AALBORG UNIVERSITY DIFFERENTIAL GEOMETRY LISBETH FAJSTRUP DOCTORAL SCHOOL AS YOU NEED IT IN MARTIN RAUSSEN TECHNOLOGY **ENGINEERING AND SCIENCE** RAFAEL WISNIEWSKI AND SCIENCE SEPTEMBER 15, 2010 Day 2

Quotients

When? Wed., September 15; 8:45 – 11:45 Where? Fredrik Bajersvej 7G 5-109

Lectures

Aims and Content

A manifold can be considered as a collection of pieces of \mathbb{R}^n which are glued together - a choice of a set of charts covering a manifold will give this picture. A quotient is a different construction that may yield a manifold, as well:

Given an equivalence relation on a manifold, the set of *equivalence classes* with the *quotient topology* is a topological space. But even if the original space is Hausdorff and second countable, the quotient sometimes is not; and then it surely does not support a manifold structure. However, in prominent examples, a manifold does emerge from a quotient. In particular, we will study projective space, $\mathbb{R}P^n$, which is the set of *lines* in \mathbb{R}^{n+1} ; very useful in eg robotics. Projective space can be described as a quotient of $\mathbb{R}^{n+1} \setminus \{0\}$ under the relation $p \sim tp$ for $t \in \mathbb{R} \setminus \{0\}$. In general, when considering quantities, which are invari- hspace commands.

ant under scaling, F(p) = F(tp), the proper space to work in is projective space.

A similar construction is the set G(k, n) of k-dimensional subspaces of \mathbb{R}^n , the Grassmannian. Grassmannians and projective spaces, which are Grassmannians G(1, n), play a role in physics, for instance in Yang Mills theory.

It is possible to describe these manifolds using charts, but this is much more complicated then using a description as a quotient.

Lecturer:

Lisbeth Fajstrup

References:

[LWT] Ch. 7. Moreover, the definition of an equivalence relation, chapter 2, the first few lines of section 2.2.

OBS: In many places, a quotient S/\sim has become $S \not\sim$ in the book. The author seems to have problems with his

AALBORG UNIVERSITY	DIFFERENTIAL GEOMETRY	LISBETH FAJSTRUP
DOCTORAL SCHOOL	AS YOU NEED IT IN	MARTIN RAUSSEN
Technology	ENGINEERING AND SCIENCE	RAFAEL WISNIEWSKI
AND SCIENCE	Day 2	September 15, 2010

Exercises:

- (LWT) Exercise 7.11 p.68
- With reference to p. 71-72, calculate $\phi_3 \circ \phi_4^{-1}$.
- Let us study Grassmannians without worrying too much about the topology, i.e., beginning on p. 73 read the last three lines and go through the con-

struction of an atlas on G(2, 4)on p. 74. You have to read the definition of F(k, n) and the equivalence relation on p. 73 as well. The rank of a matrix has many equivalent definitions. The one you know may remember from a 1st year linear algebra course is "the number of Pivot entrances in a row equivalent echelon matrix".

Tangent vectors in \mathbb{R}^n as derivations

Wed, September 15; 12:30 – 15:30

Lectures

Aims and Content

To do calculus on manifolds – linear approximations etc. – we need to define tangent spaces, and we prepare this approach with a second look at the situation in \mathbb{R}^n : We are used to think of a tangent vector as a short arrow sitting inside \mathbb{R}^n . In fact, it is hard to see the difference between \mathbb{R}^n and the space $T_p\mathbb{R}^n$ of tangents at a point $p \in \mathbb{R}^n$. Indeed, the tangent space is an *n*-dimensional vector space, and hence isomorphic to \mathbb{R}^n .

A manifold does not come with ambient space, and thus it is not clear where "velocity vectors" would live. We prepare another view by giving a different description for tangent vectors in \mathbb{R}^n . Instead of what they are,

we will focus on what they "do". I.e., the information contained in a tangent vector is reflected in the operation *directional derivative* along the tangent vector performed on smooth functions.

The general framework is that of *derivations* on function spaces or rather on spaces of *germs*: Two smooth functions which agree in a small neighborhood of $p \in \mathbb{R}^n$, have the same directional derivative at *p*. A function *f* defined in a neighborhood U of p is denoted (U, f). Two such locally defined functions, (U, f) and (V,g) are equivalent at p, if there is a neighborhood $p \in W \subset (U \cap V)$ such that $f_{|W} = g_{|W}$: the restrictions agree. The equivalence classes are the germs at p, $C_p^{\infty}(\mathbb{R}^n)$. A tangent vector is a *derivation* on germs, i.e., a linear map from germs to \mathbb{R} , which satisfies the Leibniz rule - the usual product rule for differentiation.

AALBORG UNIVERSITY	DIFFERENTIAL GEOMETRY	LISBETH FAJSTRUP
DOCTORAL SCHOOL	AS YOU NEED IT IN	MARTIN RAUSSEN
Technology	ENGINEERING AND SCIENCE	RAFAEL WISNIEWSKI
AND SCIENCE	Day 2	September 15, 2010

By the way: There are many definitions of tangent spaces to cater for different needs. Here we consider C^{∞} functions and not C^k for $1 \leq k < \infty$ and this gives some advantages. The afficionados may take a look at the proof of Theorem 2.3 (the only proof with some meet in this section). The functions g_i in that proof are C^{∞} . If fwere C^k , they would be C^{k-1} , and the proof would fall apart.

ature listed on the course webpage. All definitions work for C^{∞} , but some may not work for analytic manifolds and others may not work for C^k , k < k∞.

Lecturer:

Martin Raussen

References:

For other definitions, see the liter- [LWT], Ch. 2 sections 1 - 3.

Exercises:

than the others!)

- (LWT) p.18, Exercise 2.2 2.4 (the last one is more interesting
- The exercises left from this morning.