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Motivation: Concurrency

Mutual exclusion

Mutual exclusion occurs, when n processes P; compete for m
resources R;.

Only k processes can be served at any given time.
Semaphores!

Semantics: A processor has to lock a resource and relinquish
the lock later on!

Description/abstraction P; : ... PR;... VR, ... (Dijkstra)
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Schedules in "progress graphs”

The Swiss flag example

T2 Executions are directed
1 (1,1) paths — since time
flow is irreversible —
avoiding a forbidden
region (shaded).

Pa_Pb Vb Va |
(0, ) >T1

PV-diagram from
Pl . PanVbVa

Martin Raussen



Schedules in "progress graphs”

The Swiss flag example

T2 Executions are directed
1 (1,1) paths — since time
flow is irreversible —
Vo Un avoiding a forbidden
reacheble .
ey region (shaded).

Dipaths that are
. dihomotopic  (through
Pb e : a 1-parameter defor-
Pa Pb Vb Va | mation consisting of
©.0) dipaths) correspond to
equivalent executions.

7

PV-diagram from
Pl . PanVbVa

Martin Raussen



Schedules in "progress graphs”

The Swiss flag example

T2 Executions are directed
1 (1,1) paths — since time
flow is irreversible —
Vo Un avoiding a forbidden
reacheble .
ey region (shaded).

Dipaths that are
. dihomotopic  (through
Pb e : a 1-parameter defor-

Pa Pb Vb Va mation consisting of

7

(0, ) >T1 di
ipaths) correspond to
equivalent executions.
PV-diagram from Deadlocks, unsafe and
Py : PaPyVypVa unreachable  regions
Py : PhPaVaVy may occur.
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Higher dimensional automata

seen as (geometric realizations of) cubical sets

Vaughan Pratt, Rob van Glabbeek, Eric Goubault...

2 processes, 1 processor 2 processes, 3 processors 3 processes, 3 process

2 © Y

&=

Squares/cubes/hypercubes are filled in iff actions on boundary
are independent.
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Higher dimensional automata

seen as (geometric realizations of) cubical sets

Vaughan Pratt, Rob van Glabbeek, Eric Goubault...

2 processes, 1 processor 2 processes, 3 processors 3 processes, 3 process

2 © Y

cubical complex

&=

Squares/cubes/hypercubes are filled in iff actions on boundary
are independent.
Higher dimensional automata are cubical sets:
» like simplicial sets, but modelled on (hyper)cubes instead
of simplices; glueing by face maps (and degeneracies)
» additionally: preferred directions — not all paths allowable.
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Discrete versus continuous models

How to handle the state-space explosion problem?

The state space explosion problem for discrete models for
concurrency (transition graph models): The number of states
(and the number of possible schedules) grows exponentially in
the number of processors and/or the length of programs.
Need clever ways to find out which of the schedules yield
equivalent results for general reasons — e.g., to check for
correctness.
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Discrete versus continuous models

How to handle the state-space explosion problem?

The state space explosion problem for discrete models for
concurrency (transition graph models): The number of states
(and the number of possible schedules) grows exponentially in
the number of processors and/or the length of programs.
Need clever ways to find out which of the schedules yield
equivalent results for general reasons — e.g., to check for
correctness.

Alternative: Infinite continuous models allowing for well-known
equivalence relations on paths (homotopy = 1-parameter
deformations) — but with an important twist!

Analogy: Continuous physics as an approximation to (discrete)
guantum physics.
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A framework for directed topology

The twist in general: d-spaces, M. Grandis (03)

X a topological space. P(X) C X' = {p:1=[0,1] — X cont.}
a set of d-paths ("directed” paths < executions) satisfying
» { constant paths } C P(X)
> 9 € P(X)(x,y), ¥ €P(X)(y,2) = ¢y € P(X)(x,2)
SAS I3(X),oi € I' a nondecreasing reparametrization
= poun € P(X)
The pair (X, P (X)) is called a d-space.
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A framework for directed topology

The twist in general: d-spaces, M. Grandis (03)

X a topological space. P(X) C X' = {p:1=[0,1] — X cont.}
a set of d-paths ("directed” paths < executions) satisfying

» { constant paths } C P(X)

> 9 €PX)(x,y), 9 €P(X)(y,2) = pxy € P(X)(x,2)

» ¢ € P(X),a € I' a nondecreasing reparametrization

= gpoa € P(X)

The pair (X,P (X)) is called a d-space.
Observe: P(X) is in general not closed under reversal:

a(t)=1—t, 9 € P(X) #% goa e P(X)!

Examples:
» An HDA with directed execution paths.
» A space-time(relativity) with time-like or causal curves.
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D-maps, Dihomotopy, d-homotopy

Ad-map f : X — Y is a continuous map satisfying
» f(P(X)) CP(Y)

special case: P(I) ={oe L'|a nondecreasing

reparametrization}, | = (I,P(l)). _

Then P(X) = set of d-maps from | to X.
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Ad-map f : X — Y is a continuous map satisfying

» f(P(X)) CP(Y)
special case: P(I) ={oe L'|a nondecreasing
reparametrization}, | = (I,P(l)). _
Then P(X) = set of d-maps from | to X.
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» d-homotopy: symmetric and transitive closure ("zig-zag”)
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D-maps, Dihomotopy, d-homotopy

Ad-map f : X — Y is a continuous map satisfying

» f(P(X)) CP(Y)
special case: P(l) = {¢ € I'|/c nondecreasing
reparametrization},| = (1,P(1)).
Then P(X) = set of d-maps from | to X.

» Dihomotopy H : X x | — Y, every H; a d-map

» elementary d-homotopy = d-map H : X x T—Y-

H
Ho=f—g=H;

» d-homotopy: symmetric and transitive closure ("zig-zag”)

L. Fajstrup, 05: In cubical models (for concurrency, e.g., HDAS),

the two notions agree for d-paths (X = T). In general, they do
not.
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Dihomotopy is finer than homotopy with fixed

endpoints

Example: Two wedges in the forbidden region

—

M)( -

All dipaths from minimum to maximum are homotopic.
A dipath through the “hole” is not dihomotopic to a dipath on the
boundary.
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The twist has a price

Neither homogeneity nor cancellation nor group structure

Ordinary topology: Path space = loop space (within each path
component).

A loop space is an H-space with concatenation, inversion,
cancellation.
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The twist has a price

Neither homogeneity nor cancellation nor group structure

Ordinary topology: Path space = loop space (within each path

component).
A loop space is an H-space with concatenation, inversion,
cancellation.
A Directed topology:
S Loops do not tell much;
T 7 concatenation ok, can-
P ' cellation not!
" : Replace group struc-
ture by category
structures!

“Birth and death” of
dihomotopy classes
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A first remedy: the fundamental category

711(X) of a d-space X [Grandis:03, FGHR:04]:
» Objects: points in X
» Morphisms: d- or dihomotopy classes of d-paths in X
» Composition: from concatenation of d-paths
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A first remedy: the fundamental category

711(X) of a d-space X [Grandis:03, FGHR:04]:
» Objects: points in X
» Morphisms: d- or dihomotopy classes of d-paths in X
» Composition: from concatenation of d-paths

Property: van Kampen theorem (M. Grandis)

Drawbacks: Infinitely many objects. Calculations?

Question: How much does 771 (X)(x,y) depend on (x,y)?
Remedy: Localization, component category. [FGHR:04, GH:06]
Problem: This “compression” works only for loopfree categories
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Technique: Traces — and trace categories

Getting rid of increasing reparametrizations

X a (saturated) d-space.

@, € P(X)(x,y) are called reparametrization equivalent if
there are &, B € P(1) such that ¢ o« = ¢ o B (“same oriented
trace”).

(Fahrenberg-R., 07): Reparametrization equivalence is an

equivalence relation (transitivity).
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Technique: Traces — and trace categories

Getting rid of increasing reparametrizations

X a (saturated) d-space.

@, € P(X)(x,y) are called reparametrization equivalent if
there are &, B € P(1) such that ¢ o« = ¢ o B (“same oriented
trace”).

(Fahrenberg-R., 07): Reparametrization equivalence is an
equivalence relation (transitivity).

T(X)(x,y) = P(X)(x,y)/~ makes T (X) into the (topologically
enriched) trace category — composition associative.

Ad-map f : X — Y induces a functor T (f) : T(X) — T(Y).
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Topology of trace spaces

Results and examples

Variant: R(X)(x,y) consists of regular d-paths (not constant on
any non-trivial interval J C I). The contractible group
Homeo., (1) of increasing homeomorphisms acts on these —
freely if x #y.

Theorem (FR:07)

» R(X)(x,y)/~ — P(X)(x,y)/~ is a homeomorphism.
» R(X)(x,y) — R(X)(X,y)/~ is a (weak) homotopy
equivalence.
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Topology of trace spaces

Results and examples

Variant: R(X)(x,y) consists of regular d-paths (not constant on
any non-trivial interval J C I). The contractible group
Homeo., (1) of increasing homeomorphisms acts on these —
freely if x #y.

Theorem (FR:07)

» R(X)(x,y)/~ — P(X)(x,y)/~ is a homeomorphism.

» R(X)(x,y) — R(X)(X,y)/~ is a (weak) homotopy
equivalence.

For X the geometric realisation of a cubical complex, all trace
spaces T (X)(x,y) are locally contractible.
Examples I" the unit cube, 01" its boundary.

» T(I";x,y) is contractible forall x <y € I";
» (Conjecture) T (dI";0,1) is (weakly) homotopy equivalent

o SN2
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Preorder categories

Getting organised with indexing categories

A d-space structure on X induces the preorder <:
x 2y & TX)(xy)#0

and an indexing preorder category D(X ) with
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Preorder categories
Getting organised with indexing categories

A d-space structure on X induces the preorder <:
x 2y & TX)(xy)#0

and an indexing preorder category D(X ) with
» Objects: (end point) pairs (x,y),x Xy
» Morphisms:
D(X)((x,y), (x',y)) = T(X)(x',x) x T(X)(y,y"):

/ —

—
X'

=<
X—=Y __ Y

» Composition: by pairwise contra-, resp. covariant
concatenation.
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Preorder categories
Getting organised with indexing categories

A d-space structure on X induces the preorder <:
x 2y & TX)(xy)#0

and an indexing preorder category D(X ) with
» Objects: (end point) pairs (x,y),x Xy

> Morphisms: . .
DX)((x,y), (X, y")) := T(X) (X", x) x T(X)(y,y"):

;= _ﬁ) —
X' X Yy _ Y

» Composition: by pairwise contra-, resp. covariant
concatenation.

Ad-map f : X — Y induces a functor D(f) : D(X) — D(Y).
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The trace space functor

Preorder categories organise the trace spaces

The preorder category organises X via the
trace space functor TX : D(X) — Top

» TX(x,y) =T (X)(x,y)
> TX(ooy) s TX)Y) —=T(X)(x,y")

[o] ——— [ox * 0 * 0y ]
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The trace space functor

Preorder categories organise the trace spaces

The preorder category organises X via the
trace space functor TX : D(X) — Top

» TX(x,y) =T (X)(x,y)
> TX(ooy) s TX)Y) —=T(X)(x,y")

[o] ——— [ox * 0 * 0y ]

Homotopical variant D, (X ) with morphisms

Br(X)((%,y), (x,y") = 7 (X)(X',x) x 71 (X)(y,y’)
and trace space functor TX : D;(X) — Ho — Top (with
homotopy classes as morphisms).

Martin Raussen



Sensitivity with respect to variations of end points

A persistence point of view

» How much does (the homotopy type of) TX (x,y) depend
on (small) changes of x,y?
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Sensitivity with respect to variations of end points

A persistence point of view

» How much does (the homotopy type of) TX (x,y) depend
on (small) changes of x,y?

» Which concatenation maps
fx(ax,(fy) : fx(x,y) — fx(x’,y/), [o] — [ox * 0 % 0y]
are homotopy equivalences, induce isos on homotopy,
homology groups etc.?

» The persistence point of view: Homology classes etc. are
born (at certain branchings/mergings) and may die
(analogous to the framework of G. Carlsson etal.)

» Are there “components” with (homotopically/homologically)
stable dipath spaces (between them)? Are there borders
(“walls™) at which changes occur?

Martin Raussen



Examples of component categories

Standard example

AC —>AD<—BD

Figur: Standard
example and
component
category
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Examples of component categories

Standard example

AC —>AD<—BD

Figur: Standard
example and
component
category

Components A, B, C, D — or rather
AA,AB,AC,AD,BB,BD,CC,CD,DD C X x X.
#: diagram commutes.
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Examples of component categories
Oriented circle

X —

oriented circle

§1

a
C:A — A
A the diagonal, A its complement.
C is the free category generated by
a,b.
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Examples of component categories
Oriented circle

X = g
a
C:A — A
A the diagonal, A its complement.
C is the free category generated by
a,b.

oriented circle

» Remark that the components are no longer products!

» In order to get a discrete component category, it is
essential to use an indexing category taking care of pairs
(source, target).
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Component categories

via generalized congruences and homotopy flows

» How to identify morphisms in a category between different
objects in an organised manner?
Generalized congruence (Bednarczyk, Borzyszkowski,
Pawlowski, TAC 1999) ~~ quotient category.
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flows in differential geometry. Instead of diffeotopies:
Self-homotopies inducing homotopy equivalences on
spaces of d-paths with given end points (“automorphic”).
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Component categories

via generalized congruences and homotopy flows

» How to identify morphisms in a category between different
objects in an organised manner?
Generalized congruence (Bednarczyk, Borzyszkowski,
Pawlowski, TAC 1999) ~~ quotient category.

» Homotopy flows identify both elements and d-paths: Like
flows in differential geometry. Instead of diffeotopies:
Self-homotopies inducing homotopy equivalences on
spaces of d-paths with given end points (“automorphic”).

» Homotopy flows give rise to significant generalized
congruences. Corresponding component category
Bn(x )/~ identifies pairs of points on the same “homotopy
flow line” and (chains of) morphisms.
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The component category of a wedge of two oriented
circles
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The component category of an oriented cylinder with a
deleted rectangle
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Concluding remarks

» Component categories contain the essential information
given by (algebraic topological invariants of) path spaces

» Compression via component categories is an antidote to
the state space explosion problem
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Concluding remarks

» Component categories contain the essential information
given by (algebraic topological invariants of) path spaces

» Compression via component categories is an antidote to
the state space explosion problem

» Some of the ideas (for the fundamental category) are
implemented and have been tested for huge industrial
software from EDF (Eric Goubault & Co., CEA)

» Dihomotopy equivalence: Definition uses automorphic
homotopy flows to ensure homotopy equivalences

T(F)(x,y) : T(X)(x,y) = T(Y)(x,fy) forallx <y.

» Much more theoretical and practical work remains to be
done!

Martin Raussen



