Algebraic topology and Concurrency Traces spaces and applications

Martin Raussen

Department of Mathematical Sciences Aalborg University - Denmark

Universität Bremen, Fachbereich Mathematik November 25th, 2008

Directed algebraic topology Trace spaces and their organization

Outline

Directed algebraic topology

- Motivations mainly from Computer Science
- Directed topology: Algebraic topology with a twist

2 Trace spaces and their organization

- Trace spaces: definition, properties, applications
- A categorical framework (with examples and applications)

Main Collaborators:

 Lisbeth Fajstrup (Aalborg), Éric Goubault, Emmanuel Haucourt (CEA, France)

Conference: Algebraic Topological Methods in Compute Science III, July 2008, Paris

Directed algebraic topology Trace spaces and their organization

Outline

Directed algebraic topology

- Motivations mainly from Computer Science
- Directed topology: Algebraic topology with a twist
- 2 Trace spaces and their organization
 - Trace spaces: definition, properties, applications
 - A categorical framework (with examples and applications)

Main Collaborators:

 Lisbeth Fajstrup (Aalborg), Éric Goubault, Emmanuel Haucourt (CEA, France)

Conference: Algebraic Topological Methods in Compute Science III, July 2008, Paris

Directed algebraic topology Trace spaces and their organization

Outline

Directed algebraic topology

- Motivations mainly from Computer Science
- Directed topology: Algebraic topology with a twist
- 2 Trace spaces and their organization
 - Trace spaces: definition, properties, applications
 - A categorical framework (with examples and applications)

Main Collaborators:

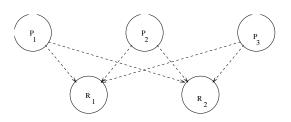
 Lisbeth Fajstrup (Aalborg), Éric Goubault, Emmanuel Haucourt (CEA, France)

Conference: Algebraic Topological Methods in Computer Science III, July 2008, Paris

Motivations – mainly from Computer Science Directed topology: Algebraic topology with a twist

Motivation: Concurrency Mutual exclusion

Mutual exclusion occurs, when *n* processes P_i compete for *m* resources R_j .



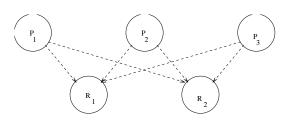
Only *k* processes can be served at any given time. Semaphores!

Semantics: A processor has to lock a resource and to relinquish the lock later on! **Description/abstraction** $P_i : \dots PR_j \dots VR_{i-1}$, (E.W. =

Motivations – mainly from Computer Science Directed topology: Algebraic topology with a twist

Motivation: Concurrency Mutual exclusion

Mutual exclusion occurs, when *n* processes P_i compete for *m* resources R_j .

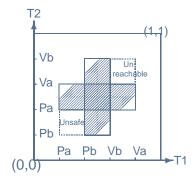


Only *k* processes can be served at any given time. Semaphores!

Semantics: A processor has to lock a resource and to relinquish the lock later on! **Description/abstraction** $P_i : ... PR_i ... VR_i ... (E.W. Dijkstra)$

Motivations – mainly from Computer Science Directed topology: Algebraic topology with a twist

Schedules in "progress graphs" The Swiss flag example



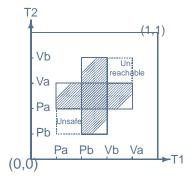
PV-diagram from $P_1 : P_a P_b V_b V_a$ $P_2 : P_b P_a V_a V_b$

Executions are directed paths - since time flow is irreversible - avoiding a forbidden region (shaded).

A B > A B
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Motivations – mainly from Computer Science Directed topology: Algebraic topology with a twist

Schedules in "progress graphs" The Swiss flag example



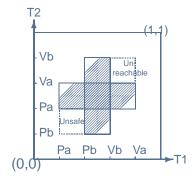
PV-diagram from $P_1 : P_a P_b V_b V_a$ $P_2 : P_b P_a V_a V_b$ Executions are directed paths – since time flow is irreversible – avoiding a forbidden region (shaded). Dipaths that are dihomotopic (through a 1-parameter deformation consisting of dipaths) correspond to equivalent executions.

Deadlocks, unsafe and unreachable regions hay occur.

< 17 ▶

Motivations – mainly from Computer Science Directed topology: Algebraic topology with a twist

Schedules in "progress graphs" The Swiss flag example



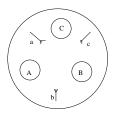
PV-diagram from $P_1 : P_a P_b V_b V_a$ $P_2 : P_b P_a V_a V_b$ Executions are directed paths – since time flow is irreversible – avoiding a forbidden region (shaded). Dipaths that are dihomotopic (through a 1-parameter deformation consisting of dipaths) correspond to equivalent executions.

Deadlocks, unsafe and unreachable regions may occur.

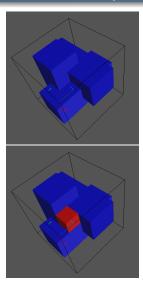
< 17 ▶

Motivations – mainly from Computer Science Directed topology: Algebraic topology with a twist

Higher dimensional automata (HDA) 1 Example: Dining philosophers; dimension 3 and beyond



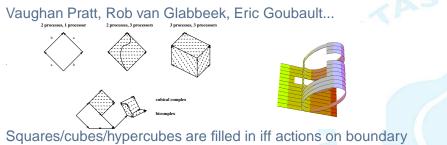
A=Pa.Pb.Va.Vb B=Pb.Pc.Vb.Vc C=Pc.Pa.Vc.Va



Higher dimensional complex with a forbidden region consisting of isothetic hypercubes and an unsafe region.

Motivations – mainly from Computer Science Directed topology: Algebraic topology with a twist

Higher dimensional automata (HDA) 2 seen as (geometric realizations of) pre-cubical sets



are independent.

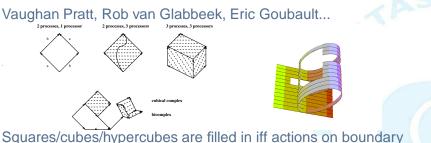
Higher dimensional automata are pre-cubical sets:

- like simplicial sets, but modelled on (hyper)cubes instead of simplices; glueing by face maps
- additionally: preferred directions not all paths allowable

Motivations – mainly from Computer Science Directed topology: Algebraic topology with a twist

• • • • • • • • • • • • •

Higher dimensional automata (HDA) 2 seen as (geometric realizations of) pre-cubical sets



Squares/cubes/hypercubes are filled in iff actions on boundary are independent.

Higher dimensional automata are pre-cubical sets:

- like simplicial sets, but modelled on (hyper)cubes instead of simplices; glueing by face maps
- additionally: preferred directions not all paths allowable.

Transition systems The "traditional" method to handle concurrency

Every single program corresponds to a (labelled) graph (with trivial idle loops at every vertex). Form the product of these graphs as a graph:

Vertices Sequences of vertices from the original graphs

Edges Sequences of (labelled) edges (including idle loops) from the original graphs

"Successive edges" are connected by a **diamond** in general a hypercube. Need to handle **independence relations** algebraically. Alternative: **Petri nets** – places, transitions, directed arcs, tokens...

Transition systems The "traditional" method to handle concurrency

Every single program corresponds to a (labelled) graph (with trivial idle loops at every vertex). Form the product of these graphs as a graph:

Vertices Sequences of vertices from the original graphs

Edges Sequences of (labelled) edges (including idle loops) from the original graphs

"Successive edges" are connected by a **diamond** in general a hypercube. Need to handle **independence relations** algebraically. Alternative: **Petri nets** – places, transitions, directed arcs tokens...

Image: A mathematical states and a mathem

Transition systems The "traditional" method to handle concurrency

Every single program corresponds to a (labelled) graph (with trivial idle loops at every vertex). Form the product of these graphs as a graph:

- Vertices Sequences of vertices from the original graphs
 - Edges Sequences of (labelled) edges (including idle loops) from the original graphs

"Successive edges" are connected by a **diamond** – in general a hypercube. Need to handle independence relations algebraically.

Alternative: **Petri nets** – places, transitions, directed arcs tokens...

Transition systems The "traditional" method to handle concurrency

Every single program corresponds to a (labelled) graph (with trivial idle loops at every vertex). Form the product of these graphs as a graph:

Vertices Sequences of vertices from the original graphs

Edges Sequences of (labelled) edges (including idle loops) from the original graphs

"Successive edges" are connected by a **diamond** – in general a hypercube. Need to handle **independence relations** algebraically. Alternative: **Petri nets** – places, transitions, directed arcs, tokens...

Motivations – mainly from Computer Science Directed topology: Algebraic topology with a twist

イロト イポト イヨト イヨ

Discrete versus continuous models How to handle the state-space explosion problem?

Discrete models for concurrency (transition graph models) suffer a severe problem if the number of processors and/or the length of programs grows: The number of states (and the number of possible schedules) grows exponentially: This is known as the state space explosion problem.

Motivations – mainly from Computer Science Directed topology: Algebraic topology with a twist

イロト イヨト イヨト

Discrete versus continuous models How to handle the state-space explosion problem?

Discrete models for concurrency (transition graph models) suffer a severe problem if the number of processors and/or the length of programs grows: The number of states (and the number of possible schedules) grows exponentially: This is known as the state space explosion problem. You need clever ways to find out which of the schedules yield equivalent results - e.g., to check for correctness - for general reasons. Then check only one per equivalence class.

Motivations – mainly from Computer Science Directed topology: Algebraic topology with a twist

Discrete versus continuous models How to handle the state-space explosion problem?

Discrete models for concurrency (transition graph models) suffer a severe problem if the number of processors and/or the length of programs grows: The number of states (and the number of possible schedules) grows exponentially: This is known as the state space explosion problem. You need clever ways to find out which of the schedules yield equivalent results - e.g., to check for correctness - for general reasons. Then check only one per equivalence class. Alternative: Infinite continuous models allowing for well-known equivalence relations on paths (homotopy = 1-parameter deformations) - but with an important twist! Analogy: Continuous physics as an approximation to (discrete) quantum physics.

Image: A mathematic state of the state of

Concepts from algebraic topology 1

Top: the category of topological spaces and continuous maps. I = [0, 1] the unit interval.

Definition

- A continuous map *H* : *X* × *I* → *Y* (one-parameter deformation) is called a homotopy.
- Continuous maps f, g : X → Y are called homotopic to each other (f ≃ g) if there is a homotopy H with H(x,0) = f(x), H(x,1) = g(x), x ∈ X.
- [X, Y] the set of homotopy classes of continuous maps from X to Y.
- A continuous map f : X → Y is called a homotopy equivalence if it has a "homotopy inverse" g : Y → X such that g ∘ f ≃ id_X, f ∘ g ≃ id_Y.

Motivations – mainly from Computer Science Directed topology: Algebraic topology with a twist

Concepts from algebraic topology 2 The fundamental group. Higher homotopy groups

Definition

- Variation: pointed continuous maps *f* : (*X*, *) → (*Y*, *) and pointed homotopies *H* : (*X* × *I*, * × *I*) → (*Y*, *).
- Loops in Y as the special case $X = S^1$ (unit circle).
- Fundamental group $\pi_1(Y, y) = [(S^1, *), (Y, y)]$ with product arising from concatenation and inverse from reversal.
- Higher homotopy groups π_i(Y, y) = [(Sⁱ, *), (Y, y)] product from the pinch coproduct on S^k; abelian for k > 1.
- A continuous map $f : X \to Y$ induces group homomorphisms $f_{\sharp} : \pi_i(X, x) \to \pi_i(Y, f(x))$ (isomorphisms for a homotopy equivalence).
- The map *f* is called *k*-connected if it induces isomorphisms on π_i , $i \le k$ and a surjection on π_{k+1} .

Motivations – mainly from Computer Science Directed topology: Algebraic topology with a twist

Concepts from algebraic topology 2 The fundamental group. Higher homotopy groups

Definition

- Variation: pointed continuous maps *f* : (*X*, *) → (*Y*, *) and pointed homotopies *H* : (*X* × *I*, * × *I*) → (*Y*, *).
- Loops in Y as the special case $X = S^1$ (unit circle).
- Fundamental group $\pi_1(Y, y) = [(S^1, *), (Y, y)]$ with product arising from concatenation and inverse from reversal.
- Higher homotopy groups π_i(Y, y) = [(Sⁱ, *), (Y, y)] product from the pinch coproduct on S^k; abelian for k > 1.
- A continuous map *f* : *X* → *Y* induces group homomorphisms *f*[↓] : *π_i*(*X*, *x*) → *π_i*(*Y*, *f*(*x*)) (isomorphisms for a homotopy equivalence).
- The map *f* is called *k*-connected if it induces isomorphisms on π_i , $i \le k$ and a surjection on π_{k+1} .

A framework for directed topology Directed paths as part of the structure: d-spaces, M. Grandis (03)

X a topological space. $\vec{P}(X) \subseteq X^{I} = \{p : I = [0, 1] \rightarrow X \text{ cont.}\}$ a set of **d**-paths ("directed" paths \leftrightarrow executions) satisfying

- { constant paths } $\subseteq \vec{P}(X)$
- $\varphi \in \vec{P}(X)(x,y), \psi \in \vec{P}(X)(y,z) \Rightarrow \varphi * \psi \in \vec{P}(X)(x,z)$
- φ ∈ P
 ['](X), α ∈ I['] a nondecreasing reparametrization
 ⇒ φ ∘ α ∈ P
 ['](X)

The pair $(X, \vec{P}(X))$ is called a **d-space**.

Observe: $\vec{P}(X)$ is in general **not** closed under **reversal**:

$$\alpha(t) = 1 - t, \, \varphi \in \vec{P}(X) \not\Rightarrow \varphi \circ \alpha \in \vec{P}(X).$$

Examples:

- An HDA with directed execution paths.
- A space-time(relativity) with time-like or causal curves

A framework for directed topology Directed paths as part of the structure: d-spaces, M. Grandis (03)

X a topological space. $\vec{P}(X) \subseteq X^{I} = \{p : I = [0, 1] \rightarrow X \text{ cont.}\}$ a set of **d**-paths ("directed" paths \leftrightarrow executions) satisfying

- { constant paths } $\subseteq \vec{P}(X)$
- $\varphi \in \vec{P}(X)(x,y), \psi \in \vec{P}(X)(y,z) \Rightarrow \varphi * \psi \in \vec{P}(X)(x,z)$
- φ ∈ P
 ['](X), α ∈ I' a nondecreasing reparametrization
 ⇒ φ ∘ α ∈ P
 ['](X)

The pair $(X, \vec{P}(X))$ is called a **d-space**. Observe: $\vec{P}(X)$ is in general **not** closed under **reversal**:

$$\alpha(t) = 1 - t, \, \varphi \in \vec{P}(X) \not\Rightarrow \varphi \circ \alpha \in \vec{P}(X)!$$

Examples:

- An HDA with directed execution paths.
- A space-time(relativity) with time-like or causal curves

A framework for directed topology Directed paths as part of the structure: d-spaces, M. Grandis (03)

X a topological space. $\vec{P}(X) \subseteq X^{I} = \{p : I = [0, 1] \rightarrow X \text{ cont.}\}$ a set of **d**-paths ("directed" paths \leftrightarrow executions) satisfying

- { constant paths } $\subseteq \vec{P}(X)$
- $\varphi \in \vec{P}(X)(x,y), \psi \in \vec{P}(X)(y,z) \Rightarrow \varphi * \psi \in \vec{P}(X)(x,z)$
- φ ∈ P
 ['](X), α ∈ I' a nondecreasing reparametrization
 ⇒ φ ∘ α ∈ P
 ['](X)

The pair $(X, \vec{P}(X))$ is called a **d-space**. Observe: $\vec{P}(X)$ is in general **not** closed under **reversal**:

$$\alpha(t) = 1 - t, \, \varphi \in \vec{P}(X) \not\Rightarrow \varphi \circ \alpha \in \vec{P}(X)!$$

Examples:

- An HDA with directed execution paths.
- A space-time(relativity) with time-like or causal curves.

Motivations – mainly from Computer Science Directed topology: Algebraic topology with a twist

d-maps, dihomotopy

A d-map $f : X \to Y$ is a continuous map satisfying • $f(\vec{P}(X)) \subseteq \vec{P}(Y)$.

Let $\vec{P}(I) = \{ \sigma \in I^{I} | \sigma \text{ nondecreasing reparametrization} \}$ and $\vec{I} = (I, \vec{P}(I))$. Then

- $\vec{P}(X) = \text{set of d-maps from } \vec{l} \text{ to } X.$
- A dihomotopy $H: X \times I \rightarrow Y$ is a continuous map such that
 - every H_t a d-map
- i.e., a 1-parameter deformation of d-maps.

Motivations – mainly from Computer Science Directed topology: Algebraic topology with a twist

d-maps, dihomotopy

A d-map $f : X \to Y$ is a continuous map satisfying • $f(\vec{P}(X)) \subset \vec{P}(Y)$.

Let $\vec{P}(I) = \{\sigma \in I^{I} | \sigma \text{ nondecreasing reparametrization} \}$, and $\vec{I} = (I, \vec{P}(I))$. Then

- $\vec{P}(X) = \text{set of d-maps from } \vec{l} \text{ to } X.$
- A dihomotopy $H: X \times I \rightarrow Y$ is a continuous mapped that
 - every H_t a d-map
- i.e., a 1-parameter deformation of d-maps.

Motivations – mainly from Computer Science Directed topology: Algebraic topology with a twist

d-maps, dihomotopy

A d-map $f : X \to Y$ is a continuous map satisfying • $f(\vec{P}(X)) \subset \vec{P}(Y)$.

Let $\vec{P}(I) = \{\sigma \in I^{I} | \sigma \text{ nondecreasing reparametrization} \}$, and $\vec{I} = (I, \vec{P}(I))$. Then

• $\vec{P}(X) = \text{set of d-maps from } \vec{l} \text{ to } X.$

A dihomotopy $H: X \times I \rightarrow Y$ is a continuous map such that

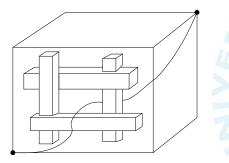
• every H_t a d-map

i.e., a 1-parameter deformation of d-maps.

Motivations – mainly from Computer Science Directed topology: Algebraic topology with a twist

(1日) (日)

Dihomotopy is finer than homotopy with fixed endpoints Example: Two L-shaped wedges as the forbidden region



All dipaths from minimum to maximum are homotopic. A dipath through the "hole" is not dihomotopic to a dipath on the boundary.

Motivations – mainly from Computer Science Directed topology: Algebraic topology with a twist

The twist has a price Neither homogeneity nor cancellation nor group structure

Ordinary topology:

Path space = loop space (within each path component). A loop space is an *H*-space with concatenation, inversion, cancellation.



"Birth and death" of d-homotopy classes Directed topology: Loops do not tell much: concatenation ok, cancellation not! Replace group structure by category structures!

< 日 > < 同 >

Motivations – mainly from Computer Science Directed topology: Algebraic topology with a twist

The twist has a price Neither homogeneity nor cancellation nor group structure

Ordinary topology:

Path space = loop space (within each path component). A loop space is an *H*-space with concatenation, inversion, cancellation.



"Birth and death" of d-homotopy classes Directed topology: Loops do not tell much; concatenation ok, cancellation not! Replace group structure by category structures!

Trace spaces: definition, properties, applications A categorical framework (with examples and applications)

ヘロト ヘヨト ヘヨト ヘヨ

D-paths, traces and trace categories Getting rid of reparametrizations – like in differential geometry of curves

X a (saturated) d-space.

 $\varphi, \psi \in \vec{P}(X)(x, y)$ are called reparametrization equivalent if there are $\alpha, \beta \in \vec{P}(I)$ such that $\varphi \circ \alpha = \psi \circ \beta$ ("same oriented trace").

Theorem

(Fahrenberg-R., 07): Reparametrization equivalence is an equivalence relation (transitivity!).

 $\vec{T}(X)(x,y) = \vec{P}(X)(x,y)/_{\simeq}$ makes $\vec{T}(X)$ into the (topologically enriched) trace category – composition associative. A d-map $f : X \to Y$ induces a functor $\vec{T}(f) : \vec{T}(X) \to \vec{T}(Y)$

Trace spaces: definition, properties, applications A categorical framework (with examples and applications)

D-paths, traces and trace categories Getting rid of reparametrizations – like in differential geometry of curves

X a (saturated) d-space.

 $\varphi, \psi \in \vec{P}(X)(x, y)$ are called reparametrization equivalent if there are $\alpha, \beta \in \vec{P}(I)$ such that $\varphi \circ \alpha = \psi \circ \beta$ ("same oriented trace").

Theorem

(Fahrenberg-R., 07): Reparametrization equivalence is an equivalence relation (transitivity!).

 $\vec{T}(X)(x,y) = \vec{P}(X)(x,y)/_{\simeq}$ makes $\vec{T}(X)$ into the (topologically enriched) trace category – composition associative. A d-map $f: X \to Y$ induces a functor $\vec{T}(f): \vec{T}(X) \to \vec{T}(Y)$.

Trace spaces: definition, properties, applications A categorical framework (with examples and applications)

Two main objectives

 Investigation of topology change under variation of end points:

$\vec{T}(X)(x',y) \stackrel{\sigma_{x'x}^*}{\leftarrow} \vec{T}(X)(x,y) \stackrel{\sigma_{yy'*}}{\longrightarrow} \vec{T}(X)(x,y')$

Categorical organization, leading to components of end points – without topology change

Application: Enough to check **one** d-path among all paths through the same components!

Trace spaces: definition, properties, applications A categorical framework (with examples and applications)

Two main objectives

- Investigation/calculation of the homotopy type of trace spaces $\vec{T}(X)(x, y)$ for relevant d-spaces X
- Investigation of topology change under variation of end points:

$\vec{T}(X)(x',y) \stackrel{\sigma_{X'x}^*}{\leftarrow} \vec{T}(X)(x,y) \stackrel{\sigma_{yy'*}}{\longrightarrow} \vec{T}(X)(x,y')$

Categorical organization, leading to components of end points – without topology change

Application: Enough to check **one** d-path among all paths through the same components!

Trace spaces: definition, properties, applications A categorical framework (with examples and applications)

Two main objectives

- Investigation of topology change under variation of end points:

$\vec{T}(X)(x',y) \stackrel{\sigma_{X'x}^*}{\leftarrow} \vec{T}(X)(x,y) \stackrel{\sigma_{yy'*}}{\longrightarrow} \vec{T}(X)(x,y')$

Categorical organization, leading to components of end points – without topology change

Application: Enough to check one d-path among all paths through the same components!

Trace spaces: definition, properties, applications A categorical framework (with examples and applications)

・ コ ト ・ 日 ト ・ 日 ト ・

Aim: Decomposition of trace spaces Method: Investigation of concatenation maps

Let $L \subset X$ denote a (properly chosen) subspace "between" $X_0, X_1 \subset X$. Investigate the concatenation map $c_L : \vec{T}(X_0)(x_0, L) \times_L \vec{T}(X_1)(L, x_1) \rightarrow \vec{T}(X)(x_0, x_1), (p_0, p_1) \mapsto p_0 * p_1$ onto? fibres? Topology of the pieces?

Generalization: L_{ij} a sequence of (properly chosen) subspaces between subdivision X_1, \dots, X_n . Investigate the concatenation map on

 $\vec{T}(X_0)(x_0, L_{01}) \times_{L_{12}} \cdots \times_{L_{j-1,j}} \vec{T}(X_j)(L_{j-1,j}, L_{j,j+1}) \times_{L_{j,j+1}} \cdots \times_{L_{n-1}} \vec{T}(X_n)(L_{n-1,n}, x_1).$

onto? fibres? Topology of the pieces?

Trace spaces: definition, properties, applications A categorical framework (with examples and applications)

A B > A B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 A
 A
 A

Aim: Decomposition of trace spaces Method: Investigation of concatenation maps

Let $L \subset X$ denote a (properly chosen) subspace "between" $X_0, X_1 \subset X$. Investigate the concatenation map $c_L : \vec{T}(X_0)(x_0, L) \times_L \vec{T}(X_1)(L, x_1) \rightarrow \vec{T}(X)(x_0, x_1), (p_0, p_1) \mapsto p_0 * p_1$

onto? fibres? Topology of the pieces?

Generalization: L_{ij} a sequence of (properly chosen) subspaces between subdivision X_1, \dots, X_n . Investigate the concatenation map on

 $\vec{T}(X_0)(x_0, L_{01}) \times_{L_{12}} \cdots \times_{L_{j-1,j}} \vec{T}(X_j)(L_{j-1,j}, L_{j,j+1}) \times_{L_{j,j+1}} \cdots \times_{L_{n-1,n}} \vec{T}(X_n)(L_{n-1,n}, x_1).$

onto? fibres? Topology of the pieces?

Trace spaces: definition, properties, applications A categorical framework (with examples and applications)

Tool: The Vietoris-Begle mapping theorem Stephen Smale's version for homotopy groups

What does a surjective map $p: X \to Y$ with highly connected fibres $p^{-1}(y), y \in Y$, tell about invariants of X, Y? The Vietoris-Begle mapping theorem compares the Alexander-Spanier cohomology groups of X, Y. Stephen Smale, A Vietoris Mapping Theorem for Homotopy, Proc. Amer. Math. Soc. 8 (1957), no. 3, 604 – 610.

Theorem

Let $f : X \to Y$ denote a proper surjective map between connected locally compact separable metric spaces. Let moreover X be locally n-connected, and for each $y \in Y$, let $f^{-1}(y)$ be locally (n - 1)-connected and (n - 1)-connected.

Y is locally n-connected, and

2 $f_{\#}: \pi_r(X) \to \pi_r(Y)$ is an isomorphism for all $0 \le r \le n-1$ and onto for r = n.

Trace spaces: definition, properties, applications A categorical framework (with examples and applications)

Tool: The Vietoris-Begle mapping theorem Stephen Smale's version for homotopy groups

What does a surjective map $p: X \to Y$ with highly connected fibres $p^{-1}(y), y \in Y$, tell about invariants of X, Y? The Vietoris-Begle mapping theorem compares the Alexander-Spanier cohomology groups of X, Y. Stephen Smale, *A Vietoris Mapping Theorem for Homotopy*, Proc. Amer. Math. Soc. **8** (1957), no. 3, 604 – 610:

Theorem

Let $f : X \to Y$ denote a proper surjective map between connected locally compact separable metric spaces. Let moreover X be locally n-connected, and for each $y \in Y$, let $f^{-1}(y)$ be locally (n - 1)-connected and (n - 1)-connected.

Y is locally n-connected, and

 $f_{\#}: \pi_r(X) \to \pi_r(Y)$ is an isomorphism for all $0 \le r \le n-1$ and onto for r = n.

Trace spaces: definition, properties, applications A categorical framework (with examples and applications)

An important special case All fibres contractible and locally contractible

Corollary

Let $f : X \to Y$ denote a proper surjective map between locally compact separable metric spaces. Let moreover X be locally contractible, and for each $y \in Y$, let $f^{-1}(y)$ be contractible and locally contractible. Then

- Y is locally contractible, and
- ② *f* is a weak homotopy equivalence, i.e., f_{\sharp} : $\pi_i(X) \rightarrow \pi_i(Y)$ is an isomorphism for all *i*.

< 日 > < 同 >

Trace spaces: definition, properties, applications A categorical framework (with examples and applications)

Trace spaces in a pre-cubical complex X Arc length and arc length parametrization

A pre-cubical complex X is glued together out of a set of hypercubes \Box^n along their boundaries – similar to pre-simplicial sets/complexes. Every hypercube defines d-paths $\vec{P}(\Box^n)$. Concatenations of these gives rise to $\vec{P}(X)$.

 I^1 "arc length" parametrization for d-paths in a pre-subical complex – glued out of hypercubes of various dimensions: On each hypercube, arc length is the I^1 -distance of end-points. Additive continuation \sim

Subspace of arc-length parametrized d-paths $\vec{P}_n(X) \rightarrow \vec{P}(X)$ Dihomotopic paths in $\vec{P}_n(X)(x, y)$ have the same arc length!

Trace spaces: definition, properties, applications A categorical framework (with examples and applications)

Trace spaces in a pre-cubical complex X Arc length and arc length parametrization

A **pre-cubical complex** *X* is glued together out of a set of hypercubes \Box^n along their boundaries – similar to pre-simplicial sets/complexes. Every hypercube defines d-paths $\vec{P}(\Box^n)$. Concatenations of these gives rise to $\vec{P}(X)$.

 l^1 "arc length" parametrization for d-paths in a pre-cubical complex – glued out of hypercubes of various dimensions: On each hypercube, arc length is the l^1 -distance of end-points. Additive continuation \rightsquigarrow

Subspace of arc-length parametrized d-paths $\vec{P}_n(X) \subset \vec{P}(X)$. Dihomotopic paths in $\vec{P}_n(X)(x, y)$ have the same arc length!

Trace spaces: definition, properties, applications A categorical framework (with examples and applications)

Topology of trace spaces in a pre-cubical complex X MR, Trace spaces in a pre-cubical complex, Aalborg preprint

The spaces $\vec{P}_n(X)$ and $\vec{T}(X)$ are homeomorphic, $\vec{P}(X)$ is homotopy equivalent to both.

Theorem

- X a pre-cubical set; $x, y \in X$. Then $\tilde{T}(X)(x, y)$
 - is metrizable, locally contractible and locally compact.
 - has the homotopy type of a CW-complex (using Milnor 1959).

→ Vietoris theorem applicable!

Image: A mathematical states and a mathem

Trace spaces: definition, properties, applications A categorical framework (with examples and applications)

Topology of trace spaces in a pre-cubical complex X MR, Trace spaces in a pre-cubical complex, Aalborg preprint

The spaces $\vec{P}_n(X)$ and $\vec{T}(X)$ are homeomorphic, $\vec{P}(X)$ is homotopy equivalent to both.

Theorem

- X a pre-cubical set; $x, y \in X$. Then $\vec{T}(X)(x, y)$
 - is metrizable, locally contractible and locally compact.
 - has the homotopy type of a CW-complex (using Milnor 1959).

~ Vietoris theorem applicable!

Trace spaces: definition, properties, applications A categorical framework (with examples and applications)

Applications to trace spaces I A simple case as illustration

Definition

A subset $L \subseteq X$ of a d-space X is called achronal if all $p \in \vec{P}(L) \subset \vec{P}(X)$ are constant. order convex if $p^{-1}(L)$ is either an interval or empty for all $p \in \vec{P}(X)$;

unavoidable from $B \subset X$ to $C \subset X$ if $\vec{P}(X \setminus L)(B, C) = \emptyset$.

Theorem

Let X denote a d-space, $x_0, x_1 \in X$ and $L \subset X$ a subspace that is achronal, order convex and unavoidable from x_0 to x_1 . Then the concatenation map $c_L : \vec{T}(X)(x_0, L) \times_L \vec{T}(X)(L, x_1) \rightarrow \vec{T}(X)(x_0, x_1), (p_0, p_1) \mapsto p_0 * p_1$ is a homeomorphism.

Trace spaces: definition, properties, applications A categorical framework (with examples and applications)

Applications to trace spaces I A simple case as illustration

Definition

A subset $L \subseteq X$ of a d-space X is called achronal if all $p \in \vec{P}(L) \subset \vec{P}(X)$ are constant. order convex if $p^{-1}(L)$ is either an interval or empty for all $p \in \vec{P}(X)$;

unavoidable from $B \subset X$ to $C \subset X$ if $\vec{P}(X \setminus L)(B, C) = \emptyset$.

Theorem

Let X denote a d-space, $x_0, x_1 \in X$ and $L \subset X$ a subspace that is achronal, order convex and unavoidable from x_0 to x_1 . Then the concatenation map $c_L : \vec{T}(X)(x_0, L) \times_L \vec{T}(X)(L, x_1) \rightarrow \vec{T}(X)(x_0, x_1), (p_0, p_1) \mapsto p_0 * p_1$ is a homeomorphism.

Trace spaces: definition, properties, applications A categorical framework (with examples and applications)

Applications to trace spaces I Traces in pre-cubical complexes

Theorem

Let X be (the geometric realization of) a pre-cubical complex. Let $x_0, x_1 \in X, L \subset X$ a subcomplex that is order convex and unavoidable from x_0 to x_1 . Then^a the concatenation map $c_L : \vec{T}(X)(x_0, L) \times_L \vec{T}(X)(L, x_1) \rightarrow \vec{T}(X)(x_0, x_1), (p_0, p_1) \mapsto p_0 * p_1$ is a homotopy equivalence.

^aadd an extra technical condition

Trace spaces: definition, properties, applications A categorical framework (with examples and applications)

An important special case

Corollary

If, moreover, $\vec{T}(X_0)(x_0, I)$ and $\vec{T}(X_1)(I, x_1)$ are contractible and locally contractible for every $I \in L \cap [x_0, x_1]$, then $\vec{T}(X)(x_0, x_1)$ is homotopy equivalent to $L \cap [x_0, x_1]$.

Remark: Since pieces are trivial, the topology resides in the glueing. "Huge" trace space identified with "small" space $L \cap [x_0, x_1] \subset X$

Proof.

The fibre over $l \in L$ of the "mid point" map $m : \vec{T}(X)(x_0, L) \times_L \vec{T}(X)(L, x_1) \to L \cap [x_0, x_1]$ is $m^{-1}(l) = \vec{T}(X)(x_0, l) \times \vec{T}(X)(l, x_1) -$ contractible.

Trace spaces: definition, properties, applications A categorical framework (with examples and applications)

・ロト ・ 同 ト ・ ヨ ト ・ ヨ ト

An important special case

Corollary

If, moreover, $\vec{T}(X_0)(x_0, I)$ and $\vec{T}(X_1)(I, x_1)$ are contractible and locally contractible for every $I \in L \cap [x_0, x_1]$, then $\vec{T}(X)(x_0, x_1)$ is homotopy equivalent to $L \cap [x_0, x_1]$.

Remark: Since pieces are trivial, the topology resides in the glueing. "Huge" trace space identified with "small" space $L \cap [x_0, x_1] \subset X$

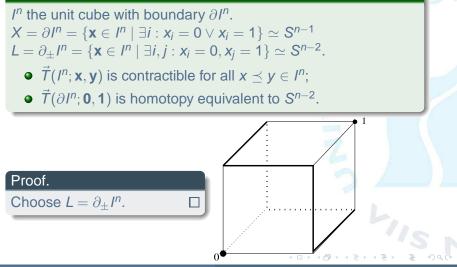
Proof.

The fibre over $I \in L$ of the "mid point" map $m : \vec{T}(X)(x_0, L) \times_L \vec{T}(X)(L, x_1) \to L \cap [x_0, x_1]$ is $m^{-1}(I) = \vec{T}(X)(x_0, I) \times \vec{T}(X)(I, x_1) -$ contractible.

Trace spaces: definition, properties, applications A categorical framework (with examples and applications)

First examples

Example



Martin Raussen Algebraic topology and Concurrency

Key points in the proof of Theorem

- Topological conditions ok.
- Check that path components are mapped into each other by bijection.
- Surjectivity of c_L corresponds to unavoidability.
- Order convexity ensures that every fibre $c_L^{-1}(p)$ is an interval, hence contractible.
- The weak homotopy equivalence is a homotopy equivalence since domain and codomain of c_L have the homotopy type of a CW-complex.

Applications to trace spaces II: A generalisation

Definition

pieces and separating layers: $x_0, x_1 \in X$. $[x_0, x_1] = \bigcup_{i \in I} X_i$; $L_{ii} \subseteq X_i \cap X_i$ such that L_{**} order convex $p \in \vec{P}(X_i) \Rightarrow$ $\begin{cases} p^{-1}(L_{ji}) = [0, a] & \text{for some} \quad a < 1 \quad (\emptyset \text{ if } a < 0) \\ p^{-1}(L_{ij}) = [b, 1] & \text{for some} \quad 0 < b \quad (\emptyset \text{ if } b > 1) \end{cases}$ L_{**} unavoidable: $\vec{P}(X_i \cup X_i \setminus L_{ii})(X_i \setminus L_{ii}, X_i \setminus L_{ii}) = \emptyset$.

Applications to trace spaces II: A generalisation

Definition

pieces and separating layers: $x_0, x_1 \in X$. $[x_0, x_1] = \bigcup_{i \in I} X_i$; $L_{ii} \subseteq X_i \cap X_i$ such that L_{**} order convex $p \in \vec{P}(X_i) \Rightarrow$ $\begin{cases} p^{-1}(L_{ji}) = [0, a] & \text{for some} \quad a < 1 \quad (\emptyset \text{ if } a < 0) \\ p^{-1}(L_{ij}) = [b, 1] & \text{for some} \quad 0 < b \quad (\emptyset \text{ if } b > 1) \end{cases}$ L_{**} unavoidable: $\vec{P}(X_i \cup X_i \setminus L_{ii})(X_i \setminus L_{ii}, X_i \setminus L_{ii}) = \emptyset$. $L_{ii} \leq L_{ik}$ if $\vec{P}(X_i)(L_{ii}, L_{ik}) \neq \emptyset$. $S = (L_{i_k, i_{k+1}})_{0 \le k \le n}$ admissible from x_0 to x_1 if $x_0 \in X_{i_0}, x_1 \in X_{i_0}, L_{i_k, i_{k+1}} \leq L_{i_{k+1}, i_{k+2}}.$

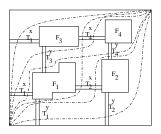
Applications to trace spaces II: A generalisation

Definition

pieces and separating layers: $x_0, x_1 \in X$. $[x_0, x_1] = \bigcup_{i \in I} X_i$; $L_{ii} \subseteq X_i \cap X_i$ such that L_{**} order convex $p \in \vec{P}(X_i) \Rightarrow$ $\begin{cases} p^{-1}(L_{ji}) = [0, a] & \text{for some} \quad a < 1 \quad (\emptyset \text{ if } a < 0) \\ p^{-1}(L_{ij}) = [b, 1] & \text{for some} \quad 0 < b \quad (\emptyset \text{ if } b > 1) \end{cases}$ L_{**} unavoidable: $\vec{P}(X_i \cup X_i \setminus L_{ii})(X_i \setminus L_{ii}, X_i \setminus L_{ii}) = \emptyset$. $L_{ii} < L_{ik}$ if $\vec{P}(X_i)(L_{ii}, L_{ik}) \neq \emptyset$. $S = (L_{i_k, i_{k+1}})_{0 \le k \le n}$ admissible from x_0 to x_1 if $x_0 \in X_{i_0}, x_1 \in X_{i_0}, L_{i_k, i_{k+1}} \leq L_{i_{k+1}, i_{k+2}}.$ $T_{S}(X)(x_{0}, x_{1}) = \vec{T}(X_{i_{0}})(x_{0}, L_{i_{0}, i_{1}}) \times_{L_{i_{0}, i_{1}}} \cdots \times_{L_{i_{k-1}, i_{k}}}$ $\vec{T}(X_{i_k})(L_{i_{k-1},i_k},L_{i_k,i_{k+1}}) \times_{L_{i_k,i_{k+1}}} \cdots \times_{L_{i_{n-1},i_n}} \vec{T}(X_{i_n})(L_{i_{n-1},i_n},\mathbf{x}_1)$

Trace spaces: definition, properties, applications A categorical framework (with examples and applications)

Decomposition of d-path spaces



Theorem

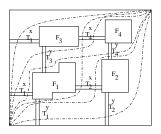
The concatenation map $c: \bigcup_S \vec{T}_S(X)(x_o, x_1) \to \vec{T}(X)(x_o, x_1)$ is **a** homeomorphism if L_{ij} achronal. **a** homotopy equivalence if L_{**} order convex collection of subcomplexes of a pre-cubical complex X.

Proof.

Case (2): Apply Smale's Vietoris theorem. Surjectivity: Every d-path can be decomposed along an admissible sequence (unavoidability) Fibres are product of intervals, contractible!

Trace spaces: definition, properties, applications A categorical framework (with examples and applications)

Decomposition of d-path spaces



Theorem

The concatenation map $c: \bigcup_S \vec{T}_S(X)(x_o, x_1) \to \vec{T}(X)(x_o, x_1)$ is **a** homeomorphism if L_{ij} achronal. **a** homotopy equivalence if L_{**} order convex collection of subcomplexes of a pre-cubical complex X.

Proof.

Case (2): Apply Smale's Vietoris theorem. Surjectivity: Every d-path can be decomposed along an admissible sequence (unavoidability) Fibres are product of intervals, contractible!

An important special case II

Reachability. For a given collection of pieces and layers $\mathcal{L} = \bigcup L_{ij}$ in X that is unavoidable from x_0 to x_1 , let $R^{\mathcal{L}}(X)(x_0, x_1) = \{(x_{i_0j_0}, \dots, x_{i_nj_n}) \in L_{i_0j_0} \times \dots \times L_{i_nj_n} \mid \vec{P}(X_{i_k})(x_{i_kj_k}, x_{i_{k+1}j_{k+1}}) \neq \emptyset, n \ge 0\}$ denote the space of **mutually** reachable points in the given layers.

Corollary

If, moreover, all path spaces $\vec{T}(X_{i_k})(x_{i_{k-1}}, x_{i_k}), x_{i_{k-1}} \in L_{i_{k-1}i_k}, x_{i_k} \in L_{i_ki_{k+1}}$ are contractible and locally contractible (resp. highly connected), then $\vec{T}(X)(x_0, x_1)$ is homotopy equivalent to $R^{\mathcal{L}}(X)(x_0, x_1)$ (resp. induces iso on a range of homotopy groups)

Again: Topologically trivial pieces ~> All topology resides glueing information. Huge trace space replaced by a much smaller space!

An important special case II

Reachability. For a given collection of pieces and layers $\mathcal{L} = \bigcup L_{ij}$ in X that is unavoidable from x_0 to x_1 , let $R^{\mathcal{L}}(X)(x_0, x_1) = \{(x_{i_0j_0}, \dots, x_{i_nj_n}) \in L_{i_0j_0} \times \dots \times L_{i_nj_n} \mid \vec{P}(X_{i_k})(x_{i_kj_k}, x_{i_{k+1}j_{k+1}}) \neq \emptyset, n \ge 0\}$ denote the space of **mutually** reachable points in the given layers.

Corollary

If, moreover, all path spaces $\vec{T}(X_{i_k})(x_{i_{k-1}}, x_{i_k}), x_{i_{k-1}} \in L_{i_{k-1}i_k}, x_{i_k} \in L_{i_ki_{k+1}}$ are contractible and locally contractible (resp. highly connected), then $\vec{T}(X)(x_0, x_1)$ is homotopy equivalent to $R^{\mathcal{L}}(X)(x_0, x_1)$ (resp. induces iso on a range of homotopy groups)

Again: Topologically trivial pieces \rightsquigarrow All topology resides in glueing information. Huge trace space replaced by a much smaller space!

Trace spaces: definition, properties, applications A categorical framework (with examples and applications)

Examples

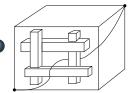
A wedge of two directed circles $X = \vec{S}^1 \lor_{x_0} \vec{S}^1$: $\vec{T}(X)(x_0, x_0) \simeq \{1, 2\}^*$. (Choose $L_i = \{x_i\}, i = 1, 2$ with $x_i \neq x_0$ on the two branches).

Y = cube with two wedges deleted: \vec{T} (Y)(0,1) \simeq * \sqcup ($S^1 \lor S^1$). (L_i two vertical cuts through the wedges; product is homotopy equivalent to torus; reachability two components, one of which is contractible, the other a thickening of $S^1 \lor S^1 \subset S^1 \times S^1$.)

イロト イポト イヨト イヨ

Trace spaces: definition, properties, applications A categorical framework (with examples and applications)

Examples



A wedge of two directed circles $X = \vec{S}^1 \lor_{x_0} \vec{S}^1$: $\vec{T}(X)(x_0, x_0) \simeq \{1, 2\}^*$. (Choose $L_i = \{x_i\}, i = 1, 2$ with $x_i \neq x_0$ on the two branches).

Y = cube with two wedges deleted: \vec{T} (Y)(0,1) \simeq * \sqcup (S¹ ∨ S¹). (L_i two vertical cuts through the wedges; product is homotopy equivalent to torus; reachability \rightsquigarrow two components, one of which is contractible, the other a thickening of S¹ ∨ S¹ ⊂ S¹ × S¹.)

< 17 ▶

Inductive Calculations concerning $\vec{T}(X)(x_0, x_1)$

In many cases, one can establish the connectivity of $\vec{T}(X)(x_0, x_1)$ by studying the spaces of mutually reachable pairs $\{(x_{ki}, x_{ij}) \in L_{ki} \times L_{ij} \mid x_{ki} \leq x_{ij}\}.$

Theorem

If all spaces of mutually reachable pairs are k-connected, then $\vec{T}(X)(x_0, x_1)$ is k-connected. If not connected, one can often inductively determine the connected components (in particular their number).

イロン イヨン イヨン イヨン

Maximal cube paths

Let *X* denote the geometric realization of a finite pre-cubical complex (\Box -set) *M*, i.e., $X = \coprod (M_n \times \vec{l}^n)_{/\simeq}$. *X* consists of "cells" e_{α} homeomorphic to $I^{n_{\alpha}}$. A cell is called **maximal** if it is not in the image of a boundary map ∂^{\pm} . D-path structure $\vec{P}(X)$ inherited from the $\vec{P}(\vec{l}^n)$ by "pasting".

Definition

- A maximal cube path in a pre-cubical set is a sequence
 S = (e_{α1},..., e_{αk}) of maximal cells such that
 ∂⁺e_{αi} ∩ ∂⁻e_{αi+1} is a (nonempty) cell of maximal dimension.
 Its length |S| = k.
- A d-path *p* (or its trace) is included in a maximal cube path S if there is a partition of the parameter interval *I* such that *p*(*l_j*) ⊂ *e*_{α_j}, *j* ≤ *k*.

Maximal cube paths

Let *X* denote the geometric realization of a finite pre-cubical complex (\Box -set) *M*, i.e., $X = \coprod (M_n \times \vec{l}^n)_{/\simeq}$. *X* consists of "cells" e_{α} homeomorphic to $I^{n_{\alpha}}$. A cell is called **maximal** if it is not in the image of a boundary map ∂^{\pm} . D-path structure $\vec{P}(X)$ inherited from the $\vec{P}(\vec{l}^n)$ by "pasting".

Definition

- A maximal cube path in a pre-cubical set is a sequence S = (e_{α1},..., e_{αk}) of maximal cells such that ∂⁺e_{αi} ∩ ∂⁻e_{αi+1} is a (nonempty) cell of maximal dimension. Its length |S| = k.
- A d-path *p* (or its trace) is included in a maximal cube path S if there is a partition of the parameter interval *I* such that *p*(*l_j*) ⊂ *e*_{α_j}, *j* ≤ *k*.

Maximal cube paths

Let *X* denote the geometric realization of a finite pre-cubical complex (\Box -set) *M*, i.e., $X = \coprod (M_n \times \vec{l}^n)_{/\simeq}$. *X* consists of "cells" e_{α} homeomorphic to $I^{n_{\alpha}}$. A cell is called **maximal** if it is not in the image of a boundary map ∂^{\pm} . D-path structure $\vec{P}(X)$ inherited from the $\vec{P}(\vec{l}^n)$ by "pasting".

Definition

- A maximal cube path in a pre-cubical set is a sequence $S = (e_{\alpha_1}, \ldots, e_{\alpha_k})$ of maximal cells such that $\partial^+ e_{\alpha_i} \cap \partial^- e_{\alpha_{i+1}}$ is a (nonempty) cell of maximal dimension. Its length |S| = k.
- A d-path *p* (or its trace) is included in a maximal cube path S if there is a partition of the parameter interval *I* such that *p*(*I_j*) ⊂ *e*_{α_j}, *j* ≤ *k*.

Simplicial complex representations of trace spaces

Consider the posets $C_k(X)(e)$ consisting of *i*-tuples of maximal cube paths of length *k* in *X* starting with *e* and including a common d-path. The nerve of this poset (ordered by inclusion) is a simplicial set (complex) $S_k(X)(e)$ with

Vertices maximal cube paths of length k in X (start at e); *i*-simplices (i + 1)-tuples of maximal cube paths of length k starting with e including a common d-path.

(Modified version: only cube paths that end with

Theorem

 $\vec{T}(X)(x_0,x_1)\simeq \coprod_k \mathcal{S}_k(X)(e_0,e_1); x_0\in e_0, x_1\in e_1.$

Proof.

Simplicial complex representations of trace spaces

Consider the posets $C_k(X)(e)$ consisting of *i*-tuples of maximal cube paths of length *k* in *X* starting with *e* and including a common d-path. The nerve of this poset (ordered by inclusion) is a simplicial set (complex) $S_k(X)(e)$ with

Vertices maximal cube paths of length k in X (start at e); *i*-simplices (i + 1)-tuples of maximal cube paths of length k starting with e including a common d-path.

(Modified version: only cube paths that end with e')

Theorem

 $\vec{T}(X)(x_0,x_1)\simeq \coprod_k \mathcal{S}_k(X)(e_0,e_1); x_0\in e_0, x_1\in e_1.$

Proof.

Simplicial complex representations of trace spaces

Consider the posets $C_k(X)(e)$ consisting of *i*-tuples of maximal cube paths of length *k* in *X* starting with *e* and including a common d-path. The nerve of this poset (ordered by inclusion) is a simplicial set (complex) $S_k(X)(e)$ with

Vertices maximal cube paths of length k in X (start at e); *i*-simplices (i + 1)-tuples of maximal cube paths of length k starting with e including a common d-path.

(Modified version: only cube paths that end with e')

Theorem

 $\vec{\mathcal{T}}(X)(x_0,x_1)\simeq \coprod_k \mathcal{S}_k(X)(e_0,e_1); x_0\in e_0, x_1\in e_1.$

Proof.

Simplicial complex representations of trace spaces

Consider the posets $C_k(X)(e)$ consisting of *i*-tuples of maximal cube paths of length *k* in *X* starting with *e* and including a common d-path. The nerve of this poset (ordered by inclusion) is a simplicial set (complex) $S_k(X)(e)$ with

Vertices maximal cube paths of length k in X (start at e); *i*-simplices (i + 1)-tuples of maximal cube paths of length k starting with e including a common d-path.

(Modified version: only cube paths that end with e')

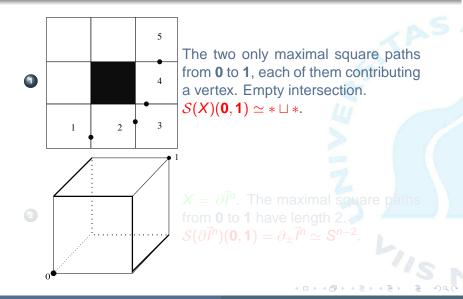
Theorem

 $\vec{\mathcal{T}}(X)(x_0,x_1)\simeq \coprod_k \mathcal{S}_k(X)(e_0,e_1); x_0\in e_0, x_1\in e_1.$

Proof.

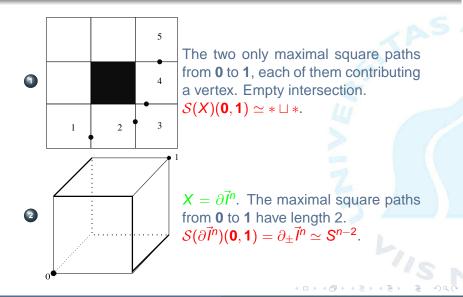
Trace spaces: definition, properties, applications A categorical framework (with examples and applications)

Simple examples



Trace spaces: definition, properties, applications A categorical framework (with examples and applications)

Simple examples



Trace spaces: definition, properties, applications A categorical framework (with examples and applications)

Future work on the algebraic topology of trace spaces

- Is there an automatic way to place consecutive "antidiagonal cut" layers in complexes corresponding to PV-programs that allow to compare path spaces to subspaces of the products of these layers?
- Maximal cube paths and the d-paths included in them come in "rounds" (length). This gives hope for inductive calculations (as in the work of Herlihy, Rajsbaum and others in distributed computing).
- Explore the combinatorial alg. topology of trace spaces
 with fixed end points and
 - what happens under variations of end points.
- Make this analysis useful for the determination of components and vice versa (extend the work of Fajstrup, Goubault, Haucourt, MR)
- d-geodesics? instead of d-paths?

Trace spaces: definition, properties, applications A categorical framework (with examples and applications)

- Is there an automatic way to place consecutive "antidiagonal cut" layers in complexes corresponding to PV-programs that allow to compare path spaces to subspaces of the products of these layers?
- Maximal cube paths and the d-paths included in them come in "rounds" (length). This gives hope for inductive calculations (as in the work of Herlihy, Rajsbaum and others in distributed computing).
- Explore the combinatorial alg. topology of trace spaces
 with fixed end points and
 - what happens under variations of end points.
- Make this analysis useful for the determination of components and vice versa (extend the work of Fajs rup, Goubault, Haucourt, MR)
- d-geodesics? instead of d-paths?

Trace spaces: definition, properties, applications A categorical framework (with examples and applications)

- Is there an automatic way to place consecutive "antidiagonal cut" layers in complexes corresponding to PV-programs that allow to compare path spaces to subspaces of the products of these layers?
- Maximal cube paths and the d-paths included in them come in "rounds" (length). This gives hope for inductive calculations (as in the work of Herlihy, Rajsbaum and others in distributed computing).
- Explore the combinatorial alg. topology of trace spaces
 - with fixed end points and
 - what happens under variations of end points.
- Make this analysis useful for the determination of components and vice versa (extend the work of Fajs rup, Goubault, Haucourt, MR)
- d-geodesics? instead of d-paths?

Trace spaces: definition, properties, applications A categorical framework (with examples and applications)

- Is there an automatic way to place consecutive "antidiagonal cut" layers in complexes corresponding to PV-programs that allow to compare path spaces to subspaces of the products of these layers?
- Maximal cube paths and the d-paths included in them come in "rounds" (length). This gives hope for inductive calculations (as in the work of Herlihy, Rajsbaum and others in distributed computing).
- Explore the combinatorial alg. topology of trace spaces
 - with fixed end points and
 - what happens under variations of end points.
- Make this analysis useful for the determination of components and vice versa (extend the work of Fajstrup, Goubault, Haucourt, MR)
- d-geodesics? instead of d-paths?

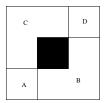
Trace spaces: definition, properties, applications A categorical framework (with examples and applications)

- Is there an automatic way to place consecutive "antidiagonal cut" layers in complexes corresponding to PV-programs that allow to compare path spaces to subspaces of the products of these layers?
- Maximal cube paths and the d-paths included in them come in "rounds" (length). This gives hope for inductive calculations (as in the work of Herlihy, Rajsbaum and others in distributed computing).
- Explore the combinatorial alg. topology of trace spaces
 - with fixed end points and
 - what happens under variations of end points.
- Make this analysis useful for the determination of components and vice versa (extend the work of Fajstrup, Goubault, Haucourt, MR)
- d-geodesics? instead of d-paths?

Trace spaces: definition, properties, applications A categorical framework (with examples and applications)

Categorical organization First tool: The fundamental category

- $\vec{\pi}_1(X)$ of a d-space X [Grandis:03, FGHR:04]:
 - Objects: points in X
 - Morphisms: d- or dihomotopy classes of d-paths in X
 - Composition: from concatenation of d-paths

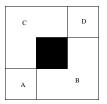


Property: van Kampen theorem (M. Grandis) Drawbacks: Infinitely many objects. Calculations? Question: How much does $\vec{\pi}_1(X)(x, y)$ depend on (x, y)? Remedy: Localization, component category. [FGHR:04, GH:06] Problem: This "compression" works only for booffee categories. 29

Trace spaces: definition, properties, applications A categorical framework (with examples and applications)

Categorical organization First tool: The fundamental category

- $\vec{\pi}_1(X)$ of a d-space X [Grandis:03, FGHR:04]:
 - Objects: points in X
 - Morphisms: d- or dihomotopy classes of d-paths in X
 - Composition: from concatenation of d-paths



Property: van Kampen theorem (M. Grandis) Drawbacks: Infinitely many objects. Calculations? Question: How much does $\vec{\pi}_1(X)(x, y)$ depend on (x, y)? Remedy: Localization, component category. [FGHR:04, GH:06] Problem: This "compression" works only for loopfree categories \sim Martin Raussen Algebraic topology and Concurrency

Trace spaces: definition, properties, applications A categorical framework (with examples and applications)

Preorder categories Getting organised with indexing categories

A d-space structure on X induces the preorder \leq :

 $x \preceq y \Leftrightarrow \vec{T}(X)(x,y) \neq \emptyset$

and an indexing preorder category $\vec{D}(X)$ with

- Objects: (end point) pairs $(x, y), x \leq y$
- Morphisms: $\vec{D}(X)((x,y),(x',y')) := \vec{T}(X)(x',x) \times \vec{T}(X)(y',y')$

• Composition: by pairwise contra-, resp. covariant concatenation.

A d-map $f: X \to Y$ induces a functor $\vec{D}(f): \vec{D}(X) \to \vec{D}(Y)$

Trace spaces: definition, properties, applications A categorical framework (with examples and applications)

Preorder categories Getting organised with indexing categories

A d-space structure on X induces the preorder \leq :

 $x \preceq y \Leftrightarrow \vec{T}(X)(x,y) \neq \emptyset$

and an indexing preorder category $\vec{D}(X)$ with

- Objects: (end point) pairs $(x, y), x \leq y$
- Morphisms:

 $ec{D}(X)((x,y),(x',y')):=ec{T}(X)(x',x) imesec{T}(X)(y,y')$:

 $x' \xrightarrow{\simeq} y \xrightarrow{\simeq} v'$

A d-map $f : X \to Y$ induces a functor $\tilde{D}(f) : \tilde{D}(X) \to \tilde{D}(Y)$.

Trace spaces: definition, properties, applications A categorical framework (with examples and applications)

Preorder categories Getting organised with indexing categories

A d-space structure on X induces the preorder \leq :

 $x \preceq y \Leftrightarrow \vec{T}(X)(x,y) \neq \emptyset$

and an indexing preorder category $\vec{D}(X)$ with

- Objects: (end point) pairs $(x, y), x \leq y$
- Morphisms:

 $ec{D}(X)((x,y),(x',y')):=ec{T}(X)(x',x) imesec{T}(X)(y,y')$:

 $x' \xrightarrow{\simeq} y \xrightarrow{\simeq} y'$

A d-map $f: X \to Y$ induces a functor $\vec{D}(f): \vec{D}(X) \to \vec{D}(Y)$.

Trace spaces: definition, properties, applications A categorical framework (with examples and applications)

The trace space functor Preorder categories organise the trace spaces

The preorder category organises X via the trace space functor $\vec{T}^X : \vec{D}(X) \to Top$

- $\vec{T}^X(x,y) := \vec{T}(X)(x,y)$
- $\vec{T}^X(\sigma_x, \sigma_y) : \qquad \vec{T}(X)(x, y) \longrightarrow \vec{T}(X)(x', y')$

$$[\sigma] \longmapsto [\sigma_{\mathsf{X}} * \sigma * \sigma_{\mathsf{Y}}]$$

Homotopical variant $\vec{D}_{\pi}(X)$ with morphisms $\vec{D}_{\pi}(X)((x, y), (x', y')) := \vec{\pi}_1(X)(x', x) \times \vec{\pi}_1(X)(y, y')$ and trace space functor $\vec{T}_{\pi}^X : \vec{D}_{\pi}(X) \to Ho - Top$ (with homotopy classes as morphisms).

Image: A mathematical states and a mathem

Trace spaces: definition, properties, applications A categorical framework (with examples and applications)

The trace space functor Preorder categories organise the trace spaces

The preorder category organises X via the trace space functor $\vec{T}^X : \vec{D}(X) \to Top$

- $\vec{T}^X(x,y) := \vec{T}(X)(x,y)$
- $\vec{T}^X(\sigma_x, \sigma_y) : \qquad \vec{T}(X)(x, y) \longrightarrow \vec{T}(X)(x', y')$

$$[\sigma] \longmapsto [\sigma_{\mathbf{X}} * \sigma * \sigma_{\mathbf{y}}]$$

Homotopical variant $\vec{D}_{\pi}(X)$ with morphisms $\vec{D}_{\pi}(X)((x, y), (x', y')) := \vec{\pi}_1(X)(x', x) \times \vec{\pi}_1(X)(y, y')$ and trace space functor $\vec{T}_{\pi}^X : \vec{D}_{\pi}(X) \to Ho - Top$ (with homotopy classes as morphisms).

Image: A mathematical states and a mathem

Trace spaces: definition, properties, applications A categorical framework (with examples and applications)

Sensitivity with respect to variations of end points Questions from a persistence point of view

• How much does (the homotopy type of) $\vec{T}^X(x, y)$ depend on (small) changes of x, y?

- Which concatenation maps $\vec{\tau}^{X}(\sigma_{x}, \sigma_{y}) : \vec{\tau}^{X}(x, y) \to \vec{\tau}^{X}(x', y'), \ [\sigma] \mapsto [\sigma_{x}, \sigma * \sigma_{y}]$ are homotopy equivalences, induce isos on homotopy, homology groups etc.?
- The persistence point of view: Homology classes etc. are born (at certain branchings/mergings) and may die (analogous to the framework of G. Carlsson etal.)
- Are there "components" with (homotopically/homologically) stable dipath spaces (between them)? Are there bo ders ("walls") at which changes occur?

Trace spaces: definition, properties, applications A categorical framework (with examples and applications)

Sensitivity with respect to variations of end points Questions from a persistence point of view

- How much does (the homotopy type of) $\vec{T}^X(x, y)$ depend on (small) changes of x, y?
- Which concatenation maps $\vec{T}^X(\sigma_x, \sigma_y) : \vec{T}^X(x, y) \to \vec{T}^X(x', y'), \ [\sigma] \mapsto [\sigma_x * \sigma * \sigma_y]$ are homotopy equivalences, induce isos on homotopy, homology groups etc.?
- The persistence point of view: Homology classes etc. are born (at certain branchings/mergings) and may die (analogous to the framework of G. Carlsson etal.)
- Are there "components" with (homotopically/homologically) stable dipath spaces (between them)? Are there bo ders ("walls") at which changes occur?

Trace spaces: definition, properties, applications A categorical framework (with examples and applications)

Sensitivity with respect to variations of end points Questions from a persistence point of view

- How much does (the homotopy type of) $\vec{T}^X(x, y)$ depend on (small) changes of x, y?
- Which concatenation maps $\vec{T}^X(\sigma_x, \sigma_y) : \vec{T}^X(x, y) \to \vec{T}^X(x', y'), \ [\sigma] \mapsto [\sigma_x * \sigma * \sigma_y]$ are homotopy equivalences, induce isos on homotopy, homology groups etc.?
- The persistence point of view: Homology classes etc. are born (at certain branchings/mergings) and may die (analogous to the framework of G. Carlsson etal.)
- Are there "components" with (homotopically/homologically) stable dipath spaces (between them)? Are there bodders ("walls") at which changes occur?

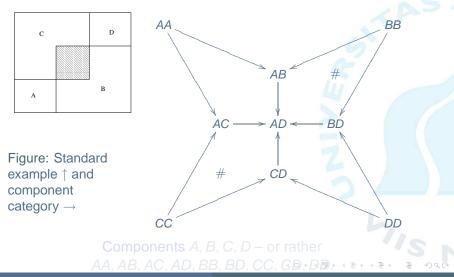
Trace spaces: definition, properties, applications A categorical framework (with examples and applications)

Sensitivity with respect to variations of end points Questions from a persistence point of view

- How much does (the homotopy type of) $\vec{T}^X(x, y)$ depend on (small) changes of x, y?
- Which concatenation maps $\vec{T}^X(\sigma_x, \sigma_y) : \vec{T}^X(x, y) \to \vec{T}^X(x', y'), \ [\sigma] \mapsto [\sigma_x * \sigma * \sigma_y]$ are homotopy equivalences, induce isos on homotopy, homology groups etc.?
- The persistence point of view: Homology classes etc. are born (at certain branchings/mergings) and may die (analogous to the framework of G. Carlsson etal.)
- Are there "components" with (homotopically/homologically) stable dipath spaces (between them)? Are there borders ("walls") at which changes occur?

Trace spaces: definition, properties, applications A categorical framework (with examples and applications)

Examples of component categories Standard example

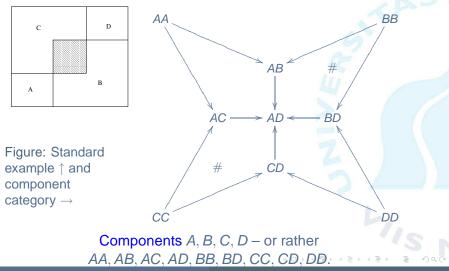


Martin Raussen

Algebraic topology and Concurrency

Trace spaces: definition, properties, applications A categorical framework (with examples and applications)

Examples of component categories Standard example



Martin Raussen

Algebraic topology and Concurrency

Trace spaces: definition, properties, applications A categorical framework (with examples and applications)

Examples of component categories Oriented circle – with loops!

$$X = \vec{S}^{1}$$

$$C: \Delta \stackrel{a}{\longrightarrow} \bar{\Delta}$$

$$\Delta \text{ the diagonal, } \bar{\Delta} \text{ its complement.}$$

$$C \text{ is the free category generated by}$$

$$a, b.$$

oriented circle

- Remark that the components are no longer products!
- It is essential in order to get a discrete component category to use an indexing category taking care of pairs (source, target).

Trace spaces: definition, properties, applications A categorical framework (with examples and applications)

Examples of component categories Oriented circle – with loops!

$$X = \vec{S}^{1}$$

$$C : \Delta \underbrace{\stackrel{a}{\longrightarrow}}_{b} \bar{\Delta}$$

$$\Delta \text{ the diagonal, } \bar{\Delta} \text{ its complement.}$$

$$C \text{ is the free category generated by}$$

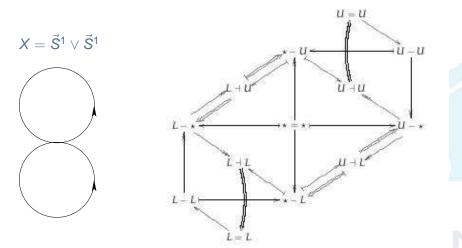
$$a, b.$$

oriented circle

- Remark that the components are no longer products!
- It is essential in order to get a discrete component category to use an indexing category taking care of pairs (source, target).

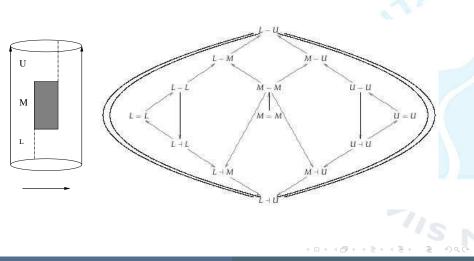
Trace spaces: definition, properties, applications A categorical framework (with examples and applications)

The component category of a wedge of two oriented circles



Trace spaces: definition, properties, applications A categorical framework (with examples and applications)

The component category of an oriented cylinder with a deleted rectangle



A B > A B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 A
 A
 A

Concluding remarks

- Component categories contain the essential information given by (algebraic topological invariants of) d-path spaces
- Compression via component categories is an antidote to the state space explosion problem
- Some of the ideas (for the fundamental category) are implemented and have been tested for huge industrial software from EDF (Éric Goubault & Co., CEA)
- Much more theoretical and practical work remains to be done!

Concluding remarks

- Component categories contain the essential information given by (algebraic topological invariants of) d-path spaces
- Compression via component categories is an antidote to the state space explosion problem
- Some of the ideas (for the fundamental category) are implemented and have been tested for huge industrial software from EDF (Éric Goubault & Co., CEA)
- Much more theoretical and practical work remains to be done!

Thanks for your attention! Questions? Comments?

A B > A B
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

< 10 × 4

Concluding remarks

- Component categories contain the essential information given by (algebraic topological invariants of) d-path spaces
- Compression via component categories is an antidote to the state space explosion problem
- Some of the ideas (for the fundamental category) are implemented and have been tested for huge industrial software from EDF (Éric Goubault & Co., CEA)
- Much more theoretical and practical work remains to be done!

< 17 ▶

Concluding remarks

- Component categories contain the essential information given by (algebraic topological invariants of) d-path spaces
- Compression via component categories is an antidote to the state space explosion problem
- Some of the ideas (for the fundamental category) are implemented and have been tested for huge industrial software from EDF (Éric Goubault & Co., CEA)
- Much more theoretical and practical work remains to be done!

Concluding remarks

- Component categories contain the essential information given by (algebraic topological invariants of) d-path spaces
- Compression via component categories is an antidote to the state space explosion problem
- Some of the ideas (for the fundamental category) are implemented and have been tested for huge industrial software from EDF (Éric Goubault & Co., CEA)
- Much more theoretical and practical work remains to be done!