Differential Geometry

Martin Raussen

Department of Mathematical Sciences Aalborg University Denmark

September 2010

A vector space consists of a set V and two binary operations $+: V \times V \rightarrow V$ and $F \times V \rightarrow V$ with F a field of scalars (often $V = \mathbf{R}$ or \mathbf{C}) satisfying the following list of axioms $(\mathbf{u}, \mathbf{v}, \mathbf{w} \in V; a, b \in F)$:

Commutativity. + $\mathbf{v} + \mathbf{w} = \mathbf{w} + \mathbf{v}$ Inverse element. + **Distributivity 1** Distributivity 2 "Associativity" 2 unit

Associativity, + $\mathbf{u} + (\mathbf{v} + \mathbf{w}) = (\mathbf{u} + \mathbf{v}) + \mathbf{w}$ Zero element. + $\exists \mathbf{0} \in V \ \forall \mathbf{v} \in V : \mathbf{v} + \mathbf{0} = \mathbf{v}$ $\forall \mathbf{v} \in V \exists \mathbf{w} \in V : \mathbf{v} + \mathbf{w} = \mathbf{0} \quad \mathbf{w} = -\mathbf{v}$ $a(\mathbf{v} + \mathbf{w}) = a\mathbf{v} + a\mathbf{w}$ $(a+b)\mathbf{v} = a\mathbf{v} + b\mathbf{w}$ $a(b\mathbf{v}) = (ab)\mathbf{v}$ $1\mathbf{v} = \mathbf{v}$

Algebra. Derivation

A vector space over F together with a multiplication

- Complex numbers (2D), quaternions (4D), octonions (8D)
- Function spaces $C^{\infty}(U, \mathbf{R})$
- Spaces of germs C_p^{∞}

A derivation on A is an F-linear map $D: A \rightarrow A$ satisfing the

Leibniz rule D(fg) = (Df)g + g(Df).

A point derivation $D: C_p^{\infty} \to \mathbf{R}$ satisfies D(fg) = Dfg(p) + f(p)Dg.

Theorem

Let $f : N \to M$ be a C^{∞} map of manifolds of dimensions dim M = m, dim N = n. A regular level set $f^{-1}(c) - c$ a regular value – is a regular submanifold of N of dimension n - m.

Proof.

relies on the inverse function theorem.

$O(n) \subset GI(n, \mathbf{R})$ as level set

Theorem

Consider the map $f : Gl(n, \mathbf{R}) \to Gl(n, \mathbf{R}), f(\mathbf{A}) = \mathbf{A}^T \mathbf{A}$. Then the differential f_* has constant rank.

Proof.

To $A, B \in G = Gl(n, \mathbf{R})$ associate $C = A^{-1}B$. Then $B = AC = r_C(A)$.

The maps r_C and I_{C^T} are diffeomorphisms \Rightarrow $(r_C)_{*,A}, (I_{C^T} \circ r_C)_{*,A^TA}$ are linear isomorphisms \Rightarrow $f_{*,B} = (I_{C^T} \circ r_C)_{*,A^TA} \circ f_{*,A} \circ (r_C)_{*,A}^{-1}$ and $f_{*,A}$ have the same reads

Theorem

If $f: U \subset \mathbf{R}^n \to \mathbf{R}^m$ has constant rank *k* in a neighbourhood of a point $p \in U$. Then there exists diffeomorphisms *G* of a neighbourhood $U' \subset U$ of *p* and *F* of a neighbourhood $V' \subset \mathbf{R}^m$ of f(p) such that

$$U' \subset \mathbf{R}^n \xrightarrow{f} V' \subset \mathbf{R}^m$$

$$G \downarrow \qquad \qquad \downarrow F$$

$$U'' \subset \mathbf{R}^n \xrightarrow{F \circ f \circ G^{-1}} V'' \subset \mathbf{R}^m$$

such that

$$(F \circ f \circ G^{-1})(r_1, \cdots, r_n) = (r_1, \cdots, r_k, 0, \cdots 0)$$

Integral curves for systems of differential equations

Existence. Uniqueness, Smooth dependence on initial condition

Theorem

Let V be an open subset of \mathbb{R}^n and $f: V \to \mathbb{R}^n$ a C^{∞} -function. For each $\mathbf{p}_0 \in V$:

• the system of differential equations $\mathbf{y}' = f(\mathbf{y})$ has a unique maximal smooth integral curve

 $\mathbf{y}: (\mathbf{a}(\mathbf{p}_0), \mathbf{b}(\mathbf{p}_0)) \rightarrow \mathbf{V}$ with $\mathbf{y}(0) = \mathbf{p}_0$.

2 there is a neighbourhood $\mathbf{p}_0 \in W \subseteq V$, a number $\varepsilon > 0$, and a C^{∞} -function $\mathbf{y} : (-\varepsilon, \varepsilon) \times W \to V$ such that

$$\frac{\partial \mathbf{y}}{\partial t}(t, \mathbf{q}) = f(\mathbf{y}(t, \mathbf{q})), \ \mathbf{y}(0, \mathbf{q}) = \mathbf{q}$$

for all $(t, \mathbf{q}) \in (-\varepsilon, \varepsilon) \times W$.