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Lectures.

Aims and Content. We are often interested
in a comparison of the global (long term)
behavior of solutions of different differen-
tial equations. We say that two systems
of differential equations are equivalent if
their solutions altogether (its flow) share
the same fate. For example a linear system
with a (complex) spiral sink and a linear
system with a (real) sink share the same
fate: They tend to the origin as time goes

to infinity. We say that these systems are
conjugate.
A precise definition of this notion in
greater generality will be introduced dur-
ing the lecture. We shall give examples
and a criterion for dynamical systems to be
conjugate.

Lecturer: Rafael Wisniewski

References: [HSD] 4.2, 8.1.

Exercises: HSD, ch. 4:

• Ex.4 on page 72;
• Ex. 5a on page 72;
• Ex. 6 on page 73.

LINEARIZATION OF NONLINEAR SYSTEMS AROUND EQUILIBRIUM POINTS

March 4, 12:30 – 15:15

Lectures.

Aims and Content. Consider a planar non-
linear system, X′ = F(X) with equilibrium
point X0, i.e., F(X0) = 0, and Jacobian
DFX0

at this equilibrium point . The flow
of the nonlinear system given by F is lo-
cally conjugate to the flow of the linearized
system X′ = DFX0

(X) if the linearized sys-
tem is hyperbolic, i.e., if that system does
not have a purely imaginary eigenvector.
In that case, close to X0 the phase planes of
the non-linear and of the linearized system
look alike.

In particular, if X0 is a (spiral)
sink/source for the linearized system, then
the same is true for the nonlinear system
from the outset. Likewise, if X0 is a sad-
dle point for the linearized system, then
the original system has a stable curve and

an unstable curve, and flow lines nearby
follow these curves.

We will outline a proof for the case of
a sink/source in 2D, and we will sketch a
proof in the saddle point case; cf. an out-
line on the attached pages.

In higher dimensions, the so-called
Hartman-Grobman Theorem tells us that
linearization gives important informa-
tion at hyperbolic equilibria in gen-
eral. The original system and the lin-
earized system are locally conjugate close
to the equilbrium, and the analogues
of stable/unstable curves are the sta-
ble/unstable manifolds.
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Lecturers: Rafael Wisniewski and Martin
Raussen

References:

HSD: ch. 8.1 – 8.3.
Wikipedia: Linearization
Wikipedia: Hartman-Grobman theorem

Exercises: [HSD], ch. 8, ex. 8.5. Please use
one of the plot tools to illustrate some par-
ticular cases - to find the null clines, equi-
librium point(s), their linearization etc.

Evaluation. Homework. As part of the evaluation of the course, you are required to
work out Exploration 4.3 (pp. 71 – 72) in groups of two or three people. Please hand in
a short report on your work.
Deadline for delivery: March 12 (the last day of the course)
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LINEARIZATION AT EQUILIBRIUM POINTS - 2D

“Sinks are sinks”.

Theorem 1. Let X′ = F(X) denote a 2D-dynamical system with equilibrium point x0, i.e.,
F(x0) = 0. Assume that the linearization DF(x0) – expressed by the Jacobian of F in the
standard basis – has eigenvalues with negative real part. Then there is a neighbourhoood U of x0
such that all flow lines Φ(t, z) with initial conditions z ∈ U converge to x0, i.e.,

lim
t→∞

Φ(t, z) = x0.

Proof. We give a proof in the case of two real negative eigenvalues: After coordinate
change, we may assume that the equilibrium is in the origin O and that the differential
equations are given by

x′ = −λx + h1(x, y)

y′ = −µy + h2(x, y)

with λ ≥ µ > 0 the numerical values of the eigenvalues of the linearization and remain-
der terms hi(x, y) satisfying the property

(1) lim
(x,y)→(0,0)

hi(x, y)

r
= 0.

As usual, r =
√

x2 + y2 denotes the first polar coordinate, i.e., the distance from the
origin. Property (1) of the remainder term relies on the fact, that the functions describing
the right hand side of the dynamical system are differentiable.

Our aim is to see that every flow line (solution curve) close to the origin converges
to the origin for t → ∞. To that aim let (x(t), y(t)) denote a parametrization of a flow
line. We investigate the real function r2(t) = x2(t) + y2(t), i.e., the distance of points on
the flow line from the origin (as function of the time parameter t). Let us calculate the
derivative of that function with respect to t:

d

dt
r2(t) = 2xx′ + 2yy′

= −2λx2 − 2µy2 + 2xh1(x, y) + 2yh2(x, y)

≤ −2µr2 + 2r(h1(x, y) + h2(x, y))

= 2r2(−µ +
h1(x, y) + h2(x, y)

r
).

The inequality relies on λ ≥ µ and x, y ≤ r. When r is small, the term in parenthesis is
negative, and hence r2(t) decreases. But this is not quite enough to show that it tends
to zero. To that end, consider the term

d
dtr

2(t)

r2(t)
≤ −2µ + 2

h1(x, y) + h2(x, y)

r
→ −2µ
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for t → 0. In particular, there is a distance R0 > 0 (from O) with the property

|(x, y)| ≤ R0 ⇒
h1(x, y) + h2(x, y)

r
< −µ

and hence – for |(x(t0), y(t0)| ≤ R0 and t ≥ t0 –

d
dtr

2(t)

r2(t)
≤ µ.

Integrating both sides we obtain for T ≥ t0:

log r2(T)− log r2(t0) =
∫ T

t0

d
dtr

2(t)

r2(t)
dt ≤

∫ T

t0
−µdt = −µ(T − t0)

whence r2(T) ≤ r2(t0)e
−µ(T−t0) → 0 for T → ∞. �

Saddle points are saddle points.

Theorem 2. Let X′ = F(X) denote a 2D-dynamical system with equilibrium point x0, i.e.,
F(x0) = 0. Assume that the linearization DF(x0) – expressed by the Jacobian of F in the
standard basis – has a positive and a negative real eigenvalue, i.e., detDF(x0) < 0. Then there
exist

a stable curve: {z| limt→∞ Φ(t, z) = x0} is a smooth curve through x0 whose tangent
line at x0 is parallel with the eigenvector corresponding to the negative eigenvector.

an unstable curve: {z| limt→−∞ Φ(t, z) = x0} is a smooth curve through x0 whose tan-
gent line at x0 is parallel with the eigenvector corresponding to the positive eigenvector.

Other flow lines: close to x0 “follow” first a stable curve and continue close to an unsta-
ble curve.

The proof is more tricky and uses cones around the equilibrium point and the fact
that two different solutions “cannot stay close to each other for all time”.

Both theorems are special cases of a much more general theorem that holds in all
dimensions in the neighbourhood of hyperbolic equilibrium points. This is the so-called
Hartman-Grobman theorem.
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