n∈IN converges to x−1(q) in U .
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Proof: Let Ũ ⊂ U be a neighborhood of x−1(q) and x(Ũ) = Ṽ ∩ S, where
Ṽ ⊂ R3 is open. Then there is an N such that n ≥ N ⇒ qn ∈ Ṽ and hence
x−1(qn) ∈ Ũ .

✷

Remark 2.7 If you are used to defining convergence in terms of open balls, the
above proof could be stated as follows: Let B(x−1(q), ε) ⊂ U , then there is an
open subset Ṽ ∈ R3 s.t. x(B(x−1(q), ε)) = Ṽ ∩ S. Let B(q, δ) ⊂ Ṽ . Then there
is an N such that n ≥ N ⇒ qn ∈ B(q, δ) and hence x−1(qn) ∈ B(x−1(q), ε).

Example 2.8 The last two parametrized surfaces in Ex. 2.3 are not regular sur-
faces; they violate Lem. 2.6; the reader can check this by constructing suitable
convergent sequences on the surfaces. In particular they violate Def. 2.4 condi-
tion 3.

2.2 Particular classes of regular surfaces

2.2.1 Graph surfaces

Proposition 2.9 Let U ⊂ R2 denote an open set and f : U → R be a smooth
function. The graph of f is defined as G = {[u, v, f(u, v)] ∈ R3| (u, v) ∈ U} ⊂
R3. It is a regular surface covered by the single parametrization

x : U → R3, (u, v) 7→ [u, v, f(u, v)].

Proof: We have to see that x is in fact a parametrization. The map x is clearly
smooth, and it is easy to check, that it is a bijection from U onto G. The Jacobian
matrix for the differential of x at (u0, v0) ∈ U is

Dx(u0,v0) =




1 0
0 1

∂f
∂u
(u0, v0)

∂f
∂v
(u0, v0)




Condition 2 is satisfied as well since the two top rows are clearly linearly inde-
pendent.

For the last condition, let π : R3 → R2 be the map π(x, y, z) = (x, y). This is a
linear map, hence continuous; and π|G = x−1.

✷
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Figure 2.3: The graphs of (u2 + v2), (u3 + v2) and (u2 − v2).

The sphere with the 6 graph coordinate systems.

Figure 2.4: The 2-sphere covered by six coordinate systems

Corollary 2.10 Let U and f be as above, then the sets consisting of all points
in R3 of the form [u, v, f(u, v)], [u, f(u, v), v], resp. [f(u, v), u, v] are regular sur-
faces. They are all called graphs of f .

Example 2.11 This already provides us with lots of regular surfaces, some of
which may be seen in Fig. 2.3.

Definition 2.12 When U ⊂ R2 is open and f : U → R is smooth, a parametriza-
tion x of the kind

(u, v) 7→ [u, v, f(u, v)] (u, v) 7→ [u, f(u, v), v] (u, v) 7→ [f(u, v), u, v] (2.1)

will be called a graph coordinate system for x(U) .

Example 2.13 Let Π be a plane in R3. Then Π is a regular surface. The proof
is left as an exercise: construct a graph coordinate system!

Example 2.14 The sphere S2 = {(x, y, z) ∈ R3|x2 + y2 + z2 = 1} in Fig. 2.4
is a regular surface: Let U = {(u, v) ∈ R2|u2 + v2 < 1}. We define a set of 6
parametrizations xi : U → Vi ∩R3 covering all of S2 as follows:

x1(u, v) = (u, v,
√
1− (u2 + v2)), V1 = {(x1, x2, x3) ∈ R3|x3 > 0}

x2(u, v) = (u, v,−
√
1− (u2 + v2)), V2 = {(x1, x2, x3) ∈ R3|x3 < 0}

x3(u, v) = (u,
√
1− (u2 + v2), v), V3 = {(x1, x2, x3) ∈ R3|x2 > 0}
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x4(u, v) = (u,−
√
1− (u2 + v2), v), V4 = {(x1, x2, x3) ∈ R3|x2 < 0}

x5(u, v) = (
√

1− (u2 + v2), u, v), V5 = {(x1, x2, x3) ∈ R3|x1 > 0}

x6(u, v) = (−
√

1− (u2 + v2), u, v), V6 = {(x1, x2, x3) ∈ R3|x1 < 0}
These are all graph coordinate systems, and hence they satisfy the conditions in
Def. 2.4. Please check that every point p ∈ S2 is covered by at least one of the
six coordinate systems.

2.2.2 Surfaces of rotation

Let f :]a, b[→ R be a smooth map with f(t) > 0 for all t ∈]a, b[. Then the subset
of R3 given by

S = {(f(u) cos(v), f(u)sin(v), u)| a < u < b, 0 < v ≤ 2π}

is a regular surface.

Interpretation: The intersection of S with the plane Z = u, a < u < b, is a circle
with radius f(u) with center at [0, 0, u] on the Z-axis. Hence the surface arises by
rotating the regular(!) curve consisting of points [f(u), 0, u] around the Z-axis.

To prove that S is a regular surface, we have to provide local coordinates around
all points. Let U1 =]a, b[×]0, 2π[ and U2 =]a, b[×] − π, π[ and let xi(u, v) =
(f(u) cos(v), f(u)sin(v), u). We claim that this defines two coordinate charts
covering S. Differentiability is clear. For x1, let

V1 = R3 \ {(x, y, z) ∈ R3|y = 0 and x ≥ 0}.

We claim that x1 is a bijection to V1 ∩ S. For a proof, we describe its inverse:
F1(x, y, z) = (z, arccos( x√

x2+y2
)) for y ≥ 0 and F1(x, y, z) = 2π−arccos( x√

x2+y2
))

for y < 0. To see that F1 : V1 → R2 is continuous, there might be a problem at
y = 0. From the definition of V1, we know that x < 0, and hence arccos( x√

x2
)) =

arccos(−1) = π = 2π − arccos( x√
x2
)).

We leave it to the reader to see that the restriction of F to S ∩ V1 is an inverse
to x1, which is then a bijection x1 : U1 → S ∩ V1.
Regularity: We calculate the differential

(Dx1)[u,v] =




f ′(u) cos(v) −f(u) sin(v)
f ′(u)sin(v) f(u) cos(v)

1 0






60 CHAPTER 2. SURFACES IN SPACE

torus

Figure 2.5: A torus

The 2-by-2 subdeterminants are f ′(u)f(u), f(u) sin(v) and −f(u) cos(v). Since
f(u) > 0, at least one of the latter two is non-zero.

To see that x2 is a coordinate chart, imitate the above arguments with V2 =
R3 \ {(x, y, z)|y = 0 and x ≤ 0} and a proper choice of F2 : V2 → R2.

Remark 2.15 Surfaces of rotation may be defined for more general plane curves.
Let a curve be given with a regular parametrization IR3, u 7→ [f(u), 0, g(u)] with
g(u) > 0 (right half-plane!) and f ′(u)2 + g′(u)2 < 0 for all u in a closed in-
terval I. In order to avoid self-intersections of the surface, we have to avoid
self-interesections of the original curve, i.e., the parametrization needs to be in-
jective, apart from perhaps at the end points of the interval. If this is the case,
then the following formula can be used for parametrizations of the surface of ro-
tation (you might have to restrict to the interior of the interval I or otherwise
take particular care at the end points of the interval):

(u, v) 7→ [f(u) cos v, f(u) sin v, g(u), u ∈ I, v ∈ [0, 2π].

We leave it as an exercise to make these requirements precise.

Example 2.16 A torus T ⊂ R3 arises as surface of rotation from a circle of
radius a > 0 in the XZ-plane with center at [b, 0, 0] with a < b, cf. Figure 2.5.
Hence such a torus is a regular surface. Parametrizations xi, i = 1, 2 are of the
form xi(u, v) = [(b+ a cosu) cos v, (b+ a cosu) sin v, a sin u].

2.2.3 Ruled surfaces

2.3 Implicitly given surfaces

Like planes can be defined as the set of solutions of linear equations in three
variables, many surfaces have a description as the set of solutions of (in general
non-linear) equations – of a slightly restricted kind.

Example 2.17 1. The solutions of the equation X2 + Y 2 +Z2 = r2 describe,
for every r 6= 0, a sphere around the origin with radius r.
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2. Consider the equation X2 + Y 2 − Z2 = a. The set of solutions consists of
infinitely many circles in planes Z = c, since then r2 = X2 + Y 2 = c2 + a.
This equation has a solution for c2 + a ≥ 0; always for a ≥ 0, but only for
|c| ≥ √−a for negative a. For a = 0, the set of solutions is a cone with a
singular point at the origin (a circle of “radius 0”); this set is not a regular
surface. For all values a 6= 0, the set of solutions of the equation above is
in fact a regular surface; for an illustrations, check Figure 2.7. The surface
in the middle represents a conic that solves the equation above for a > 0;
the surface on the right side arises as the set of solutions for a < 0.

What makes the distinction between equations with regular surfaces as their set
of solutions and those that have not? This is what we will investigate now:

Definition 2.18 Let X ⊂ R3 be an open subset and let f : X → R be a smooth
function.

1. A point p ∈ X is a regular point for f if the gradient vector
∇f(p) = [∂f

∂x
(p), ∂f

∂y
(p), ∂f

∂z
(p)] 6= 0.

2. A number a ∈ R is a regular value for f if every solution p of the equation
f(p) = a is regular.

Example 2.19 Let f : R3 → R be given by f(x, y, z) = x2 + y2 + z2.
Claims:

1. Every point p ∈ R3,p 6= 0, is a regular point.

2. Every real number a 6= 0 is a regular value.

To see this, we calculate the gradient ∇f(x0, y0, z0)) = (2x0, 2y0, 2z0) which is
only equal to 0 for x0 = y0 = z0 = 0. Hence a ∈ R is a regular value if and only
if f(0, 0, 0) 6= a, i.e., if and only if a 6= 0.

The importance of the terms regular point and regular value stem from a partic-
ular case of the implicit function theorem, to wit:

Theorem 2.20 If X ⊆ R3 is open, f : X → R is a smooth function and a ∈ R

is a regular value for f , then S := f−1(a) = {(x, y, z) ∈ X|f(x, y, z) = a} is a
regular surface.
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Figure 2.6: Illustration for thm. 2.20

The requirement in Theorem 2.20 can also be stated as: All elements of the set
of solutions S := f−1(a) are regular points, i.e., for every p = (x, y, z) ∈ X with
f(x, y, z) = a, at least one of the partial derivatives ∂f

∂x
(p), ∂f

∂y
(p), ∂f

∂z
(p) does not

vanish.

Here is the version of the implicit function theorem that you find most often in
texbooks in mathematical analysis:

Theorem 2.21 Assume X ⊆ R3 to be open, f : X → R to be a smooth function,
a ∈ R, and p0 = (x0, y0, z0) ∈ X such that f(p0) = a and ∂f

∂z
(p0) 6= 0. Then there

exists an open neighbourhood U of (x0, y0) in R2, an open interval I containing z0
and a smooth function g : U → I such that g(x0, y0) = z0 and f(x, y, g(x, y)) = a.
Moreover, {(x, y, z) ∈ U × I| f(x, y, z) = a} = {(x, y, g(x, y)) (x, y) ∈ U}.

That theorem tells us thus that the graph of the function g consists of solutions
of the equation f(p) = a and that it contains the point p0. Note that U can
only contain points (x, y) such that there exists z with (x, y, z) ∈ U (“over U”).
Remark also that the theorem only states the existence of such a function g. In
general, there is no way to give a description of g by way of a closed formula of
simple terms.

To prove Theorem 2.20 using the implicit function theorem (as stated in Theorem
2.21), note first that we can suppose, without loss of generality, that ∂f

∂z
(p0) 6= 0.

(If, instead, ∂f
∂x
(p0) 6= 0, we conclude the existence of a smooth function h : U →

R such that h(y0, z0) = x0 and f(h(y, z), y, z) = a.)

In any case, we may conclude that there is a neighbourhood W of p0 ∈ R3 such
that the set S ∩W consisting of the solutions of the equation f(p) = a can be
parametrized as graph of a smooth function. Apply Corollary 2.10.

Remark 2.22 The reader may have seen a statement of the implicit function
theorem that is more general that the one described in Theorem 2.21 for a real
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function of three variables. The generalized version deals with smooth (vector)
function f : X → Rm for an open domain X ⊂ Rn+m. If f(p) = a for a point
p = (pn,pm)) ∈ X and if a certain m×m minor of the Jacobian Dfp does not
vanish, then there exist neighbourhoods U ⊂ Rn of pn and V ⊂ Rm of pm and
a smooth vector function g : U → V such that g(pn) = pm, f(x, g(x)) = a and
such that {(x,y) ∈ U × V f(x,y) = a} = {x, g(x)| x ∈ U}.

For the sake of completeness, we include the proof of Theorem 2.20 taking de-
parture in the inverse function theorem that is usually proved in a textbook in
mathematical analysis. The implicit function theorem is then usually deduced as
a consequence; it is in fact equivalent to the inverse function theorem. We state
the inverse function theorem without proof as

Theorem 2.23 Let X ⊆ Rn be an open set and let F : X → Rn be a smooth
map. Suppose p ∈ X and dFp : Rn → Rn is a bijection. Then F has a local
smooth inverse: There is an open set V ⊆ X containing p, and an open set
W ⊆ Rn containing F (p) such that F : V → W is a bijection and the inverse
F−1 : W → V is smooth.

Proof:[of Theorem 2.20] Let p = (x0, y0, z0) ∈ f−1(a). We want to find a
parametrization of a neighbourhood V ∩ f−1(a) of p. The strategy is to use
the inverse function theorem 2.23 on a suitably defined function F : V → R3.

Suppose, perhaps after renaming the axis, that ∂f
∂z
(p) 6= 0. Let F : X → R3 be

defined by F (x, y, z) = (x, y, f(x, y, z)), then

DFp =




1 0 0
0 1 0

∂f
∂x
(p) ∂f

∂y
(p) ∂f

∂z
(p))


 .

The determinant of dFp is non-zero, so dFp is a bijection. By the inverse func-
tion theorem, there is an open set V ⊆ X containing p, an open set W ⊆ R3

containing F (p) = (x0, y0, a) and a smooth function F−1 : W → V which is an
inverse for the restriction of F to V , i.e., such that

1. For (x, y, z) ∈ V , F−1(F (x, y, z)) = (x, y, z)

2. For (u, v, w) ∈ W , F (F−1(u, v, w)) = (u, v, w).

We claim that U = {(u, v) ∈ R2|(u, v, a) ∈ W} and x : U → R3 given by
x(u, v) = F−1(u, v, a) is a parametrization of V ∩ f−1(a).
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Figure 2.7: The quadratic surfaces from Ex. 2.24.

From 1):

(x, y, z) = F−1(F (x, y, z)) = F−1(x, y, f(x, y, z))

= (F−1
1 (x, y, f(x, y, z)), F−1

2 (x, y, f(x, y, z)), F−1
3 (x, y, f(x, y, z))),

we conclude that F−1
1 (u, v, w) = u and F−1

2 (u, v, w) = v.

Hence x(u, v) = F−1(u, v, a) = (u, v, F−1
3 (u, v, a)) is a graph. We have to see that

the image x(U) = V ∩ f−1(a).

From 2):

(u, v, w) = F (F−1(u, v, w)) = F (u, v, F−1
3 (u, v, w)) = (u, v, f(F−1(u, v, w))

Hence x(U) = F−1(W ∩ {(u, v, a)}) ⊆ f−1(a) ∩ V : For w = a, f(F−1(u, v, a)) =
F3(F

−1(u, v, a)) = a and hence F−1(u, v, a) ∈ f−1(a).

Moreover, F−1(W ∩ {(u, v, a)}) ⊇ f−1(a) ∩ V : If q = (x, y, z) ∈ f−1(a) ∩ V then
F (q) = (x, y, a) and F (q) ∈ W , since q ∈ V .

Hence: F−1 is a bijection from W ∩ {(u, v, a)} to f−1(a) ∩ V .

✷

Example 2.24 As a slight generalization of Example 2.17, we consider the quadratic
surfaces in space that arise as the set S of solutions of the equation f(x, y, z) =
x2

a2
± y2

b2
± z2

c2
= 1 with a, b and c non-zero. Every such space S is a regular sur-

face, since ∇f(x0,y0,z0) = (2x0
a2
,±2y0

b2
,±2z0

c2
) 6= 0 except for x0 = y0 = z0 = 0. But

f(0, 0, 0) = 0, and hence (0, 0, 0) 6∈ S = f−1(1) is not a solution.
The three different types of regular quadratic surfaces are depicted in Fig.2.7
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2.4 Coordinate systems

Coordinate systems for a regular surface are not unique, there are infinitely many
of them. Using Thm. 2.20 we may have established that a subset S ⊂ R3 is a
regular surface without knowing any coordinate patch explicitely.

The simplest situation arises for a graph S of a smooth function f . This subset
S ⊂ R3 has a simple atlas consisting of only one coordinate patch. It is certainly
not true, that all surfaces are graphs, but locally this does in fact hold! This will
be proven in Prop. 2.27.

To begin with, we note another formulation of condition 3 from Definition 2.4: If
we already know that S is a regular surface, we only have to check that a local
parametrization satisfies conditions 1 and 2; condition 3 is for free.

Proposition 2.25 Let x : U → S be a coordinate system on a regular surface S
and let U0 ⊆ U be any open subset. Then the restriction x : U0 → S is again a
coordinate system on S.

Proof: Left to the reader.

✷

Actually, the result of Proposition 2.25 is equivalent to condition 3, which the
reader may try to prove.

2.4.1 “Inverse” to a parametrization

What about the inverse of a parametrization x : U → W ∩ S? The inverse
x−1 : W ∩ S ⊂ S into U has to be continuous. It makes no sense to ivestigate
differentiability, since its domain W ∩S is not an open subset of Euclidean space.
Here is as close as we can come to a smooth “inverse”:

Proposition 2.26 Let x : U → R3 denote a parameterized surface. For every
p ∈ U ⊂ R2 there exists an open subset U0 ⊂ U containing p such that the
restriction x0 = x|Uo

: U0 → R3 has a smooth “inverse” in the following sense:
There exists an open set V0 ⊂ R3 and a smooth map F0 : V0 → U0 such that
(F0 ◦ x0)(u, v) = (u, v) for every (u, v) ∈ U0.

Proof: The proof contains two steps:
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Step 1 Consider the projections πi : R
3 → R2, i = 1, 2, 3, leaving out the i-th

coordinate and the smooth(!) compositions πi ◦ x : U → R2. Their Jacobi
matrices D(πi ◦ x)p at p are 2× 2-matrices obtained by deleting one of the
rows of Dxp. Without loss of generality, we may assume that D(π3 ◦ x)p
has rank 2 and hence is invertible.

Applying the inverse function theorem (Thm. 2.23) to the map π3 ◦ x, we
conclude that there is an open set U0 ⊂ U containing p such that U1 :=
(π3 ◦ x)(U0) ⊂ R2 is open and such that the restriction of the map ϕ :=
π3 ◦ x : U0 → U1 is a diffeomorphism between open planar sets.

Step 2 This means that the map ϕ : U0 → U1 has a smooth inverse ψ : U1 → U0.
Let V0 := π−1

3 (U1) – an open subset of R3 – and let x0 : U0 → R3 denote
the restriction of x to U0. Then x0(U0) ⊂ V0 since (π3 ◦ x0)(U0) = U1. The
map F0 := ψ ◦ π3|Vo : V0 → U0 is smooth as composition of two smooth
maps. Moreover:

F0 ◦ x0 = (ψ ◦ π3) ◦ x0 = ψ ◦ (π3 ◦ x0) = ψ ◦ ϕ = id|U0.

✷

A synopsis of the proof above and also that of Proposition 2.27– explaining almost
everything very briefly – is given in the commutative diagram

(x1(u, v), x2(u, v), x3(u, v)) ∈ x(U0) ⊂ V0

π3




U0 ∋ (u, v)

x0

33
❣
❣
❣
❣
❣
❣
❣
❣
❣
❣
❣
❣
❣
❣
❣
❣
❣
❣
❣
❣

ϕ
..
(x1(u, v), x2(u, v)) ∈ U1

ψ

nn

x1

JJ
.

2.4.2 Existence of simple coordinate charts

The construction above has a simple consequence showing that every regular
surface can be given a graph coordinate system – locally:

Proposition 2.27 Let S denote a regular surface and q ∈ S an arbitrary point.
Then there exists an open neighbourhood V0 ⊂ R3 with q ∈ V0 and such that
V0 ∩ S is the image of a graph coordinate system.

Proof: The proof may be considered as a Step 3 added to the proof of Propo-
sition 2.26 above. We “reparametrize” the map x0 : U0 → R3 using the diffeo-
morphism ψ (inverse to ϕ) to end up with x1 := x0 ◦ ψ : U1 → R3. This map
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is smooth, its differential has rank 2 at every point in U1 (chain rule!) and x1

is a homeomorphism onto its image x1(U1) = x0(U0) as the composition of two
homeomorphisms. Finally

π3 ◦ x1 = π3 ◦ (x0 ◦ ψ) = (π3 ◦ x0) ◦ ψ = ϕ ◦ ψ = id|U1;

hence x1(u1, v1) = (u1, v1, F (u1, v1)) with F = π3 ◦ x1 smooth. (Here, π3 : R3 →
R denotes the map (x, y, z) 7→ z).

✷

We will use this result to obtain simple local arguments later: We may always
assume that a sufficiently small neighborhood of a point p ∈ S is the image of a
graph coordinate system.

The following proposition tells us that if for some reason we already know that a
subset S ⊂ R3 is a regular surface, then we can check whether a map x : U → S

is a coordinate system without going through the third condition in Def. 2.4.

Proposition 2.28 Let S ⊂ R3 be a regular surface. Suppose U ⊆ R2 is open
and x : U → S is injective and satisfies conditions 1 and 2 in Def. 2.4, then
condition 3 is also satisfied.

Proof: Let q ∈ Ũ ⊆ U where Ũ is open. We have to find an open set Ṽ ⊆ R3

such that x(Ũ) = Ṽ ∩ S. First we note that it is enough to verify this property
locally: Suppose that we can find, for every q ∈ U , an open subset q ∈ Uq ⊂ U

and an open subset Vq ⊂ R3 such that x(Uq) = Vq ∩ S. Let Ṽ = ∪q∈ŨVq. Then

x(Ũ) = x(
⋃

q∈Ũ

Uq) =
⋃

q∈Ũ

x(Uq)) =
⋃

q∈Ũ

(Vq ∩ S) = (
⋃

q∈Ũ

Vq) ∩ S = Ṽ ∩ S.

Now we can refer to the proof of Proposition 2.27: Given q ∈ U , we found
Uq := U0 ⊂ U and Vq := V0 ⊂ R3 such that x(Uq) = Vq ∩ S.

✷

2.4.3 Change of coordinates

Proposition 2.29 Let x : U → S and y : Ũ → S be coordinate systems around
p ∈ S. Then the change of coordinates

x−1 ◦ y : y−1(M) → x−1(M)

with M = y(Ũ) ∩ x(U), p ∈M , is a diffeomorphism.
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Figure 2.8: Change of coordinates

Proof: It is clear that x−1 ◦ y : y−1(M) → x−1(M) is a bijection. Let r ∈
y−1(M), q ∈ x−1(M) such that p = y(r) = x(q); we will prove that x−1 ◦ y is
differentiable at r. By Proposition 2.27, there exists an open subset U0 ⊂ x−1(M)
with q ∈ U0, an open subset V0 ⊂ R3 and a smooth “inverse” map F0 : V0 → U0

such that (F0 ◦x)(u, v) = (u, v) for every (u, v) ∈ U0. In particular, x−1(x, y, z) =
F0(x, y, z) for every (x, y, z) ∈ S ∩ V0. Hence, (x−1 ◦ y)(u, v) = (F0 ◦ y)(u, v) for
all (u, v) in the open(!) set y−1(x(U0)) containing r. Withinn this set, the map
(x−1 ◦ y) coincides therefore with the smooth(!) map F0 ◦ y.
To see that the inverse, y−1 ◦ x is differentiable at any point in x−1(M) just
interchange y and x in the above arguments.

✷

2.5 Differentiable functions on surfaces.

Now it is time for calculus on surfaces. We want to study functions which are
defined on a surface, but not necessarily only functions that arise as restriction
of a function on R3. We will define when such functions are differentiable. In
Chapter 3 we will define and investigate their differentials.

The following definition is basic:

Definition 2.30 Let S be a regular surface and let p ∈ S.

1. A function f : S → R is called differentiable at p, if there is a coordinate
system x : U → S around p such that f ◦ x : x−1(x(U) ∩ V ) → R is
differentiable at q = x−1(p). Moreover, f is differentiable on S – or just
differentiable – if it is differentiable at every point in S.
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2. Let S ′ denote a second regular surfaces. A function φ : S → S ′ is called
differentiable at p if there are coordinate systems x : U → S around p and
y : U ′ → S ′ around φ(p) such that φ(x(U)) ⊂ y(U ′) and y−1 ◦ φ ◦ x : U →
U ′ is differentiable at x−1(p). Moreover, φ is differentiable on S if it is
differentiable at every point in S.

3. If φ is a smooth bijection with smooth inverse, then φ is called a diffeomor-
phism.

Figure 2.9: Differentiability

In Definition 2.30, we make use of (a) particular coordinate system(s) on the
surface(s). Hence we need to check that the definition does not depend on this
particular choice of coordinates. Our tool is Proposition 2.29 on change of coor-
dinates. Below you find the proof for (2); the one for (1) is similar (and simpler).

Proposition 2.31 Let x1 : U1 → S and x2 : U2 → S denote coordinate systems
with x1(q1) = x2(q2) = p; likewise y1 : U ′

1 → S ′ and y2 : U ′
2 → S ′ denote

coordinate systems covering φ(p). Then y−1
1 ◦ φ ◦ x1 is differentiable at q1 if and

only if y−1
2 ◦ φ ◦ x2 is differentiable at q2.

Proof: Assume that y−1
1 ◦ φ ◦ x1 is differentiable at q1. Then

y−1
2 ◦ φ ◦ x2 = (y−1

2 y1) ◦ (y−1
1 ◦ φ ◦ x1) ◦ (x1)

−1 ◦ x2, (2.2)

and hence, by Proposition 2.29, y−1
2 ◦ φ ◦ x2 is a composition of differentiable

maps (q2 7→ q1 7→ y−1
1 (φ(p)) 7→ y−1

2 (φ(p)), and hence it is differentiable at q2.
Interchanging subscript 1 with subscript 2 yields a proof in the other direction.

The reader is invited to extend Figure 2.9 with additional arrows x2 and y2 and
to follow (2.2) in the resulting diagram (“back and forth”).

✷
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Corollary 2.32 Let x : U → S be a coordinate system on S, then x : U → x(U)
is a diffeomorphism, when U is considered as the regular surface {(u, v, 0) ∈
R3|(u, v) ∈ U}.

Proof: An exercise.

✷

2.6 Curves on a surface

The main tool used to investigate the local properties of a regular surface S are
the curves that are contained in S (short: curves on S). More precisely, this is
a curve with a (smooth) parametrization α : I → R3 such that α(t) ∈ S for all
t ∈ I. How can one construct/describe such a curve?

This is quite easy locally, i.e., in presence of a parametrization x : U → V ∩S, U ⊂
R2, V ⊂ R3 open. Choose any parametrization (u(t), v(t)) for a plane curve
contained in U . Then the composite

α : I → V ∩ S, α(t) = x(u(t), v(t))

is, of course, a parametrization for a smooth curve contained in S. In fact, the
opposite is also true, at least locally:

Figure 2.10: Curves on a surface

Proposition 2.33 Let α : I → R3 denote a smooth curve on S. Let x : U →
V ∩ S denote a parametrization with x(u0, v0) = α(t0) ∈ S. Then there is an
ε > 0 and a smooth parametrization (u(t), v(t)) for a curve in U defined on the
interval (t0 − ε, t0 + ε) ⊂ R such that

α(t) = x((u(t), v(t)) whenever t0 − ε < t < t0 + ε. (2.3)
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Proof: We use Proposition 2.26 assuring existence of a local smooth “inverse”
F0 : V0 → U0 to x defined on an open subset V0 ⊂ R3 with α(t0) ∈ V0 ∩ S,
U0 ⊂ U ⊂ R2 open and F0 ◦ x(u, v) = (u, v) for all (u, v) ∈ U0.

Choose ε > 0 such that α(t) ∈ V0 ∩ S for all t0 − ε < t < t0 + ε (V0 is open,
α is continuous). The curve x−1(α(t)) = (u(t), v(t)) is a continuous curve on U
satisfying (2.3). We need to show that u and v are smooth functions. To this
end, we note that

(u(t), v(t)) = x−1(α(t)) = (F0 ◦ x)(x−1(α(t))) = F0(α(t)))

is smooth as composition of the smooth maps F0 and α for t0 − ε < t < t0 + ε.

✷

Remark 2.34 • Actually the curve (u(t), v(t)) = x−1 ◦α(t) is smooth when-
ever it is defined. To prove this look at the above proof; we prove that
(u(t), v(t)) is smooth in a neighborhood of all points t with α(t) ∈ x(U);
perhaps one has to use different local smooth “inverses” to the parametriza-
tion x.

• Of course, one can define and investigate what it means that a curve is
smooth at a particular point α(t0) in the same manner. We will usually
look at curves that are smooth on their entire domain.

2.7 A useful trick: extending a chart to a local

diffeomorphism

Still needed?

Figure 2.11: Illustration for Lemma 2.35
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The cylinder over U and the image of
this cylinder with a “cut”,
F (u, v, t0) to illustrate that x(U) is just
translated up and down.
Interactive illustration should allow the
student to move this vertical cylinder
around
on the sphere to see why we want the
assumption on Dx.

Figure 2.12:

Lemma 2.35 Let x : U → S be a coordinate system around p ∈ S. Let p =
x(u0, v0) and let the cylinder on U be Cyl(U) = {(u, v, t) ∈ R3|(u, v) ∈ U}. Then
there is a smooth map F : Cyl(U) → R3 such that

1. F (u, v, 0) = x(u, v)

2. dF(u0,v0,0) is a linear bijection.

3. There is an open set V ⊆ Cyl(U) containing (u0, v0, 0) and an open set
W ⊆ R3 containing p such that F : V →W is a bijection with differentiable
inverse.

After perhaps choosing smaller V and W , we have x−1
|W∩S = π ◦ F−1

|W∩S, where

π(x, y, z) = (x, y)

Proof: Once we have defined F to satisfy 1) and 2), 3) follows by the inverse
function theorem. So what should F be? We can assume by renaming the axis
if necessary, that the first two rows of Dxq are linearly independent. With this
assumption, let F (u, v, t) = (x1(u, v), x2(u, v), x3(u, v)+t). The geometric content
of this definition (cf. Fig. 2.12)

is that the cylinder over U is mapped to a cylinder over x(U). For fixed t = t0,
F (u, v, t0) is x(u, v) translated by the vector (0, 0, t0). The differential of F at
(u0, v0, 0) is

DF(u0,v0,0) =




∂x1

∂u
(u0, v0)

∂x1

∂v
(u0, v0) 0

∂x2

∂u
(u0, v0)

∂x2

∂v
(u0, v0) 0

∂x3

∂u
(u0, v0)

∂x3

∂v
(u0, v0) 1




which has nonzero determinant. Hence F satisfies 1) and 2) and we conclude by
the Inverse Function Theorem.
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Now choose W̃ open such that W̃ ∩ S = x(U); this is possible, since x is a
coordinate chart. Let Ŵ = W ∩ W̃ . Then on Ŵ ∩S, x−1 is the restriction of the
differentiable function π ◦ F−1.

✷

Notice that this is a sort of converse to Lemma 1.5 in the sense that the inverse
of a local coordinate map, x−1, is in fact the restriction of Π ◦ F−1, at least in a
small enough neighborhood of p.
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3Tangent planes
and differentials

3.1 Linear approximation - definitions

A regular curve has a tangent line as its linear approximation at every point.
Curvature measures the rate of change of the tangent directions. For a regular
surface, we are now going to define tangent planes. Later on, we shall study rates
of change for these planes (or rather their normals) that will provide us with
measures for the curvature properties of a surface.

3.1.1 Tangent planes

Definition 3.1 Let S denote a regular surface and p ∈ S a point on S. The
(linear) tangent plane TpS to S at p consists of all tangent vectors to smooth
curves on S through p (and at p), i.e.,

TpS = {α′(0)| α :]− ε, ε[→ S, ε > 0, α(0) = p} ⊂ R3.

The affine tangent plane ΠpS to S at p consists of all tangent lines to curves on
S through p (and at p), i.e.,

ΠpS = p+ TpS.

Remark 3.2 You may think of the affine tangent plane ΠpS as the plane in 3-
space that is best to approximate the surface S close to p. In analogy with the
tangent line to a curve ¡t p that is best to approximate the curve close to p.

75
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p

xv(u0, v0)

xu(u0, v0)

x(u0, v)

x(u, v0)

Figure 3.1: The tangent plane at p.

Tangentplanen

S

Tangentplanen

S

Tangentplanen

S

Tangentplanen

S

Figure 3.2: Tangent planes.
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Our first aim is to show that both linear and affine tangent planes really are
planes at every point of a regular surface:

Proposition 3.3 Let S denote a regular surface and p ∈ S a point on S. Then
the (linear) tangent plane TpS ⊂ R3 is a linear subspace of dimension 2. More-
over, if x : U → V ∩ S is a parametrization for S with x(q) = p, the tangent
plane agrees with the image of the Jacobian dxq:

TpS = dxq(R
2) = sp(xu(q),xv(q)), (3.1)

i.e., the plane spanned by the two linearly independent (!) vectors xu(q),xv(q).

In other words, the tangent plane is the subspace spanned by the tangent vectors
to the parameter curves.

Proof: It is enough to show (3.1): The image of the linear map dxq is a linear
subspace of R3. It has dimension two, since it is spanned by the two linearly
independent vectors xu(q) and xv(q). We show (3.1) in two steps:

TpS ⊆ dxq(R
2) Let v ∈ TpS. By definition, there is a parameterized curve α :]−

ε, ε[→ S with α(0) = p and α′(0) = v. By Prop. 2.33, there is a plane curve
with parametrization (u(t), v(t)), t ∈]−ε, ε[1 such that q = (u(0), v(0)) and
α(t) = x(u(t), v(t)), t ∈]− ε, ε[. The chain rule for differentiation yields

v = α′(0) = xu(u(0), v(0))u
′(0) + xv(u(0), v(0))v

′(0) = (3.2)

xu(q)u
′(0) + xv(q)v

′(0) ∈ sp(xu(q),xv(q)).

dxq(R
2) ⊆ TpS Let w = axu(q) + bxv(q), a, b ∈ R. A glance at (3.2) shows that
we can produce a curve α(t) on S through p with tangent vector w if we can
find a curve (u(t), v(t)) in U with q = (u(0), v(0)) and u′(0) = a, v′(0) = b.
This is easy: Choose (u(t), v(t)) = q + (at, bt) in U on a sufficiently small
interval ]− ε, ε[.

✷

Corollary 3.4 With notation from above:
dxq : R

2 → TpS is a linear isomorphism.

Proof: The vectorspace structure on the linear subspace TpS is inherited from
R3 and dxq : R

2 → R3 is a linear map, as it is the differential of a smooth map.
Hence dxq : R2 → TpS is a linear map. Moreover, dxq is injective, since x is a
parametrization, and it is surjective by 3.3.

1You might have to choose a smaller value of ε!
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✷

Remark 3.5 Since dxq : R2 → TpS is an isomorphism, it makes sense to talk
about the inverse linear map (dxq)

−1 : TpS → R2 and its values (dxq)
−1(w) ∈ R2

for w ∈ TpS. Since x−1 is only defined as a continuous map on a subset of S, we
cannot make sense of “d(x−1)p” however.

For w ∈ TpS, w = α′(0) for a curve α(t) = x(u(t), v(t)), it follows from the proof
above that (dxq)

−1(w) = (u′(0), v′(0)). Remark that the result does not depend
on the particular choice of α; only on the tangent vector w = α′(0).

3.1.2 The differential of a smooth function.

For a local analysis of smooth functions from Rk to Rn we use the differential
from Definition 2.1. It was instrumental for instance statement and proof of
the inverse and implicit function theorems and in general for approximations.
For maps on surfaces, this local analysis will also be important. We define the
differential of a smooth map from one regular surface to another. We leave it to
the reader to spell an analogous definition for maps from regular surfaces to Rk.

Figure 3.3: The differential of a map in local coordinates. The map ϕ̂ stands for
y−1 ◦ ϕ ◦ x
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Definition 3.6 Let ϕ : S1 → S2 be a smooth map from the regular surface S1 to
the regular surface S2 and let p ∈ S1. Let α :]− ε, ε[→ S1 denote a smooth curve
on S1 with α(0) = p. The differential dϕp is the map

dϕp : TpS1 → Tϕ(p)S2

defined by dϕp(α
′(0)) = (ϕ ◦ α)′(0).

Proposition 3.7 Definition 3.6 defines a linear map from TpS1 to Tϕ(p)S2.

In other words,

• you represent a tangent vector w by a curve α on S1 with α′(0) = w,

• you determine the image curve ϕ ◦ α on S2 under α, and

• you determine the tangent (varphi ◦ α)′(0) of that image curve.

Proof: The proof consists of two steos:

1. The procedure above yields a well-defined map, i.e., given w ∈ TpS1 with
ww = α′(0) = α̃′(0) with α and α̃ curves on S1, then (ϕ◦α)′(0) = (ϕ◦α̃)′(0).

2. The map dϕp is linear.

The proof of both issues makes use of local coordinates: Let x : U1 → S1 be a
coordinate system around p and let y : U2 → S2 be a coordinate system around
ϕ(p). According to Definition 2.30, U1 can be chosen so that ϕ̂ = y−1 ◦ ϕ ◦ x :
U1 → U2 is a smooth map between open sets in the plane. Denote x−1(p) by q
and y−1(ϕ(p)) by r.

Let α(t) = x(u(t), v(t)) for t small enough, and define ϕ̂(u, v) = (y−1 ◦ ϕ ◦
x)(u, v) = (ϕ̂1(u, v), ϕ̂2(u, v)). We will prove that

dϕp(α
′(0)) = dyr(dϕ̂q((dxq)

−1(α′(0)). (3.3)

By Cor. 3.4 and Rem. 3.5, the maps on the right hand side are all linear and
independent of the choice of a curve α with the given tangent vector. This allows
us to conclude 1. and 2. above.

To show (3.3), note that dϕp(α
′(0))ϕ ◦ x = y ◦ ϕ̂ and hence

dϕp(α
′(0)) =

d

dt
(ϕ ◦ α)(0) = d

dt
(ϕ ◦ x(u(t), v(t)))|t=0 = dyr(

d

dt
(ϕ̂(u(t), v(t)))|t=0
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and
d

dt
ϕ̂(u(t), v(t))|t=0 =

∂ϕ̂

∂u
(q)u′(0) +

∂ϕ̂

∂v
(q)v′(0)

=

(
∂ϕ̂1

∂u
(q) ∂ϕ̂1

∂v
(q)

∂ϕ̂2

∂u
(q) ∂ϕ̂2

∂v
(q)

)(
u′(0)
v′(0)

)

Hence dϕp(α
′(0)) = dyr(dϕ̂q(u

′(0), v′(0)) = dyr(dϕ̂q(dxq)
−1(α′(0)).

✷

3.1.3 Normal vectors

A vector n ∈ R3 is called normal to S at the point p if n is perpendicular to every
tangent vector v ∈ TpS. The set of all normal vectors at p is the 1-dimensional
subspace NpS = TpS

⊥. Since NpS is 1-dimensional, there are precisely two unit
normal vectors to S at p - having opposite direction.

How can one calculate a (unit) normal vector? Let x : U → V ∩ S denote a
parametrization for S with x(q) = p ∈ V ∩ S. The vectors xu(q) and xv(q) span
the tangent plane TpS; hence the vector xu(q) × xv(q) is perpendicular on both
xu(q) and xv(q) and hence on every vector in TpS; moreover, xu(q) × xv(q) 6= 0

as the wedge product of linearly independent vectors. A unit normal vector is
thus found as

N(p) =
xu(q)× xv(q)

‖xu(q)× xv(q)‖
.

If we choose another parametrization y : U ′ → V ′ ∩ S with y(q′) = p, then the

vector yu(q′)×yv(q′)
‖yu(q′)×yv(q′)‖ is a unit normal vector, too. We conclude:

yu(q
′)× yv(q

′)

‖yu(q′)× yv(q′)‖
= ± xu(q)× xv(q)

‖xu(q)× xv(q)‖
. (3.4)

How can one find the correct sign in (3.4)?

Lemma 3.8 The sign in (3.4) coincides with the sign of the determinant of the
Jacobian of the change of coordinates map h = y−1 ◦ x at q.2

Proof: By definition of the Jacobians and the chain rule, we obtain dxq =
dyh(q) ◦ dhq and hence the matrix equation

[xu(q), xv(q)] = [yu(q
′), yv(q

′)] ◦Dh(q)
which by ex. 1 :implies: xu(q)× xv(q) = (yu(q

′)× yv(q
′)) det dhq.

✷

2By the way: This sign is constant on (connected components of) the domain of h, since
detJh is a continuous function never attaining the value 0.
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3.2 Oriented Surfaces

3.2.1 A Unit Normal Vector Field

Definition 3.9 A unit normal vector field on a regular surface S is a smooth
map N : S → R3 such that for all p ∈ S

• |N(p)| = 1 and

• For all v ∈ TpS, N(p) is perpendicular to v.

Not all surfaces have a normal vector field

Example 3.10 The Möbius band.

Remark 3.11 If N is a unit normal vectorfield on S, then −N is also a unit
normal vectorfield, and these are the only two unit normal vectorfields on S, if S
is connected.

Definition 3.12 A regular surface S is orientable if there is a unit normal vector
field N : S → R3 on S. A specific choice of a unit normal vector field on S is
called an orientation. A surface with an orientation is an oriented surface.

Theorem 3.13 A regular surface S is orientable if and only if there is a set of
parametrizations xi : Ui → S, i ∈ I such that

⋃
i∈I x

i(U) = S and for any pair
i, j ∈ I such that xi(Ui) ∩ xj(Uj) 6= ∅, the Jacobian determinant det(D((xi)−1 ◦
xj)) > 0

Proof: Suppose S is orientable and let N be an orientation of S. Let x̃i : Ui → S,
i ∈ I be a set of parametrizations covering S and suppose each Ui is connected.

Now construct the xi : Ui → S as follows: Let pi ∈ Ui. If N(pi) =
x̃iu×x̃iv
|x̃iu×x̃iv|

, then

this holds for all pi ∈ U (U is connected) and we let xi(u, v) = x̃i(u, v), otherwise
let xi(u, v) = x̃i(v, u).

The Jacobian for change of coordinates in this atlas is positive as the reader may
see from exercise 1.

Suppose now that there is a set of parametrizations as stated in the theorem.

Then define N(p) = xiu×xiv
|xiu×xiv|

. This is well-defined by exercise 1, and it is clearly a
unit normal vector field.

✷
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3.2.2 The Gauss map of an oriented manifold

3.2.3 Exercises

1. Let v = (v1, v2, v3), w = (w1, w2, w3), a = (a1, a2, a3) and b = (b1, b2, b3)
and suppose that 


v1 w1

v2 w2

v3 w3


 =




a1 b1
a2 b2
a3 b3


X

where X is a 2 by 2 matrix. Prove that v ×w = a× b · det(X)

Proposition 3.14 Let S ⊂ R3 denote a regular surface in 3-space, and let p ∈ S

denote an arbitrary point on S. Then there is an open subset V ⊆ R3 such that
V ∩ S contains p and coincides with the image of a graph coordinate system.

Proof: Let x : U → R3 denote an arbitrary parametrization of S with U ⊂
R2 open and p ∈ x(U). Let q ∈ U such that x(q) = p. Assume without
loss of generality that the first two rows of the Jacobi-matrix Dxq are linearly
independent.

Let π : R3 → R2, π(x, y, z) = (x, y) denote the linear map projecting 3-space
vertically onto the XY -plane. We want to show, that there is an open subset
V0 ⊆ R3 containing p such that the restriction of π to V0∩S has a smooth inverse,
which can serve as graph coordinate system.

Consider the composite map

π ◦ x : U → R2, (u, v) 7→ (x1(u, v), x2(u, v)).

Its Jacobi-matrix is the 2-by-2 matrix consisting of the first two rows of Dx (at
every point in U). In particular, the differential d(π◦x)q has non-zero determinant
and hence it is a linear bijection. Applying the inverse function theorem to the
map π ◦ x : U → R2 yields:

There are open sets U0 ⊂ U containing q and Ũ ⊂ R2 containing π(p) such that
the restriction π ◦x : U0 → Ũ is a diffeomorphism. In particular, it has a smooth
inverse ψ : Ũ → U0. Our claim is, that the map

x ◦ ψ : Ũ → R3

is a graph coordinate system which certainly has p in its image. This is easiest
explained by a look at the following commutative diagram:

[x1(u, v), x2(u, v), x3(u, v)] ∈ x(U0)

π
��

U0 ∋ (u, v)tox

33
❤
❤
❤
❤
❤
❤
❤
❤
❤
❤
❤
❤
❤
❤
❤
❤
❤
❤
❤

(x1(u, v), x2(u, v)) ∈ Ũ
ψ

oo
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Since U0 is open, by Def. 2.4.3 there is an open subset V0 ⊆ R3 such that x :
U0 → V0∩S is a bijection and thus x◦ψ : Ũ → V0∩S is bijective. As a composite
of smooth maps, the map x ◦ ψ is smooth itself; moreover, as can be seen from
the diagram, it preserves the first two coordinates, as required.

✷
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4Metric on a
surface: the first

fundamental form

4.1 Distances, angles and areas on a surface

4.1.1 The metric on the tangent plane

4.1.2 The first fundamental form and linear algebra

Definition 4.1 The 1. fundamental form Ip on TpS is defined as the restriction
of the usual dot-product in R3, i.e.,

Ip : TpS × TpS → R, Ip(v,w) = v ·w.

Remark 4.2 The associated quadratic form Ip : TpS → R is given by Ip(v) =
‖v‖2.

Let us calculate Gram matrices (Def. 4.7) associated to Ip; those depend on the
choice of a basis for TpS. We assume given a parametrization x : U → V ∩ S

with x(q) = p ∈ V giving rise to the basis {xu(q),xv(q)}. Since the dot-product
in R3 is symmetric, so is the first fundamental form, and the coefficients of the

85
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Gram matrix Bx are given as

E(p) = Ip(xu(q),xu(q)) = xu(q) · xu(q)
F (p) = Ip(xu(q),xv(q)) = xu(q) · xv(q)
G(p) = Ip(xv(q),xv(q)) = xv(q) · xv(q).

In particular, we obtain for v = a1xu(q) + a2xv(q) ∈ TpS and w = b1xu(q) +
b2xv(q) ∈ TpS:

Ip(v,w) = [a1, a2]

[
E(p) F (p)
F (p) G(p)

]
[b1, b2]

T .

Notice that [
E(p) F (p)
F (p) G(p)

]
= (Dxq)

TDxq

where Dxq = [xu(q),xv(q)] is the Jacobi matrix for x If we choose another
parametrization y : U ′ → V ′ ∩ S with y(q′) = p ∈ V ′, we have to determine

the Gram matrix By =

[
Ē(p) F̄ (p)
F̄ (p) Ḡ(p)

]
with respect to the basis {yu(q′),yv(q′)}.

The connection between the two Gram-matrices is given by

Corollary 4.3 Bx = D(y−1 ◦ x)Tq ByD(y−1 ◦ x)q.

Proof:

Bx = (Dxq)
TDxq = (D(y ◦ y−1 ◦ x)q)TD(y ◦ y−1 ◦ x)q =

(Dyq′D(y−1 ◦x)q)TDyq′D(y−1 ◦x)q = (D(y−1 ◦x)q)T (Dyq′)
TDyq′D(y−1 ◦x)q =

D(y−1 ◦ x)Tq ByD(y−1 ◦ x)q.

✷

4.1.3 The first fundamental form and arc length

4.1.4 The first fundamental form and area

4.2 Appendix on bilinear forms

4.2.1 Bilinear forms. Quadratic forms

Definition 4.4 Let V denote a real vector space.
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1. A map B : V × V → R is called a bilinear form if and only if it is linear
in both variables, i.e., if

(a) B(av1 + bv2,w) = aB(v1,w) + bB(v2,w);

(b) B(v, aw1 + bw2) = aB(v,w1) + bB(v,w2).

for all vectors v,w,v1,v2,w1,w2 ∈ V and real numbers a, b.

2. A bilinear form B : V × V → R is called

symmetric if and only if B(v,w) = B(w,v) for all v,w ∈ V .

non-degenerate if B(v,w) = 0 for all w ∈ V implies: v = 0.

positive definite if B(v,v) > 0 for all 0 6= v ∈ V .

3. A bilinear form B : V × V → R induces a quadratic form B̄ : V → R

defined as B̄(v) = B(v,v).

Example 4.5 1. The usual dot-product on Rn is a positive definite symmetric
bilinear form on Rn (and thus non-degenerate).

2. The map B′ : R2 × R2 → R, B′([x1, x2], [y1, y2]) = x1y1 is a degenerate
symmetric bilinear form: B([0, 1], [y1, y2]) = 0 for all [y1, y2] ∈ R2.

3. The quadratic forms associated to the examples above are

(a) B̄ : Rn → R, B̄(x) = ‖x‖2.
(b) B̄′ : R2 → R, B̄′([x1, x2]) = x21.

Remark 4.6 1. A bilinear form B : V × V → R can be made symmetric
using the definition Bs : V × V → R, Bs(v,w) = 1

2
(B(v,w) + B(w,v)).

The quadratic forms associated to B and to Bs agree: B̄ = B̄s.

2. The following formula shows how to recover a symmetric bilinear form from
the quadratic form it induces:

B(v,w) =
1

4
(B̄(v +w)− B̄(v −w)).
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4.2.2 Bilinear forms and Gram matrices

Let E = {v1, . . . ,vn} denote a basis for the finite-dimensional vector space V .
Let B : V × V → R denote a bilinear form on V .

Definition 4.7 The Gram matrix BE associated to B is the n × n-matrix with
entries (BE)ij = B(vi,vj).

Example 4.8 The Gram-matrices associated to the bilinar forms in the examples
above with respect to standard bases En on Rn, resp. E2 on R2 are

1. BEn
= In, the identity matrix;

2. B′
E2

=

[
1 0
0 0

]
.

A linear map is determined by its values on all basis vectors. In the same spirit,
a bilinear form is determined by the values on all pairs of basis vectors, i.e., by
the associated Gram matrix. This is expressed in

Lemma 4.9 Let B : V × V → R denote a bilinear form on the vector space V .
Let E = {v1, . . . ,vn} denote a basis for V , and let BE denote the associated Gram
matrix with respect to E. Let v = a1v1 + · · ·+ anvn and w = b1v1 + · · ·+ bnvn
be two vectors in V . Then

B(v,w) = [a1, . . . , an]BE[b1, . . . , bn]
T .

Proof: Straightforward calculation using the bilinearity of B.

✷

4.2.3 Change of coordinates

Let V denote a vector space with the two bases E = {v1, . . . ,vn} and F =
{w1, . . . ,wn}. There is a uniquely determined regular n × n-matrix S (change-
of-base matrix) with the property: [v1, . . . ,vn]S = [w1, . . . ,wn] . Coordinates
wrt. the two bases are then transformed with the inverse matrix S−1 (change-of-
coordinates matrix), i.e., if a1v1 + · · ·+ anvn = a′1w1 + · · ·+ a′nwn, then

S[a′1, . . . , a
′
n]
T = [a1, . . . an]

T ;

[a′1, . . . , a
′
n]
T = S−1[a1, . . . , an]

T . (4.1)

Let B : V × V → R denote a bilinear form on V . How are the Gram matrices
BE and BF associated to B with respect to the two bases related to each other?
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Proposition 4.10 BF = STBES.

Proof: Let v = a1v1+ · · ·+ anvn = a′1w1+ · · ·+ a′nwn, w = b1v1+ · · ·+ bnvn =
b′1w1 + · · ·+ bnwn ∈ V . We obtain:

[a1, . . . , an]BE[b1, . . . bn]
T = B(v,w) = [a′1, . . . , a

′
n]BF[b

′
1, . . . b

′
n]
T .

Applying (4.1) to the left hand side, we obtain:

[a′1, . . . , a
′
n]S

TBES[b1, . . . bn]
T = [a′1, . . . , a

′
n]BF[b

′
1, . . . b

′
n]
T .

Since this is correct for all column vectors [a′1, . . . , a
′
n]
T , [b′1, . . . b

′
n]
T ∈ Rn, we

conclude:
BF = STBES.

✷

4.2.4 Diagonalization

A matrix version of the spectral theorem from linear algebra can be phrased as
follows:

Proposition 4.11 Let A denote a real symmetric n × n-matrix. Then there
exists an orthonormal eigenvector basis {v1, . . . ,vn} of V , i.e., there are real
eigenvalues λi with

Avi = λivi.

Another way to phrase this property is in terms of the change of base matrix
associated to the standard basis and the eigenvector basis:

Corollary 4.12 There exist a diagonal matrix ∆ = diag(λ1, . . . , λn) and an
othogonal matrix S ∈ O(n) such that

A = S−1∆S.

Proof: Apply the change of base matrix S with Sei = vi to get: SA = ∆S.

✷

There is an interesting application to quadratic forms (amongst others used in
the classification of conic sections):
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Corollary 4.13 Let B̄ : V → R denote the quadratic form associated to a bilin-
ear form B : V × V → R. There exists an orthormal basis E = {v1, . . . ,vn} of
V and real numbers λ1, . . . , λn such that

B̄(a1v1 + · · ·+ anvn) = λ1a
2
1 + · · ·λna2

n.

Proof: According to Cor. 4.12, the Gram matrixBE associated to B with respect
to the eigenvector basis E is a diagonal matrix.

✷



5Curvature
functions on

regular surfaces

We already know how to measure the curvature of a curve, and we want to use
this idea to measure the curvature of a surface. But there are some problems:

• Through each point of a surface there are infinitely many curves.

• Even if the surface is a plane, there will be for instance very small circles,
i.e., curves with large curvature, and this is not really a result of “curvature”
of the plane.

We will find out how to separate curvature of these curves into normal curvature
which is curvature resulting from the surface being curved and geodesic curvature,
which comes from the curve being curved relative to the surface.

Moreover, it turns out, that there is a systematic description of all the possible
normal curvatures of curves through a given point on the surface. This will imply
that the curvature properties of the infinitely many curves through a given point,
can be captured by just two real numbers.

5.1 Vector fields

We will only need very special cases of vector fields here, but since the general
concept is easy to define, we do that:

91
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Definition 5.1 A smooth vector field on a regular surface S is a smooth map
χ : S → R3. A tangent vector field on S is a vectorfield such that χ(p) ∈ TpS

for all p ∈ S.

Lemma 5.2 Let χ : S → R3 be a tangent vector field on S and let x : U → S

be a local parametrization. Then χ ◦ x : U → R3 can be written χ ◦ x(u, v) =
a(u, v)xu(u, v) + b(u, v)xy(u, v), where a, b : U → R are smooth functions.

Given smooth functions a, b : U → R, then χ(p) = a(x−1(u, v))xu(x
−1(p)) +

b(x−1(u, v))xv(x
−1(p)) is a smooth vector field on x(U) ⊂ S

Proof: Since χ is smooth, χ ◦ x is smooth, by definition of smooth functions.
Moreover, χ ◦ x(u, v) ∈ Tx(u,v)S, so a(u, v) and b(u, v) are uniquely given as the
coordinates of χ ◦ x(u, v) in the basis xu(u, v),xv(u, v). These are smooth, since

(
a(u, v)
b(u, v)

)
=

(
E(u, v) F (u, v)
F (u, v) G(u, v)

)−1(
(χ ◦ x(u, v)) · xu(u, v)
(χ ◦ x(u, v)) · xv(u, v)

)

Given a, b smooth, the function χ(p) = a(x−1(u, v))xu(x
−1(p))+b(x−1(u, v))xv(x

−1(p))
is a smooth vectorfield on x(U), since χ ◦ x is smooth.

✷

Example 5.3 normal vector field N : S → R3

5.2 Normal sections and normal curvature

Let S denote an oriented regular surface and let p ∈ S. How can we get hold on
curvature of the surface S close to the point p? A single number can’t possibly
give the answer: The surface might curve differently in different directions. You
had better look at one curvature for every direction – which yields infinitely many
of them. It will turn out later, that it is enough to know just two of them.

Let N(p) denote the unit normal vector at p corresponding to the chosen orien-
tation.

Definition 5.4 Let v ∈ TpS denote a tangent vector of length 1: ‖v‖ = 1. The
normal plane ηv through p in direction v is the (affine) plane through p spanned
by the tangent vector v and the normal vector N(p). The normal section αv at p
in direction v is the curve that is obtained as the intersection of the normal plane
ηv and the surface S.



5.3. NORMAL CURVATURE OF ARBITRARY SURFACE CURVES 93

Remark 5.5 One may apply the implicit function theorem to show that suffi-
ciently close to p, every normal section αv in fact is a regular curve on S. In
the following, we will even assume that αv is parametrized by arc length and that
αv(0) = p. Moreover, its (unit) tangent vector is contained in both TpS and in the
normal plane ηv. Hence, by choosing the proper direction, we obtain: α′

v(0) = v.
What about the second derivative α′′

v(0)? It is contained in the plane sp(v,N(p))
and perpendicular to v and hence has to be parallel to N(p).

Example 5.6 This is more or less an exercise for the reader: Let S = {(u, v, f(u, v))|(u, v) ∈
U} and suppose that fu(u0, v0) = fv(u0, v0) = 0. Then N(u0, v0) = (0, 0, 1)
is a normal vector at (u0, v0) and all normal sections are graphs over a line
(u, v) = (u0 + at, v0 + bt). Hence a normal section is parametrized by α(a,b)(t) =
(u0+at, v0+ bt, f(u0+at, v0+ bt)). These curves are regular and the normancur-
vatures can be calculated directly. Since all surfaces have local parametrizations
as a graph, this example covers all cases.
Exercise:

• Prove that the normal sections are regular curves.

• Calculate the normal curvatures.

• Where is the implicit function theorem used here? (Remember, that it is
equivalent to the inverse function theorem)

Definition 5.7 At the point p, the surface S has a normal curvature kn(v) in the
tangent direction v ∈ TpS given as the (signed) curvature of the normal section
αv:

α′′
v(0) = kn(v)N(p).

5.3 Normal curvature of arbitrary surface curves

While Def. 5.7 is best in order to understand the meaning of the term normal
curvature, it is not nice to use it in calculations. In fact, the curves αv are only
defined implicitly. To circumvent this problem, we define normal curvatures for
arbitrary curves on the surface S: Let α denote a parametrization of a curve on
S with unit speed parametrization, and assume α(0) = p.

Definition 5.8 The normal curvature of the curve α at p is defined as the
(signed) length of the projection of the curvature vector α′′

v(0) on the normal
vector N(p) of the surface:

kn(α, p) = α′′
v(0) ·N(p).
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As a dot product, this normal curvature can be calculated/interpreted using the
curvature κ(p) of the curve α at p and the angle θ between the principal normal
vector n of the curve at P and the normal vector N(p) to the surface, to wit:

Lemma 5.9

kn(α, p) = κ(p) cos θ.

Remark 5.10 For a normal section, the two definitions 5.7 and 5.8 agree:

kn(αv, p) = kn(v)N(p) ·N(p) = kn(v).

Proposition 5.11 Normal curvature depends only on the tangent direction v

and not on the curve α. In particular,

kn(α, p) = kn(α
′(0)) = IIp(α

′(0), α′(0)).

Proof: The proof is contained in the section on moving tangent and normal
vector fields, i.e., the calculation of normal curvature via the second fundamental
form:

kn(α, p) = α′′(0) ·N(p) = −dNp(α
′(0)) · α′(0) = IIp(α

′(0), α′(0)).

✷

Outlook. The fact, that normal curvatures can be expressed via a bilinear
form, is the key to using (bi)linear algebra towards their determination. The
extremal principal curvatures are determined (up to sign) as the eigenvalues of
the differential dNp of the Gauss map; all other normal curvatures are sandwiched
between the principal curvatures in a sense made precise by Euler’s formula.

5.4 The Gauss map and its differential

5.4.1 Tangent and normal vector fields along a curve.

Some remarks aimed at giving a more systematic approach to the calculations of
principal curvatures.

In this section, we study vector fields defined along a curve on a surface.

Definition 5.12 Let S be a regular surface and let α : I → S be a smooth
curve on S. A smooth map: w : I → R3 is a tangent vector field along α if
w(t) ∈ Tα(t)S for all t ∈ I.
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Remark 5.13 • When v : S → R3 is a tangent vector field, then v ◦ α is a
tangent vector field along α.

• A vector field along a curve on S is a tangent vector field, if it consists of
vectors which are tangent to the surface. An example is v(t) = α′(t). This
is then also tangent to the curve.

Example 5.14 Let α(t) = (cos(t), sin(t), 0). Then α is a curve on the surface
S = {(x, y, 0)|(x, y) ∈ R2}. The vector field v(t) = (1, 0, 0) is a tangent vector
field along α in S, since TpS = {(x, y, 0)|(x, y) ∈ R2} for all p ∈ S.

Now consider α as a curve in S2. Then v is not a tangent vector field: For
instance (1, 0, 0) is not in Tα(0)S

2 = the x− z plane.

5.4.2 Normal curvature and the differential of the Gauss

map

Lemma 5.15 let S be an oriented regular surface with normal vector field N.
Let p ∈ S and let α : (−ε, ε) → S be a curve on S with α(0) = p. Then N(α(t))
is the normal vector field along α, and we let w(α(t)) be a tangent vector field
along the curve.

Then

−dNp(α
′(0)) ·w(p) = N(p) · d

dt
(w(α(t)))|t=0.

Proof: The equation N(α(t)) · w(α(t)) = 0 holds for all t. Take the derivative
with respect to t.

✷

Corollary 5.16 Let S be an oriented regular surface and let v ∈ TpS. Then

IIp(v,v) = kn(v).

Proof: We insert in the lemma: Let αv be the arc length parametrization of a
curve on S with αv(0) = p and α′

v(0) = v; and let w(αv(s)) = α′
v(s). When

v ∈ TpS we have

IIp(v,v) = −dNp(v)·v = −dNp(c
′
v(0))·c′v(0) = N(p)· d

ds
c′v|s=0 = N(p)·(κ(0)n(0)) = kn(v).

Here n denotes the normal vector of the curve. When αv is a normal section,
this is (plus or minus) the normal vector N(p) of the surface.



96 CHAPTER 5. CURVATURE FUNCTIONS ON REGULAR SURFACES

✷

Corollary 5.17 The differential of the Gauss map, dNp : TpS → TpS is self
adjoint and the second fundamental form is symmetric. The coefficients in the
hence symmetric Gram matrix for the second fundamental form are e = N(p)·xuu,
f = N(p) · xvu and g = N(p) · xvv.

Proof: Since IIp(v,w) = −dNp(v) · w = −v · (dNp)
∗(w), where (dNp)

∗ is the
adjoint of dNp with respect to the inner product on R3, symmetry of IIp is
equivalent to selfadjointness of dNp. For this, it suffices to see, that −dNp(v)·w =
−v · (dNp)(w) when v,w are a basis for TpS.

Insert the four combinations of the following (parameter) curves on S and tangent
vectorfields along the curves in the lemma:

αu(t) = x(u0 + t, v0), αv(t) = x(u0, v0 + t), w = xu, w = xv.

This gives

1. e=−dNp(xu) · (xu) = N(p) · xuu;

2. f=−dNp(xu) · (xv) = N(p) · xvu;

3. f’=−dNp(xv) · (xu) = N(p) · xuv = f ;

4. g=−dNp(xv) · (xv) = N(p) · xvv.

Notice that 2. og 3. give the same result; this proves that dNp is self adjoint.

✷

5.4.3 The second fundamental form

Let N : S → S2 denote the Gauss map for an oriented regular surface S and let
p ∈ S.

Definition 5.18 The second fundamental form on the tangent plane TpS is given
by

IIp : TpS × TpS → R, IIp(v,w) = −Ip(dNp(v),w) = −dNp(v) ·w.
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Remark 5.19 The associated quadratic form IIp : TpS → R is given by IIp(v) =
−dNp(v) · v.

Since dNp is self adjoint, the second fundamental form is symmetric, and so is the
Gram matrix with respect to any basis. The Gram matrix associated to IIp with
respect to the basis {xu(q),xv(q)} arising from a parametrization x : U → V ∩ S
as above has coefficients

e(p) = IIp(xu(q),xu(q)) = −dNP (xu(q)) · xu(q)
f(p) = IIp(xu(q),xv(q)) = −dNP (xu(q)) · xv(q)
g(p) = IIp(xv(q),xv(q)) = −dNP (xv(q)) · xv(q).

In the following section, these coefficients will be calculated in more familiar
terms. Moreover, we will uncover the connection between the quadratic form
IIp and the normal curvatures at p.

5.4.4 An alternative treatment of normal and geodesic

curvature via the Darboux frame

For an arc-length parametrized curve γ : I → S on a surface S, let t(s) denote the
unit tangent vector field and N(s) = N(γ(s)) the normal vector along the curve.
We complete it to yield a 3-dimensional frame field by defining t̂(s) = N(s)×t(s).
As a result, we achive the so-called Darboux frame, a matrix-valued function
D : I → SO(3) given by D(s) = [t(s), t̂(s),N(s)]; in particular, D(s)DT (s) =
DT (s)D(s) = I3 for all s ∈ I.

As for the Frenet frame, important information is hidden in the relation between

the function D(s) and its derivative Ḋ(s) = [ṫ(s), ˙̂t(s), Ṅ(s)] in the form Ḋ(s) =
D(s)B(s) with B(s) = DT (s)Ḋ(s).

Lemma 5.20 B(s) is skew-symmetric for every s ∈ I.

Proof: As for the Frenet frame, cf. Lemma 1.64.

✷

We calculate B(s) = DT (s)Ḋ(s) using the “row times column” formula for the
matrix-matrix multiplication to yield:
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B =



t · ṫ t · ˙̂t t · Ṅ
t̂ · ṫ t̂ · ˙̂t t̂ · Ṅ
N · ṫ N · ˙̂t N · Ṅ




Now we exploit that the matrix B is skew-symmetric and that we know its first
row in terms of the geodesic and the normal curvature of the curve γ (at a given
value s): κg = ṫ · t̂, κn = ṫ ·N. Hence,

B =



0 −κg −κn
κg 0 −τg
κn τg 0




The third entity τg is called the geodesic torsion of the curve γ and will be
identified later. First, we observe the new information about geodesic curvature
in the (1, 3) entry of the matrix B. It tells us that κn = −t · Ṅ. What is Ṅ? In
fact, it stands short for

d

ds
(N ◦ γ) = DγNγ̇ = DγNt

using the chain rule – with N : S → S2 the Gauss map1. Using the convention for
the Weingarten map W = −DN, we arrive at the following expression of normal
curvature κn in terms of the second fundamental form <,>II .

Proposition 5.21 The normal curvature κn of a regular surface S at a point
p ∈ S in (unit) tangent direction t ∈ TpS has the form

κn = −t · Ṅ = t ·W (t) =< t, t >II

Exercise. Calculate the geodesic torsion τg of an arc-length parametrized curve
γ on S (at a point with non-zero curvature) by expressing it through the curve’s
torsion τ(s) and the derivative α̇(s) of the angle function α(s) with α(s) denoting
the variable angle between the principal normal vector n(s) (to the curve) and
the surface normal N(s) along the curve.

Result. τg(s) = τ(s) + α̇(s).

Hint. Express the relation between the Darboux matrix D(s) and the Frenet
matrix F (s) in the form of a matrix equation D(s) = F (s)C(s). The matrix
C(s) expresses a (variable) rotation by the angle α(s) in the normal plane t(s)⊥.

1sometimes denoted G
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5.5 Calculating the Weingarten matrix - linear

algebra

This section gives a calculation of the matrix of the differential of the Gauss
map, dNp : TpS → TN(p)S

2 = TpS, with respect to the basis {xu,xv} of the
tangentplane TpS. This 2×2-matrix is called the Weingarten-matrix W.

Recall that the two fundamental forms Ip and IIp on the tangentplane are defined
as follows: Let v,w ∈ TpS, then

Ip(v,w) = v ·w
IIp(v,w) = −Ip(dNp(v),w) = −dNp(v) ·w.

In the basis {xu,xv} for the tangentplane TpS we have a description via the
Gram-matrices of these symmetric bilinear forms:

Ip(v,w) = vT
[
E F

F G

]
w,

IIp(v,w) = vT
[
e f

f g

]
w,

where v and w are now the coordinates of these vectors in the basis {xu,xv}.
Where is it used that the bilinear forms are symmetric?

The linear map dNp : TpS → TpS is given in this basis by the matrix W, i.e..:
dNp(v) = Wv for v ∈ TpS.

By definition of the second fundamental form, we have

vT
[
e f

f g

]
w = IIp(v,w) = −Ip(dNp(v),w) = −(Wv)T

[
E F

F G

]
w = −vTWT

[
E F

F G

]
w.

Since this holds for all vectors v,w ∈ TpS, we conclude:

[
e f

f g

]
= −WT

[
E F

F G

]
.

Transpose this matrix equation and multiply by the inverse of the Gram-matrix
for the 1. fundamentalform. This gives

W = −
[
E F

F G

]−1 [
e f

f g

]

=
1

EG− F 2

[
−G F

F −E

] [
e f

f g

]
.
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The Gauss curvature, K(p), is the determinant of the linear map dNp, so:

K(p) = detW =

det

[
e f

f g

]

det

[
E F

F G

] =
eg − f 2

EG− F 2
.

And we can calculate the mean curvature, which is defined by H(p) = −tr dNp

2
=

−tr W
2

, so:

H(p) =
eG− 2fF + gE

2(EG− F 2)
.

Using these two curvatures, we can now calculate the principal curvatures k1 og
k2 at the point p. Since k1 og k2 are the eigenvalues of the linear map −dNp

they are roots of the characteristic polynomium x2 + (tr dNp)x+det dNp = x2 −
2H(p)x+K(p),i.e.:

k1/2(p) = H(p)±
√
H(p)2 −K(p).

5.6 Gauss curvature and mean curvature

5.6.1 Classification of points on a surface

5.6.2 An outlook at minimal surfaces



6Isometries.
Invariance of the
Gauss curvature

6.1 Isometries between surfaces

6.2 Theorema egregium and consequences

6.3 Christoffel symbols

This is a section on a technical device which is indispensable both in the proof of
Gauss’ Theorema egregium and when handling geodesics and geodesic curvature.

6.3.1 Definition

In the following, we fix a parametrization x : U → V ∩ S for the surface S. At
every point p = x(q), the three vectors xu(q),xv(q) and N(p) form a (moving)
basis for R3. Let us express the double derivatives xuu(q), xuv(q) and xvv(q) as
linear combinations of these basis vectors (we omit the ps and qs and regard the

101
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derivatives etc. as vector fields):

xuu = Γ1
11xu + Γ2

11xv + Γ3
11N

xuv = Γ1
12xu + Γ2

12xv + Γ3
12N (6.1)

xvv = Γ1
22xu + Γ2

22xv + Γ3
22N.

with unknown real coefficient functions Γkij : U → R. Since the vector fields
xu,xv and N are linearly independent, the system (6.1) has a unique solution at
every point p ∈ S. The equations 6.1 can be written in matrix form as

[xuuxuvxvv] = [xuxvN]



Γ1
11 Γ1

12 Γ1
22

Γ2
11 Γ2

12 Γ2
22

Γ3
11 Γ3

12 Γ3
22


 (6.2)

6.3.2 The metric determines the Christoffel symbols

We start by differentiating the equations E = xu · xu, F = xu · xv, G = xv · xv
with respect to u and v to get:

Eu = 2xu · xuu Fu = xu · xuv + xv · xuu Gu = 2xv · xuv (6.3)

Ev = 2xu · xuv Fv = xu · xvv + xvxuv Gv = 2xv · xvv. (6.4)

Solving with respect to the six dot products involved yields the matrix equation[
Eu

2
Ev

2
Fv − Gu

2

Fu − Ev

2
Gu

2
Gv

2

]
=

[
xu · xuu xu · xuv xu · xvv
xv · xuu xv · xuv xv · xvv

]
= [xuxv]

T [xuuxuvxvv]=

[xuxv]
T [xuxvN]



Γ1
11 Γ1

12 Γ1
22

Γ2
11 Γ2

12 Γ2
22

Γ3
11 Γ3

12 Γ3
22


 =

[
E F 0
F G 0

]

Γ1
11 Γ1

12 Γ1
22

Γ2
11 Γ2

12 Γ2
22

Γ3
11 Γ3

12 Γ3
22


 =

[
E F

F G

] [
Γ1
11 Γ1

12 Γ1
22

Γ2
11 Γ2

12 Γ2
22

]

and hence:

[
Γ1
11 Γ1

12 Γ1
22

Γ2
11 Γ2

12 Γ2
22

]
=

[
E F

F G

]−1 [ Eu

2
Ev

2
Fv − Gu

2

Fu − Ev

2
Gu

2
Gv

2

]
.

In particular, these six Christoffel symbols can be expressed as (rational) functions
in the coefficients of the first fundamental form and their partial derivatives of
the first order. In particular:

Proposition 6.1 The Christoffel-symbols Γkij , 1 ≤ i, j, k ≤ 2 are intrinsic en-
tities, i.e., they depend only on the metric (first fundamental form) along the
surface S.
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To determine the last three Christoffel symbols Γ3
ij observe that they are given

by the coefficients e, f, gof the second fundamental form (and hence not intrinsic):

[e f g] = [N·xuu N·xuv N·xvv] = NT [xuxvN]



Γ1
11 Γ1

12 Γ1
22

Γ2
11 Γ2

12 Γ2
22

Γ3
11 Γ3

12 Γ3
22


 = [001]



Γ1
11 Γ1

12 Γ1
22

Γ2
11 Γ2

12 Γ2
22

Γ3
11 Γ3

12 Γ3
22


 =

[Γ3
11 Γ

3
12 Γ

3
22].

6.4 A proof of Theorema egregium

6.4.1 Proof of the Gauss equations and the Mainardi-

Codazzi equations

OBS: In this section, we use L,M,N instead of e, f, g as notation for the coef-
ficients of the 2nd fundamental form with respect to a local coordinate system
σ.

Start with the equation 0 = (σuu)v − (σuv)u. Expressing the double derivatives
in terms of Christoffel symbols and differentiating results in:
0 = (Γ1

11σu + Γ2
11σv + LN)v − (Γ1

12σu + Γ2
12σv +MN)u =

= ((Γ1
11)v−(Γ1

12)u)σu+((Γ2
11)v−(Γ2

12)u)σv+(Lv−Mu)N−Γ1
12σuu+(Γ1

11−Γ2
12)σuv+

Γ2
11σvv + LNv −MNu =

= [σu σv N](



(Γ1

11)v − (Γ1
12)u

(Γ2
11)v − (Γ2

12)u
Lv −Mu


+



Γ1
11 Γ1

12 Γ1
22

Γ2
11 Γ2

12 Γ2
22

L M N






−Γ1
12

Γ1
11 − Γ2

12

Γ2
11


−



a b

c d

0 0



[
−M
L

]
).

The last term uses the Weingarten matrix W :

[Nu Nv] = [σu σv]

[
a b

c d

]
= −[σu σv]W.

The equation corresponding to the N-coordinate yields:

0 = Lv −Mu +



L

M

N


 ·




−Γ1
12

Γ1
11 − Γ2

12

Γ2
11


.

The two equations corresponding to the σu, σv-coordinates yield:

W

[
−M
L

]
=

[
(Γ1

11)v − (Γ1
12)u

(Γ2
11)v − (Γ2

12)u

]
+

[
Γ1
11 Γ1

12 Γ1
22

Γ2
11 Γ2

12 Γ2
22

]


−Γ1
12

Γ1
11 − Γ2

12

Γ2
11


.

The left hand side is equal to

W

[
−M
L

]
= F−1

1 F2

[
−M
L

]
= F−1

1

[
L M

M N

] [
−M
L

]
= 1

EG−F 2

[
G −F
−F E

] [
0

LN −M2

]
=

= LN−M2

EG−F 2

[
−F
E

]
=

[
−FK
EK

]
.
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7Geodesics and
the Gauss-Bonnet

theorem

7.1 Geodesic curvature. Geodesics

7.1.1 Definitions

7.1.2 The geodesic differential equations

A curve γ on a surface S is geodesic if and only if the curve’s curvature vectors
γ̈(t) are parallel to the surface normals N(γ(t)) for all t ∈ I, i.e., each γ̈(t) is
perpendicular on the tangent space Tγ(t)S. Using a coordinate patch x : U → S

we have (possibly after restriction):

1. γ(t) = x(u(t), v(t)) for a curve (u(t), v(t)) in U

2. γ geodesic ⇔ γ̈ · (xu ◦ γ) = 0 = γ̈ · (xv ◦ γ) (for all s ∈ I).

Calculations

Applying the chain rule and the product rule yields:

1. γ̇ = u̇xu + v̇xv

105
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2. γ̈ = üxu + v̈xv + u̇2xuu + 2u̇v̇xuv + v̇2xvv

We use the (3×3)-matrix function Γ with Christoffel symbol functions(!) Γkij, 1 ≤
i ≤ j ≤ 2, 1 ≤ k ≤ 3, as coefficients (cf. 6.2), ie. the matrix equation

[xuuxuvxvv] = [xuxvN]



Γ1
11 Γ1

12 Γ1
22

Γ2
11 Γ2

12 Γ2
22

Γ3
11 Γ3

12 Γ3
22




using the 3D-coordinate systems {xu,xv,N} at every point in U , resp. x(U). The
two first matrices above have the given vectors as column vectors. We continue
the calculation from 2. above:

γ̈ = [xuxvN]



ü

v̈

0


+[xuuxuvxvv]



u̇2

2u̇v̇
v̇2


 = [xuxvN](



ü

v̈

0


+



Γ1
11 Γ1

12 Γ1
22

Γ2
11 Γ2

12 Γ2
22

Γ3
11 Γ3

12 Γ3
22





u̇2

2u̇v̇
v̇2


).

The geodesic condition (2) from the introduction translates to:
[
0
0

]
= [xuxv]

T γ̈ = [xuxv]
T [xuxvN](



ü

v̈

0


+



Γ1
11 Γ1

12 Γ1
22

Γ2
11 Γ2

12 Γ2
22

Γ3
11 Γ3

12 Γ3
22





u̇2

2u̇v̇
v̇2


) =

=

[
E F 0
F G 0

]
(



ü

v̈

0


+



Γ1
11 Γ1

12 Γ1
22

Γ2
11 Γ2

12 Γ2
22

Γ3
11 Γ3

12 Γ3
22





u̇2

2u̇v̇
v̇2


) =

[
E F

F G

]
(

[
ü

v̈

]
+

[
Γ1
11 Γ1

12 Γ1
22

Γ2
11 Γ2

12 Γ2
22

]

u̇2

2u̇v̇
v̇2


).

Since the the matrix FI =

[
E F

F G

]
is invertible, this condition is equivalent to:

[
0
0

]
=

[
ü

v̈

]
+

[
Γ1
11 Γ1

12 Γ1
22

Γ2
11 Γ2

12 Γ2
22

]

u̇2

2u̇v̇
v̇2


 .

Each of the two rows denotes one of the two (2nd order homogeneous) geodesic
differential equations for the unknown functions (u(t), v(t)).
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7.1.3 Existence and uniqueness

7.2 The local Gauss-Bonnet theorem

7.2.1 Relating geodesic curvature and Gaussian curvature

7.2.2 Green’s Theorem

7.2.3 Hopf’s Umlaufsatz

7.2.4 Proof: Putting it altogether

7.3 A note on geodesic triangles.

As an example for an interpretation of the local Gauss Bonnet theorem, we have
immediately from McCleary 12.4

Corollary 7.1 For a geodesic triangle T ⊂ S contained in a coordinate system,
we have ∫ ∫

T

K = ψ0 + ψ1 + ψ2 − π

where ψi are the interior angles in the triangle.

Written in local coordinates, where x : U → S is a parametrization containing
T , the left hand side of the equation says

∫ ∫

x−1(T )

K(u, v)|xu × xv|dudv =

∫ ∫

x−1(T )

K(u, v)
√
EG− F 2dudv

Now the area Area(T) is

∫ ∫

x−1(T )

1|xu × xv|dudv =
∫ ∫

x−1(T )

√
EG− F 2dudv

Let {Tn}n∈IN be a sequence of geodesic triangles converging to p, i.e., for any
ε > 0, there is an N ∈ IN such that n ≥ N implies Tn ⊂ B(p, ε).
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Then

lim
n→∞

∫∫
x−1(T )

K(u, v)
√
EG− F 2dudv

∫∫
x−1(T )

√
EG− F 2dudv

= K(p)

and hence

K(p) = lim
n→∞

1

Area(Tn)
(ψ0n + ψ1n + ψ2n − π)

This is clearly invariant under isometries, since geodesic curves, angles and areas
are. Hence it provides another argument for Theorema Egregium.

7.4 The global Gauss-Bonnet theorem

7.4.1 The Euler characteristic of a surface

7.4.2 Proof of the global Gauss-Bonnet theorem
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