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Motivations – mainly from Computer Science
Directed topology: Algebraic topology with a twist

Motivation: Concurrency
Mutual exclusion

Mutual exclusion occurs, when n processes Pi compete for m
resources Rj .
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Only k processes can be served at any given time.
Semaphores!
Semantics: A processor has to lock a resource and to
relinquish the lock later on!
Description/abstraction Pi : . . .PRj . . .VRj . . . (E.W. Dijkstra)
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Schedules in "progress graphs"
The Swiss flag example
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PV-diagram from
P1 : PaPbVbVa

P2 : PbPaVaVb

Executions are directed
paths – since time flow is
irreversible – avoiding a
forbidden region (shaded).

Dipaths that are
dihomotopic (through
a 1-parameter deforma-
tion consisting of dipaths)
correspond to equivalent
executions.

Deadlocks, unsafe and
unreachable regions may
occur.
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Higher dimensional automata (HDA) 1
Example: Dining philosophers; dimension 3 and beyond

A B

C

a

b

c

A=Pa.Pb.Va.Vb
B=Pb.Pc.Vb.Vc
C=Pc.Pa.Vc.Va

Higher dimen-
sional complex
with a forbidden
region consist-
ing of isothetic
hypercubes
and an unsafe
region.
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Higher dimensional automata (HDA) 2
seen as (geometric realizations of) pre-cubical sets

Vaughan Pratt, Rob van Glabbeek, Eric Goubault...

a b

ab

2 processes, 1 processor

cubical complex

bicomplex

2 processes, 3 processors 3 processes, 3 processors

Squares/cubes/hypercubes are filled in iff actions on boundary
are independent.
Higher dimensional automata are pre-cubical sets:

like simplicial sets, but modelled on (hyper)cubes instead
of simplices; glueing by face maps

additionally: preferred directions – not all paths allowable.
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Transition systems
The “traditional” method to handle concurrency

Every single program corresponds to a (labelled) graph (with
trivial idle loops at every vertex). Form the product of these
graphs as a graph:

Vertices Sequences of vertices from the original graphs

Edges Sequences of (labelled) edges (including idle
loops) from the original graphs

“Successive edges” are connected by a diamond – in general a
hypercube. Need to handle independence relations
algebraically.
Alternative: Petri nets – places, transitions, directed arcs,
tokens...
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Discrete versus continuous models
How to handle the state-space explosion problem?

Discrete models for concurrency (transition graph models)
suffer a severe problem if the number of processors and/or the
length of programs grows: The number of states (and the
number of possible schedules) grows exponentially:
This is known as the state space explosion problem.
You need clever ways to find out which of the schedules yield
equivalent results – e.g., to check for correctness – for general
reasons. Then check only one per equivalence class.
Alternative: Infinite continuous models allowing for well-known
equivalence relations on paths (homotopy = 1-parameter
deformations) – but with an important twist!
Analogy: Continuous physics as an approximation to (discrete)
quantum physics.
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Concepts from algebraic topology 1
Homotopy

Top: the category of topological spaces and continuous maps.
I = [0,1] the unit interval.

Definition

A continuous map H : X × I → Y (one-parameter
deformation) is called a homotopy.

Continuous maps f ,g : X → Y are called homotopic to
each other (f ≃ g) if there is a homotopy H with
H(x ,0) = f (x),H(x ,1) = g(x), x ∈ X .

[X ,Y ] the set of homotopy classes of continuous maps
from X to Y .

A continuous map f : X → Y is called a homotopy
equivalence if it has a “homotopy inverse” g : Y → X such
that g ◦ f ≃ idX , f ◦ g ≃ idY .

Martin Raussen Algebraic topology and Concurrency
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Concepts from algebraic topology 2
The fundamental group. Higher homotopy groups

Definition

Variation: pointed continuous maps f : (X , ∗)→ (Y , ∗) and
pointed homotopies H : (X × I, ∗ × I)→ (Y , ∗).

Loops in Y as the special case X = S1 (unit circle).

Fundamental group π1(Y , y)= [(S1, ∗), (Y , y)] with product
arising from concatenation and inverse from reversal.

Higher homotopy groups πi(Y , y)= [(Si , ∗), (Y , y)] –
product from the pinch coproduct on Sk ; abelian for k > 1.

A continuous map f : X → Y induces group
homomorphisms f♯ : πi(X , x)→ πi(Y , f (x)) (isomorphisms
for a homotopy equivalence).

The map f is called k-connected if it induces isomorphisms
on πi , i ≤ k and a surjection on πk+1.
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A framework for directed topology
Directed paths as part of the structure: d-spaces, M. Grandis (03)

X a topological space. ~P(X ) ⊆ X I = {p : I = [0,1]→ X cont.}
a set of d-paths (”directed” paths↔ executions) satisfying

{ constant paths } ⊆ ~P(X )

ϕ ∈ ~P(X )(x , y), ψ ∈ ~P(X )(y , z) ⇒ ϕ ∗ ψ ∈ ~P(X )(x , z)

ϕ ∈ ~P(X ), α ∈ I I a nondecreasing reparametrization
⇒ ϕ ◦ α ∈ ~P(X )

The pair (X , ~P(X )) is called a d-space.
Observe: ~P(X ) is in general not closed under reversal:

α(t) = 1− t , ϕ ∈ ~P(X ) 6⇒ ϕ ◦ α ∈ ~P(X )!

Examples:

An HDA with directed execution paths.

A space-time(relativity) with time-like or causal curves.

Martin Raussen Algebraic topology and Concurrency
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d-maps, dihomotopy

A d-map f : X → Y is a continuous map satisfying

f (~P(X )) ⊆ ~P(Y ).

Let ~P(I) = {σ ∈ I I |σ nondecreasing reparametrization},
and~I = (I, ~P(I)). Then

~P(X ) = set of d-maps from~I to X .

A dihomotopy H : X × I → Y is a continuous map such that

every Ht a d-map

i.e., a 1-parameter deformation of d-maps.

Martin Raussen Algebraic topology and Concurrency



Directed algebraic topology
Trace spaces and their organization

Motivations – mainly from Computer Science
Directed topology: Algebraic topology with a twist

d-maps, dihomotopy

A d-map f : X → Y is a continuous map satisfying

f (~P(X )) ⊆ ~P(Y ).

Let ~P(I) = {σ ∈ I I |σ nondecreasing reparametrization},
and~I = (I, ~P(I)). Then

~P(X ) = set of d-maps from~I to X .

A dihomotopy H : X × I → Y is a continuous map such that

every Ht a d-map

i.e., a 1-parameter deformation of d-maps.

Martin Raussen Algebraic topology and Concurrency



Directed algebraic topology
Trace spaces and their organization

Motivations – mainly from Computer Science
Directed topology: Algebraic topology with a twist

d-maps, dihomotopy

A d-map f : X → Y is a continuous map satisfying

f (~P(X )) ⊆ ~P(Y ).

Let ~P(I) = {σ ∈ I I |σ nondecreasing reparametrization},
and~I = (I, ~P(I)). Then

~P(X ) = set of d-maps from~I to X .

A dihomotopy H : X × I → Y is a continuous map such that

every Ht a d-map

i.e., a 1-parameter deformation of d-maps.

Martin Raussen Algebraic topology and Concurrency



Directed algebraic topology
Trace spaces and their organization

Motivations – mainly from Computer Science
Directed topology: Algebraic topology with a twist

Dihomotopy is finer than homotopy with fixed
endpoints
Example: Two L-shaped wedges as the forbidden region

All dipaths from minimum to maximum are homotopic.
A dipath through the “hole” is not dihomotopic to a dipath on the
boundary.
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The twist has a price
Neither homogeneity nor cancellation nor group structure

Ordinary topology:
Path space = loop space (within each path component).
A loop space is an H-space with concatenation, inversion,
cancellation.

“Birth and death” of
d-homotopy classes

Directed topology:
Loops do not tell much;
concatenation ok, can-
cellation not!
Replace group struc-
ture by category
structures!
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Trace spaces: definition, properties, applications
A categorical framework (with examples and applications)

D-paths, traces and trace categories
Getting rid of reparametrizations – like in differential geometry of curves

X a (saturated) d-space.
ϕ,ψ ∈ ~P(X )(x , y) are called reparametrization equivalent if
there are α, β ∈ ~P(I) such that ϕ ◦ α = ψ ◦ β (“same oriented
trace”).

Theorem

(Fahrenberg-R., 07): Reparametrization equivalence is an
equivalence relation (transitivity!).

~T (X )(x , y) = ~P(X )(x , y)/≃ makes ~T (X ) into the (topologically
enriched) trace category – composition associative.
A d-map f : X → Y induces a functor ~T (f ) : ~T (X )→ ~T (Y ).
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Trace spaces: definition, properties, applications
A categorical framework (with examples and applications)

Two main objectives

Investigation/calculation of the homotopy type of trace
spaces ~T (X )(x , y) for relevant d-spaces X

Investigation of topology change under variation of end
points:

~T (X )(x ′, y)
σ∗

x′x← ~T (X )(x , y)
σyy′∗
−→~T (X )(x , y ′)

Categorical organization, leading to components of end
points – without topology change

Application: Enough to check one d-path among all paths
through the same components!

Martin Raussen Algebraic topology and Concurrency



Directed algebraic topology
Trace spaces and their organization

Trace spaces: definition, properties, applications
A categorical framework (with examples and applications)

Two main objectives

Investigation/calculation of the homotopy type of trace
spaces ~T (X )(x , y) for relevant d-spaces X

Investigation of topology change under variation of end
points:

~T (X )(x ′, y)
σ∗

x′x← ~T (X )(x , y)
σyy′∗
−→~T (X )(x , y ′)

Categorical organization, leading to components of end
points – without topology change

Application: Enough to check one d-path among all paths
through the same components!

Martin Raussen Algebraic topology and Concurrency



Directed algebraic topology
Trace spaces and their organization

Trace spaces: definition, properties, applications
A categorical framework (with examples and applications)

Two main objectives

Investigation/calculation of the homotopy type of trace
spaces ~T (X )(x , y) for relevant d-spaces X

Investigation of topology change under variation of end
points:

~T (X )(x ′, y)
σ∗

x′x← ~T (X )(x , y)
σyy′∗
−→~T (X )(x , y ′)

Categorical organization, leading to components of end
points – without topology change

Application: Enough to check one d-path among all paths
through the same components!
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Aim: Decomposition of trace spaces
Method: Investigation of concatenation maps

Let L ⊂ X denote a (properly chosen) subspace “between”
X0,X1 ⊂ X .
Investigate the concatenation map
cL : ~T (X0)(x0, L)×L

~T (X1)(L, x1)→ ~T (X)(x0, x1), (p0, p1) 7→ p0 ∗ p1

onto? fibres? Topology of the pieces?

Generalization: Lij a sequence of (properly chosen) subspaces
between subdivision X1, · · · ,Xn. Investigate the concatenation
map on
~T (X0)(x0, L01) ×L12 · · · ×Lj−1,j

~T (Xj)(Lj−1,j , Lj,j+1) ×Lj,j+1 · · · ×Ln−1,n

~T (Xn)(Ln−1,n, x1).

onto? fibres? Topology of the pieces?
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Tool: The Vietoris-Begle mapping theorem
Stephen Smale’s version for homotopy groups

What does a surjective map p : X → Y with highly connected
fibres p−1(y), y ∈ Y , tell about invariants of X ,Y ?
The Vietoris-Begle mapping theorem compares the
Alexander-Spanier cohomology groups of X ,Y .
Stephen Smale, A Vietoris Mapping Theorem for Homotopy,
Proc. Amer. Math. Soc. 8 (1957), no. 3, 604 – 610:

Theorem

Let f : X → Y denote a proper surjective map between
connected locally compact separable metric spaces. Let
moreover X be locally n-connected, and for each y ∈ Y , let
f−1(y) be locally (n − 1)-connected and (n − 1)-connected.

1 Y is locally n-connected, and
2 f# : πr (X )→ πr (Y ) is an isomorphism for all 0 ≤ r ≤ n − 1

and onto for r = n.
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An important special case
All fibres contractible and locally contractible

Corollary

Let f : X → Y denote a proper surjective map between locally
compact separable metric spaces. Let moreover X be locally
contractible, and for each y ∈ Y , let f−1(y) be contractible and
locally contractible. Then

1 Y is locally contractible, and
2 f is a weak homotopy equivalence, i.e., f♯ : πi(X )→ πi(Y )

is an isomorphism for all i .
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Trace spaces in a pre-cubical complex X
Arc length and arc length parametrization

A pre-cubical complex X is glued together out of a set of
hypercubes �n along their boundaries – similar to pre-simplicial
sets/complexes. Every hypercube defines d-paths ~P(�n).
Concatenations of these gives rise to ~P(X ).
l1 “arc length” parametrization for d-paths in a pre-cubical
complex – glued out of hypercubes of various dimensions: On
each hypercube, arc length is the l1-distance of end-points.
Additive continuation 
Subspace of arc-length parametrized d-paths ~Pn(X ) ⊂ ~P(X ).
Dihomotopic paths in ~Pn(X )(x , y) have the same arc length!
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Topology of trace spaces in a pre-cubical complex X
MR, Trace spaces in a pre-cubical complex, Aalborg preprint

The spaces ~Pn(X ) and ~T (X ) are homeomorphic,
~P(X ) is homotopy equivalent to both.

Theorem

X a pre-cubical set; x , y ∈ X. Then ~T (X )(x , y)

is metrizable, locally contractible and locally compact.

has the homotopy type of a CW-complex – (using Milnor
1959).

 Vietoris theorem applicable!
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Applications to trace spaces I
A simple case as illustration

Definition

A subset L ⊆ X of a d-space X is called

achronal if all p ∈ ~P(L) ⊂ ~P(X ) are constant.

order convex if p−1(L) is either an interval or empty for all
p ∈ ~P(X );

unavoidable from B ⊂ X to C ⊂ X if ~P(X \ L)(B,C) = ∅.

Theorem
Let X denote a d-space, x0, x1 ∈ X and L ⊂ X a subspace that
is achronal, order convex and unavoidable from x0 to x1.
Then the concatenation map
cL : ~T (X)(x0, L)×L

~T (X)(L, x1)→ ~T (X)(x0, x1), (p0, p1) 7→ p0 ∗ p1

is a homeomorphism.
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Applications to trace spaces I
Traces in pre-cubical complexes

Theorem

Let X be (the geometric realization of) a pre-cubical complex.
Let x0, x1 ∈ X ,L ⊂ X a subcomplex that is order convex and
unavoidable from x0 to x1.
Thena the concatenation map
cL : ~T (X)(x0, L)×L

~T (X)(L, x1)→ ~T (X)(x0, x1), (p0, p1) 7→ p0 ∗ p1

is a homotopy equivalence.

aadd an extra technical condition
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An important special case

Corollary

If, moreover, ~T (X0)(x0, l) and ~T (X1)(l , x1) are contractible and
locally contractible for every l ∈ L ∩ [x0, x1], then
~T (X )(x0, x1) is homotopy equivalent to L ∩ [x0, x1].

Remark: Since pieces are trivial, the topology resides in the
glueing. “Huge” trace space identified with “small” space
L ∩ [x0, x1] ⊂ X

Proof.

The fibre over l ∈ L of the “mid point” map
m : ~T (X )(x0,L)×L

~T (X )(L, x1)→ L ∩ [x0, x1] is
m−1(l) = ~T (X )(x0, l)× ~T (X )(l , x1) – contractible.
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First examples

Example

In the unit cube with boundary ∂In.
X = ∂In = {x ∈ In | ∃i : xi = 0 ∨ xi = 1} ≃ Sn−1

L = ∂±In = {x ∈ In | ∃i , j : xi = 0, xj = 1} ≃ Sn−2.
~T (In; x, y) is contractible for all x � y ∈ In;
~T (∂In; 0,1) is homotopy equivalent to Sn−2.

Proof.

Choose L = ∂±In.
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Key points in the proof of Theorem

Topological conditions ok.

Check that path components are mapped into each other
by bijection.

Surjectivity of cL corresponds to unavoidability.

Order convexity ensures that every fibre c−1
L (p) is an

interval, hence contractible.

The weak homotopy equivalence is a homotopy
equivalence since domain and codomain of cL have the
homotopy type of a CW-complex.
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Applications to trace spaces II: A generalisation

Definition

pieces and separating layers: x0, x1 ∈ X . [x0, x1] =
⋃

i∈J Xi ;
Lij ⊆ Xi ∩ Xj such that

L∗∗ order convex p ∈ ~P(Xi)⇒
{

p−1(Lji) = [0,a] for some a < 1 (∅ if a < 0)

p−1(Lij) = [b,1] for some 0 < b (∅ if b > 1)

L∗∗ unavoidable: ~P(Xi ∪ Xj \ Lij)(Xi \ Lij ,Xj \ Lij) = ∅.

Lij ≤ Ljk if ~P(Xj)(Lij ,Ljk ) 6= ∅.

S = (Lik ,ik+1
)0≤k≤n admissible from x0 to x1 if

x0 ∈ Xi0, x1 ∈ Xin ,Lik ,ik+1
≤ Lik+1,ik+2

.

TS(X )(x0, x1) = ~T (Xi0)(x0,Li0,i1)×Li0,i1
· · · ×Lik−1,ik

~T (Xik )(Lik−1,ik ,Lik ,ik+1
)×Lik ,ik+1

· · · ×Lin−1,in
~T (Xin)(Lin−1,in , x1)

Martin Raussen Algebraic topology and Concurrency



Directed algebraic topology
Trace spaces and their organization

Trace spaces: definition, properties, applications
A categorical framework (with examples and applications)

Applications to trace spaces II: A generalisation

Definition

pieces and separating layers: x0, x1 ∈ X . [x0, x1] =
⋃

i∈J Xi ;
Lij ⊆ Xi ∩ Xj such that

L∗∗ order convex p ∈ ~P(Xi)⇒
{

p−1(Lji) = [0,a] for some a < 1 (∅ if a < 0)

p−1(Lij) = [b,1] for some 0 < b (∅ if b > 1)

L∗∗ unavoidable: ~P(Xi ∪ Xj \ Lij)(Xi \ Lij ,Xj \ Lij) = ∅.

Lij ≤ Ljk if ~P(Xj)(Lij ,Ljk ) 6= ∅.

S = (Lik ,ik+1
)0≤k≤n admissible from x0 to x1 if

x0 ∈ Xi0, x1 ∈ Xin ,Lik ,ik+1
≤ Lik+1,ik+2

.

TS(X )(x0, x1) = ~T (Xi0)(x0,Li0,i1)×Li0,i1
· · · ×Lik−1,ik

~T (Xik )(Lik−1,ik ,Lik ,ik+1
)×Lik ,ik+1

· · · ×Lin−1,in
~T (Xin)(Lin−1,in , x1)

Martin Raussen Algebraic topology and Concurrency



Directed algebraic topology
Trace spaces and their organization

Trace spaces: definition, properties, applications
A categorical framework (with examples and applications)

Applications to trace spaces II: A generalisation

Definition

pieces and separating layers: x0, x1 ∈ X . [x0, x1] =
⋃

i∈J Xi ;
Lij ⊆ Xi ∩ Xj such that

L∗∗ order convex p ∈ ~P(Xi)⇒
{

p−1(Lji) = [0,a] for some a < 1 (∅ if a < 0)

p−1(Lij) = [b,1] for some 0 < b (∅ if b > 1)

L∗∗ unavoidable: ~P(Xi ∪ Xj \ Lij)(Xi \ Lij ,Xj \ Lij) = ∅.

Lij ≤ Ljk if ~P(Xj)(Lij ,Ljk ) 6= ∅.

S = (Lik ,ik+1
)0≤k≤n admissible from x0 to x1 if

x0 ∈ Xi0, x1 ∈ Xin ,Lik ,ik+1
≤ Lik+1,ik+2

.

TS(X )(x0, x1) = ~T (Xi0)(x0,Li0,i1)×Li0,i1
· · · ×Lik−1,ik

~T (Xik )(Lik−1,ik ,Lik ,ik+1
)×Lik ,ik+1

· · · ×Lin−1,in
~T (Xin)(Lin−1,in , x1)

Martin Raussen Algebraic topology and Concurrency



Directed algebraic topology
Trace spaces and their organization

Trace spaces: definition, properties, applications
A categorical framework (with examples and applications)

Decomposition of d-path spaces

F1

F3

F2

F4

T1

y

T1

x

T3

x

2

T2

x

T4

x

T3

y T4

y

T
y

Theorem
The concatenation map
c :

⋃

S
~TS(X )(xo , x1)→ ~T (X )(xo, x1) is

1 a homeomorphism if Lij achronal.
2 a homotopy equivalence if L∗∗

order convex collection of
subcomplexes of a pre-cubical
complex X.

Proof.

Case (2): Apply Smale’s Vietoris theorem.

Surjectivity: Every d-path can be decomposed along an
admissible sequence (unavoidability)

Fibres are product of intervals, contractible!

Martin Raussen Algebraic topology and Concurrency



Directed algebraic topology
Trace spaces and their organization

Trace spaces: definition, properties, applications
A categorical framework (with examples and applications)

Decomposition of d-path spaces

F1

F3

F2

F4

T1

y

T1

x

T3

x

2

T2

x

T4

x

T3

y T4

y

T
y

Theorem
The concatenation map
c :

⋃

S
~TS(X )(xo , x1)→ ~T (X )(xo, x1) is

1 a homeomorphism if Lij achronal.
2 a homotopy equivalence if L∗∗

order convex collection of
subcomplexes of a pre-cubical
complex X.

Proof.

Case (2): Apply Smale’s Vietoris theorem.

Surjectivity: Every d-path can be decomposed along an
admissible sequence (unavoidability)

Fibres are product of intervals, contractible!

Martin Raussen Algebraic topology and Concurrency



Directed algebraic topology
Trace spaces and their organization

Trace spaces: definition, properties, applications
A categorical framework (with examples and applications)

An important special case II

Reachability. For a given collection of pieces and layers
L =

⋃

Lij in X that is unavoidable from x0 to x1, let
RL(X )(x0, x1) = {(xi0 j0 , . . . , xin jn) ∈ Li0j0 × · · · × Linjn |
~P(Xik )(xik jk , xik+1 jk+1

) 6= ∅,n ≥ 0} denote the space of mutually
reachable points in the given layers.

Corollary

If, moreover, all path spaces
~T (Xik )(xik−1

, xik ), xik−1
∈ Lik−1ik , xik ∈ Lik ik+1

are contractible and

locally contractible (resp. highly connected), then ~T (X )(x0, x1)
is homotopy equivalent to RL(X )(x0, x1) (resp. induces iso on a
range of homotopy groups)

Again: Topologically trivial pieces All topology resides in
glueing information. Huge trace space replaced by a much
smaller space!
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Examples

1

A wedge of two directed circles
X = ~S1 ∨x0

~S1:
~T (X )(x0, x0) ≃ {1,2}∗.
(Choose Li = {xi}, i = 1,2 with xi 6= x0

on the two branches).

2

Y = cube with two wedges deleted:
~T (Y )(0,1) ≃ ∗ ⊔ (S1 ∨ S1).
(Li two vertical cuts through the
wedges; product is homotopy equiva-
lent to torus; reachability 
two components, one of which is con-
tractible, the other a thickening of
S1 ∨ S1 ⊂ S1 × S1.)
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Inductive Calculations concerning ~T (X )(x0, x1)

In many cases, one can establish the connectivity of
~T (X )(x0, x1) by studying the spaces of mutually reachable pairs
{(xki , xij) ∈ Lki × Lij | xki � xij}.

Theorem

If all spaces of mutually reachable pairs are k-connected, then
~T (X )(x0, x1) is k-connected.
If not connected, one can often inductively determine the
connected components (in particular their number).
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Maximal cube paths

Let X denote the geometric realization of a finite pre-cubical
complex (�-set) M, i.e., X =

∐

(Mn ×~In)/≃.
X consists of “cells” eα homeomorphic to Inα . A cell is called
maximal if it is not in the image of a boundary map ∂±.
D-path structure ~P(X ) inherited from the ~P(~In) by “pasting”.

Definition
A maximal cube path in a pre-cubical set is a sequence
S = (eα1 , . . . ,eαk ) of maximal cells such that
∂+eαi ∩ ∂

−eαi+1 is a (nonempty) cell of maximal dimension.
Its length |S| = k .

A d-path p (or its trace) is included in a maximal cube path
S if there is a partition of the parameter interval I such that
p(Ij) ⊂ eαj , j ≤ k .
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Simplicial complex representations of trace spaces

Consider the posets Ck (X )(e) consisting of i-tuples of maximal
cube paths of length k in X starting with e and including a
common d-path. The nerve of this poset (ordered by inclusion)
is a simplicial set (complex) Sk (X )(e) with

Vertices maximal cube paths of length k in X (start at e);
i-simplices (i + 1)-tuples of maximal cube paths of length k

starting with e including a common d-path.
(Modified version: only cube paths that end with e′)

Theorem

~T (X )(x0, x1) ≃
∐

k Sk (X )(e0,e1); x0 ∈ e0, x1 ∈ e1.

Proof.

The subspace of d-paths included in a maximal cube path (or
included in several of them) is contractible. Nerve lemma!
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Simple examples

1

1 2 3

4

5

The two only maximal square paths
from 0 to 1, each of them contributing
a vertex. Empty intersection.
S(X )(0,1) ≃ ∗ ⊔ ∗.

2

X = ∂~In. The maximal square paths
from 0 to 1 have length 2.
S(∂~In)(0,1) = ∂±~In ≃ Sn−2.
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Future work
on the algebraic topology of trace spaces

Is there an automatic way to place consecutive
“antidiagonal cut” layers in complexes corresponding to
PV-programs that allow to compare path spaces to
subspaces of the products of these layers?
Maximal cube paths and the d-paths included in them
come in “rounds” (length). This gives hope for inductive
calculations (as in the work of Herlihy, Rajsbaum and
others in distributed computing).
Explore the combinatorial alg. topology of trace spaces

with fixed end points and
what happens under variations of end points.

Make this analysis useful for the determination of
components and vice versa (extend the work of Fajstrup,
Goubault, Haucourt, MR)
d-geodesics? instead of d-paths?
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Categorical organization
First tool: The fundamental category

~π1(X ) of a d-space X [Grandis:03, FGHR:04]:
Objects: points in X
Morphisms: d- or dihomotopy classes of d-paths in X
Composition: from concatenation of d-paths

A
B

C D

Property: van Kampen theorem (M. Grandis)
Drawbacks: Infinitely many objects. Calculations?
Question: How much does ~π1(X )(x , y) depend on (x , y)?
Remedy: Localization, component category. [FGHR:04, GH:06]
Problem: This “compression” works only for loopfree categories
(d-spaces) Martin Raussen Algebraic topology and Concurrency
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Preorder categories
Getting organised with indexing categories

A d-space structure on X induces the preorder �:

x � y ⇔ ~T (X )(x , y) 6= ∅

and an indexing preorder category ~D(X ) with

Objects: (end point) pairs (x , y), x � y

Morphisms:
~D(X )((x , y), (x ′ , y ′)) := ~T (X )(x ′, x)× ~T (X )(y , y ′):

x ′ ((
66 x

� // y ))
55 y ′

Composition: by pairwise contra-, resp. covariant
concatenation.

A d-map f : X → Y induces a functor ~D(f ) : ~D(X )→ ~D(Y ).

Martin Raussen Algebraic topology and Concurrency
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The trace space functor
Preorder categories organise the trace spaces

The preorder category organises X via the
trace space functor ~T X : ~D(X )→ Top

~T X (x , y) := ~T (X )(x , y)

~T X (σx , σy ) : ~T (X )(x , y) // ~T (X )(x ′, y ′)

[σ] � / [σx ∗ σ ∗ σy ]

Homotopical variant ~Dπ(X ) with morphisms
~Dπ(X )((x , y), (x ′ , y ′)) := ~π1(X )(x ′, x)× ~π1(X )(y , y ′)

and trace space functor ~T X
π : ~Dπ(X )→ Ho − Top (with

homotopy classes as morphisms).
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Sensitivity with respect to variations of end points
Questions from a persistence point of view

How much does (the homotopy type of) ~T X (x , y) depend
on (small) changes of x , y?

Which concatenation maps
~T X (σx , σy ) : ~T X (x , y)→ ~T X (x ′, y ′), [σ] 7→ [σx ∗ σ ∗ σy ]
are homotopy equivalences, induce isos on homotopy,
homology groups etc.?

The persistence point of view: Homology classes etc. are
born (at certain branchings/mergings) and may die
(analogous to the framework of G. Carlsson etal.)

Are there “components” with (homotopically/homologically)
stable dipath spaces (between them)? Are there borders
(“walls”) at which changes occur?

Martin Raussen Algebraic topology and Concurrency



Directed algebraic topology
Trace spaces and their organization

Trace spaces: definition, properties, applications
A categorical framework (with examples and applications)

Sensitivity with respect to variations of end points
Questions from a persistence point of view

How much does (the homotopy type of) ~T X (x , y) depend
on (small) changes of x , y?

Which concatenation maps
~T X (σx , σy ) : ~T X (x , y)→ ~T X (x ′, y ′), [σ] 7→ [σx ∗ σ ∗ σy ]
are homotopy equivalences, induce isos on homotopy,
homology groups etc.?

The persistence point of view: Homology classes etc. are
born (at certain branchings/mergings) and may die
(analogous to the framework of G. Carlsson etal.)

Are there “components” with (homotopically/homologically)
stable dipath spaces (between them)? Are there borders
(“walls”) at which changes occur?

Martin Raussen Algebraic topology and Concurrency



Directed algebraic topology
Trace spaces and their organization

Trace spaces: definition, properties, applications
A categorical framework (with examples and applications)

Sensitivity with respect to variations of end points
Questions from a persistence point of view

How much does (the homotopy type of) ~T X (x , y) depend
on (small) changes of x , y?

Which concatenation maps
~T X (σx , σy ) : ~T X (x , y)→ ~T X (x ′, y ′), [σ] 7→ [σx ∗ σ ∗ σy ]
are homotopy equivalences, induce isos on homotopy,
homology groups etc.?

The persistence point of view: Homology classes etc. are
born (at certain branchings/mergings) and may die
(analogous to the framework of G. Carlsson etal.)

Are there “components” with (homotopically/homologically)
stable dipath spaces (between them)? Are there borders
(“walls”) at which changes occur?

Martin Raussen Algebraic topology and Concurrency



Directed algebraic topology
Trace spaces and their organization

Trace spaces: definition, properties, applications
A categorical framework (with examples and applications)

Sensitivity with respect to variations of end points
Questions from a persistence point of view

How much does (the homotopy type of) ~T X (x , y) depend
on (small) changes of x , y?

Which concatenation maps
~T X (σx , σy ) : ~T X (x , y)→ ~T X (x ′, y ′), [σ] 7→ [σx ∗ σ ∗ σy ]
are homotopy equivalences, induce isos on homotopy,
homology groups etc.?

The persistence point of view: Homology classes etc. are
born (at certain branchings/mergings) and may die
(analogous to the framework of G. Carlsson etal.)

Are there “components” with (homotopically/homologically)
stable dipath spaces (between them)? Are there borders
(“walls”) at which changes occur?

Martin Raussen Algebraic topology and Concurrency



Directed algebraic topology
Trace spaces and their organization

Trace spaces: definition, properties, applications
A categorical framework (with examples and applications)

Examples of component categories
Standard example
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Figure: Standard
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Components A,B,C,D – or rather
AA,AB,AC,AD,BB,BD,CC,CD,DD.

#: diagram commutes.Martin Raussen Algebraic topology and Concurrency
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Examples of component categories
Oriented circle – with loops!

X = ~S1

&%
'$

6

oriented circle

C : ∆
a

**
∆̄

b
ll

∆ the diagonal, ∆̄ its complement.
C is the free category generated by
a,b.

Remark that the components are no longer products!

It is essential in order to get a discrete component
category to use an indexing category taking care of pairs
(source, target).
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The component category of a wedge of two oriented
circles

X = ~S1 ∨ ~S1

Martin Raussen Algebraic topology and Concurrency



Directed algebraic topology
Trace spaces and their organization

Trace spaces: definition, properties, applications
A categorical framework (with examples and applications)

The component category of an oriented cylinder with a
deleted rectangle

L

M

U
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Concluding remarks

Component categories contain the essential information
given by (algebraic topological invariants of) d-path spaces

Compression via component categories is an antidote to
the state space explosion problem

Some of the ideas (for the fundamental category) are
implemented and have been tested for huge industrial
software from EDF (Éric Goubault & Co., CEA)

Much more theoretical and practical work remains to be
done!

Thanks for your attention!
Questions? Comments?
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