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The Lie group SO(3) consists of all orthogonal 3× 3-matrices with determi-
nant 1 (AAT = I3, det A = 1). It contains the length and orientation preserving
linear transformations in R3 and is essential in both mechanics and robotics.
SO(3) is a manifold since SO(3) ⊂ O(3) = G(3, 3). For applications, it is de-
sirable to manage it using a manifold with a simpler description. This is where
the quaternions H come in:

H := {a + bi + cj + dk| a, b, c, d ∈ R} is a 4-dimensional vector space with
a (non-commutative!) multiplication

i2 = j2 = k2 = −1, ij = −ji = k, jk = −kj = i, ki = −ik = j (1)

that extends linearly to all of H.
There is a conjugation map z = a + bi + cj + dk 7→ z̄ = a− bi− cj− dk, and it
is easy to verify that

1. z1z2 = z̄2z̄1

2. zz̄ = z̄z =‖ z ‖2 1

with ‖‖ denoting Euclidean length. Elements z 6= 0 have therefore a multi-
plicative inverse z−1 = z̄

‖z‖ . Remark that, with the restricted multiplication,

S3 = {z ∈ H| ‖ z ‖= 1} = {z ∈ H| zz̄ = 1} becomes a (non-commutative)
Lie group.

The imaginary elements z ∈ H fill the 3-dimensional subspace Im(H) =
{bi + cj + dk| b, c, d ∈ R} ⊂ H with basis i, j, k; an element z ∈ H is imaginary
if and only if it satisfies the equation z̄ = −z.

More on quaternions

Have a look at Wikipedia.

1. Show: The map ϕ : H → M(4, R), ϕ(a + bi + cj + dk) =


a b −d −c
−b a −c d
d c a b
c −d −b a


is a multiplicative homomorphism (i.e., ϕ(z1z2) = ϕ(z1)ϕ(z2)) – it is
enough to check this on the basis 1, i, j, k of H – with the additional prop-
erty ϕ(z̄) = ϕ(z)T.
As a consequence: ϕ describes a Lie group homomorphism ϕ : S3 →
SO(4) (defined like SO(3) above, but for 4× 4-matrices).
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2. Show: Every element x ∈ H defines a linear map

ψx : Im(H)→ Im(H), ψx(u) = xux̄.

Why linear, why is the result contained in Im (H)?
Moreover: For x ∈ S3 and u ∈ Im(H), one has: ‖ ψx(u) ‖=‖ u ‖.
Hence ψx can be viewed as an element of O(3).

3. Conclude that the maps ψx altogether define a map ψ : S3 → SO(3).
To check, that det ψx = 1 for all x, one may start with ψ1 = I3; det ◦ψ is
continuous; orthogonal matrices have determinant ±1.
Check that ψ is a homomorphism (i.e., ψ(z1z2) = ψ(z1)ψ(z2)) with kernel
{x ∈ S3| ψx = I3} = {±1}. Hence, ψ factors to yield a smooth and
one-to-one map ψ̄ : RP(3)→ SO(3).

4. Check the following matrix representation for ψa+bi+cj+dk ∈ SO(3) for
a + bi + cj + ck ∈ S3:

ψa+bi+cj+dk =

2(a2 + b2)− 1 2(bc− ad) 2(bd + ac)
2(bc + ad) 2(a2 + c2)− 1 2(cd− ab)
2(bd− ac) 2(cd + ab) 2(a2 + d2)− 1


(Hint: The columns are the components of ψa+bi+cj+dk(u) with u = i, j, k.)

For your information (not part of the homework):

1. The map ψ covers all of SO(3) (is surjective) and can thus it parametrizes
SO(3). As a consequence, ψ̄ : RP(3) → SO(3) is a diffeomorphism
identifying these two manifolds!

2. Similarly, one may define a map η : S3 × S3 → SO(4) where SO(4) de-
scribes the orthogonal maps on all of H (instead of Im(H)). It is given
by ηx,y(u) = xuȳ and η has kernel {±(1, 1)}. Hence, SO(4) is a 6-
dimensional smooth manifold, diffeomorphic to the quotient of S3 × S3

by the equivalence relation (x, y) ∼ (−x,−y).

3. For alternative descriptions of SO(3) have a look at various Wikipedia
pages:

• Charts on SO(3)

• Euler angles
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• Maps of constant rank – the second example.

We ask you to work out solutions to the questions/exercises above, prefer-
ably in groups of two or three participants.
Please hand your solutions in, either on paper or electronically, no later than
Monday, September 27 (the last day of the course).
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