AALBORG UNIVERSITY	DIFFERENTIAL GEOMETRY	LISBETH FAJSTRUP
DOCTORAL SCHOOL	AS YOU NEED IT IN	MARTIN RAUSSEN
Technology	ENGINEERING AND SCIENCE	RAFAEL WISNIEWSKI
AND SCIENCE	Homework set 1	September 17, 2010

The Lie group SO(3) consists of all orthogonal 3×3 -matrices with determinant 1 ($AA^T = I_3$, det A = 1). It contains the length and orientation preserving linear transformations in \mathbb{R}^3 and is essential in both mechanics and robotics. SO(3) is a manifold since $SO(3) \subset O(3) = G(3,3)$. For applications, it is desirable to manage it using a manifold with a simpler description. This is where the *quaternions* H come in:

 $H := \{a + bi + cj + dk | a, b, c, d \in \mathbb{R}\}$ is a 4-dimensional vector space with a (non-commutative!) multiplication

$$i^2 = j^2 = k^2 = -1, ij = -ji = k, jk = -kj = i, ki = -ik = j$$
 (1)

that extends linearly to all of *H*.

There is a conjugation map $z = a + bi + cj + dk \mapsto \overline{z} = a - bi - cj - dk$, and it is easy to verify that

- 1. $\overline{z_1 z_2} = \overline{z}_2 \overline{z}_1$
- 2. $z\bar{z} = \bar{z}z = ||z||^2 1$

with |||| denoting Euclidean length. Elements $z \neq 0$ have therefore a multiplicative *inverse* $z^{-1} = \frac{\overline{z}}{||\overline{z}||}$. Remark that, with the restricted multiplication, $S^3 = \{z \in H | \| z \| = 1\} = \{z \in H | z\overline{z} = 1\}$ becomes a (non-commutative) Lie group.

The imaginary elements $z \in H$ fill the 3-dimensional subspace $Im(H) = \{bi + cj + dk | b, c, d \in \mathbb{R}\} \subset H$ with basis *i*, *j*, *k*; an element $z \in H$ is imaginary if and only if it satisfies the equation $\overline{z} = -z$.

More on quaternions

Have a look at Wikipedia.

1. Show: The map $\varphi : H \to M(4, \mathbb{R}), \ \varphi(a+bi+cj+dk) = \begin{bmatrix} a & b & -d & -c \\ -b & a & -c & d \\ d & c & a & b \\ c & -d & -b & a \end{bmatrix}$

is a multiplicative homomorphism (i.e., $\varphi(z_1z_2) = \varphi(z_1)\varphi(z_2)$) – it is enough to check this on the basis 1, *i*, *j*, *k* of *H* – with the additional property $\varphi(\bar{z}) = \varphi(z)^T$. As a consequence: φ describes a Lie group homomorphism $\varphi : S^3 \rightarrow$

As a consequence: φ describes a Lie group homomorphism φ : $S^* - SO(4)$ (defined like SO(3) above, but for 4×4 -matrices).

2. Show: Every element $x \in H$ defines a linear map

$$\psi_x : Im(H) \to Im(H), \ \psi_x(u) = xu\bar{x}.$$

Why linear, why is the result contained in Im (H)? Moreover: For $x \in S^3$ and $u \in Im(H)$, one has: $\| \psi_x(u) \| = \| u \|$. Hence ψ_x can be viewed as an element of O(3).

- 3. Conclude that the maps ψ_x altogether define a map ψ : S³ → SO(3). To check, that det ψ_x = 1 for all x, one may start with ψ₁ = I₃; det ∘ψ is continuous; orthogonal matrices have determinant ±1. Check that ψ is a *homomorphism* (i.e., ψ(z₁z₂) = ψ(z₁)ψ(z₂)) with kernel {x ∈ S³ | ψ_x = I₃} = {±1}. Hence, ψ factors to yield a smooth and one-to-one map ψ̄ : ℝP(3) → SO(3).
- 4. Check the following matrix representation for $\psi_{a+bi+cj+dk} \in SO(3)$ for $a+bi+cj+ck \in S^3$:

$$\psi_{a+bi+cj+dk} = \begin{bmatrix} 2(a^2+b^2)-1 & 2(bc-ad) & 2(bd+ac) \\ 2(bc+ad) & 2(a^2+c^2)-1 & 2(cd-ab) \\ 2(bd-ac) & 2(cd+ab) & 2(a^2+d^2)-1 \end{bmatrix}$$

(Hint: The columns are the components of $\psi_{a+bi+cj+dk}(u)$ with u = i, j, k.)

For your information (not part of the homework):

- 1. The map ψ covers all of SO(3) (is surjective) and can thus it parametrizes SO(3). As a consequence, $\bar{\psi} : \mathbb{R}P(3) \to SO(3)$ is a diffeomorphism identifying these two manifolds!
- 2. Similarly, one may define a map $\eta : S^3 \times S^3 \to SO(4)$ where SO(4) describes the orthogonal maps on *all* of *H* (instead of Im(H)). It is given by $\eta_{x,y}(u) = xu\bar{y}$ and η has kernel $\{\pm(1,1)\}$. Hence, SO(4) is a 6-dimensional smooth manifold, diffeomorphic to the quotient of $S^3 \times S^3$ by the equivalence relation $(x, y) \sim (-x, -y)$.
- 3. For alternative descriptions of SO(3) have a look at various Wikipedia pages:
 - Charts on *SO*(3)
 - Euler angles

AALBORG UNIVERSITY	DIFFERENTIAL GEOMETRY	LISBETH FAJSTRUP
Doctoral School	AS YOU NEED IT IN	MARTIN RAUSSEN
Technology	ENGINEERING AND SCIENCE	RAFAEL WISNIEWSKI
AND SCIENCE	Homework set 1	September 17, 2010

• Maps of constant rank – the second example.

We ask you to work out solutions to the questions/exercises above, preferably in groups of two or three participants.

Please hand your solutions in, either on paper or electronically, no later than Monday, September 27 (the last day of the course).