AALBORG UNIVERSITY	DIFFERENTIAL GEOMETRY	LISBETH FAJSTRUP
Doctoral School	AS YOU NEED IT IN	MARTIN RAUSSEN
Technology	ENGINEERING AND SCIENCE	RAFAEL WISNIEWSKI
AND SCIENCE	Homework Set 2	September 27, 2010

It is the aim of this homework set to achieve a calculation of the differential ψ_* of the map $\psi : S^3 \to SO(3)$ from the first homework set. We will write $\psi_{*,\alpha} : T_\alpha S^3 \to T_{\psi(\alpha)}SO(3)$ when we indicate base points of the tangent spaces. Left invariant vector fields on both Lie groups play a decisive role, and that is why one needs to study left multiplication:

Left multiplication $l_{\alpha} : H \to H$ with a quaternion $\alpha := a + bi + cj + dk \in H$ can be seen as a linear map on the 4-dimensional real vector space H with basis elements 1, *i*, *j*, *k*. It is easy to check that, with respect to this basis, l_{α} corresponds to the matrix

$$L_{\alpha} := \begin{bmatrix} a & -b & -c & -d \\ b & a & -d & c \\ c & d & a & -b \\ d & -c & b & a \end{bmatrix}.$$

For two quaternions, α , $\beta \in H$, we have obviously $l_{\alpha\beta} = l_{\alpha} \circ l_{\beta}$ and hence $L_{\alpha\beta} = L_{\alpha} \circ L_{\beta}$. For a unit quaternion $\alpha \in S^3$, this has the consequence that $1 = l_1 = l_{\alpha\bar{\alpha}} = l_{\alpha} \circ l_{\bar{\alpha}}$ and hence $I = L_1 = L_{\alpha}L_{\bar{\alpha}} = L_{\alpha}L_{\alpha}^T$; in particular, $L_{\alpha} \in SO(4)$ for $\alpha \in S^3$.

Since $l_{\alpha} : \mathbf{R}^4 \cong H \to H \cong \mathbf{R}^4$ is a linear map, its differential $(l_{\alpha})_{*,v} : T_v \mathbf{R}^4 \to T_{\alpha v} \mathbf{R}^4$ is equal to l_{α} for every $v \in \mathbf{R}^4$. Hence, for $\alpha \in S^3$, also the restriction of l_{α} to S^3 has l_{α} itself as its differential: $(l_{\alpha})_{*,\beta} : T_{\beta}S^3 \to T_{\alpha\beta}S^3$ is given by l_{α} and can be expressed by multiplication with the matrix L_{α} on vectors in $T_{\beta}S^3$.

- 1. Given a matrix $A \in SO(n)$.
 - Show that the tangent space $T_A(SO(n))$ corresponds to the set of matrices $\{Y_{n,n}|Y^TA + A^TY = 0\}.$
 - Show that the differential $(l_A)_{*,I}$: $T_ISO(n) = K_n = \{X_{n,n} | X^T + X = 0\} \rightarrow T_A(SO(n))$ of left multiplication l_A by $A \in SO(n)$ is given by left multiplication as well: $(l_A)_{*,I}(X) = AX$.

(Hint: Use the "curve method" from Ch. 16.3, p. 162).

- 2. Let $\varphi : S^3 \to SO(4)$ denote (the injective!) Lie group homomorphism from Exercise set 1.1. Let $\alpha = a + bi + cj + dk \in S^3 \subset H$ denote a unit quaternion. Check that
 - $T_{\alpha}S^3 = \{[k, l, m, n] | ak + bl + cm + dn = 0\} \subset \mathbf{R}^4;$
 - $\varphi \circ l_{\alpha} = l_{\varphi(\alpha)} \circ \varphi;$
 - the differential at $1 \in S^3$ of left multiplication $l_{\alpha} : S^3 \to S^3$ satisfies $\varphi_{*,\alpha}((l_{\alpha})_{*,1}[0, e, f, g]^T) = \varphi(\alpha)\varphi_{*,1}[0, e, f, g]^T \in T_{\varphi(\alpha)}SO(3).$
 - its inverse satisfies: $\varphi_{*,1}(l_{\alpha^{-1}})_{*,\alpha}[k,l,m,n]^T = \varphi(\alpha)^T \varphi_{*,\alpha}[k,l,m,n]^T \in T_I SO(3).$

Fredrik Bajersvej 7	9940 8848	FAJSTRUP@M
9220 Aalborg Øst	9940 8855	RAUSSEN@M
	9940 8762	RAF

(Comment: Variation over all matrices $\varphi(\alpha) \in SO(4)$ corresponding to quaternions $\alpha \in S^3$ yields the left invariant vector fields determined by the tangent vectors $[0, e, f, g] \in T_1S^3$ pushed forward to $\varphi(S^3) \subset SO(4)$.)

Exercise 1.3 and 1.4 in the first homework set describe a natural smooth map

$$\psi: S^3 \to SO(3) \text{ given by } \psi(\alpha) = \begin{bmatrix} 2(a^2 + b^2) - 1 & 2(bc - ad) & 2(bd + ac) \\ 2(bc + ad) & 2(a^2 + c^2) - 1 & 2(cd - ab) \\ 2(bd - ac) & 2(cd + ab) & 2(a^2 + d^2) - 1 \end{bmatrix}.$$

This matrix representation was derived from the formula $\psi(\alpha)(\mathbf{v}) = \varphi(\alpha)\varphi(\mathbf{v})\varphi(\alpha)^{-1}$

with
$$\varphi(\mathbf{v}) = \begin{bmatrix} 0 & e & -g & -f \\ -e & 0 & -f & g \\ g & f & 0 & e \\ f & -g & -e & 0 \end{bmatrix}$$
 for $\mathbf{v} = [e, f, g] \in \mathbf{R}^3$.

3. Show that the differential $\psi_{*,1} : T_1S^3 \to T_I(SO(3))$ of the map ψ at $1 \in S^3$ is given by

$$\psi_{*,1}[0,e,f,g] = \begin{bmatrix} 0 & -2g & 2f \\ 2g & 0 & -2e \\ -2f & 2e & 0 \end{bmatrix} \in K_3 = T_I(SO(3)).$$

(Hint: Differentiate the map $t \mapsto \varphi(C(t)\alpha C(t)^{-1})$, $\alpha \in S^3$, for a curve C(t) in S^3 with C(0) = 1 and $C'(0) = [0, e, f, g] \in T_1S^3$. You find the columns of the matrix $\psi_{*,1}[0, e, f, g]$ by performing these calculations for $\alpha = i, j, k$.)

- 4. Finally, identify the differential $\psi_{*,\alpha} : T_{\alpha}S^3 \to T_{\psi(\alpha)}(SO(3))$ of the map ψ at α :
 - Show that ψ ∘ l_α = l_{ψ(α)} ∘ ψ and hence that ψ_{*,α} ∘ (l_α)_{*,1} = (l_{ψ(α)})_{*,I} ∘ ψ_{*,1}.
 - Using most of the results so far, show that

$$\psi_{*,\alpha}[k,l,m,n]^T = \psi(\alpha)\psi_{*,1}(L^T_{\alpha}[k,l,m,n]^T) \in T_{\psi(\alpha)}(SO(3)) \text{ for } [k,l,m,n] \in T_{\alpha}S^3.$$

(We write $[k, l, m, n]^T$ to indicate that the vector is regarded as a column vector.)

We ask you to work out solutions to the questions/exercises above, preferably in groups of two or three participants.

Please hand your solutions in, either on paper or electronically, no later than Monday, October 11.

Fredrik Bajersvej 7	
9220 Aalborg Øst	