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and it follows that, for every & > 0, the inequality |¢ — p/q| < 1/(¢*(v/5 + €)) has
only finitely many rational solutions p/g.
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A New Short Proof of Kneser’s Conjecture

Joshua E. Greene

In a 1955 paper [4]. M. Kneser considered the problem of partitioning the n-element
subsets of a (2n + k)-element set in such a way that the subsets contained in any fixed
class are pairwise intersecting. Kneser observed that such a partition is possible with
k + 2 classes;indeed, let 1. 2, . .., 2n + & be the elements of the underlying set, and for
each 7 in this set, let K; denote the collection of all n-subsets whose least element is .
Then K, K>, ..., K;.y,and K ;> U+ U K, 1, are the classes in a desired partition.
Moreover, Kneser conjectured that k + 2 is the least possible number of classes in such
a valid partition. This problem remained open for over twenty years until L. Lovasz
[5] showed, using methods from algebraic topology, that Kneser’s conjecture was true.
Within weeks of learning of Lovisz's proof, 1. Barany [1] produced a very short proof
of the conjecture by combining the celebrated result of Lusternik, Schnirelman, and
Borsuk (LSB) {2], [6] on sphere covers with D. Gale’s theorem [3] concerning the
even distribution of points on the sphere. The purpose of this note is to provide a short
proof of Kneser’s conjecture that does not rely on Gale’s result.

Let S = {x € R™*" | |x|| = 1} denote the unit sphere in R™*'. For any point a in
S™ and subset F of S™, the distance from a to F is inf,.r d(a, x), where d denotes
the Euclidean metric in R™*!. Let H(a) = {x € §” | a - x > 0}, the open hemisphere
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centered ata, and S(a) = {x € §” | a - x = 0}, the boundary of H (@), a great (m — 1)-
sphere on S™. Also, for A > 0, let B(a, A) = {x € §" | d(a, x) < A}, the open ball of
radius A centered at a in §™.

The LSB-theorem states that, for any covering of §” with m + 1 or fewer closed
sets, one of the sets must contain a pair of antipodes. In order to prove Kneser’s con-
jecture, we will require the following slight generalization of this fact.

Lemma. [fS" is covered with m + 1 sets, each of which is either open or closed, then
one of the sets contains a pair of antipodes.

Proof. We induct on the number ¢ of closed sets in the cover of §”. The base case
t = 0 corresponds to a cover of S” by open sets Uy, ..., U,y. Select a Lebesgue
number for this cover, that is, a positive number A such that for all x in §™, the closed
ball B(x, 1) is contained in some U;. By compactness, there exists a finite collection
of points {x;} such that the open balls B(x;, 1) cover §™. For each j, let F; denote the
union of those B(x;, A) contained in U;. Then F; is closed, F; is a subset of U; for
each j, and together the F; cover S™. Therefore, the LSB-theorem implies that one of
the F;, and hence one of the U;, contains a pair of antipodes.

Thus we may assume that 0 < ¢ < m + 1 and the theorem holds for fewer than ¢
closed sets. We now show it holds for 7 closed sets. Let C be a cover of ™ with m + 1
sets, of which exactly r are closed and the remaining sets are open. Fix a closed set
F in C, and suppose that F does not contain a pair of antipodes. Hence its diameter
is 2 — € for some € > 0. Let U denote the open set consisting of all points in §”
whose distance from F is less than €/2. Then (C \ {F}) U {U} is a cover of $™ with
m + 1 sets, of which exactly + — 1 are closed and the remaining sets are open, so by
the induction hypothesis some set in this cover contains a pair of antipodes. But by
construction U does not contain such a pair, and hence some set in the original cover
C must contain a pair of antipodes, as desired. This completes the inductive step. ®

We are now in position to prove Kneser’s conjecture.

Theorem. [f the n-element subsets of a (2n + k)-element set are partitioned into k + 1
classes, then one of the classes must contain a pair of disjoint subsets.

Proof. Distribute 2n + k points on S**! in general position; thus no k + 2 points lie on
a great k-sphere. Now partition the n-element subsets of these points into k + 1 classes
Al ..., Aws1. Fori =1,...,k+ 1, let U; denote the set of all points a of S¥*! for
which H (a) contains an n-subset in the class A;. It is easy to see that the sets U; are
open, hence F = S\ (U, U--- U Uyy,) is closed. Together, F and the U; are k + 2
sets covering S¥*!, so by the lemma one of the sets contains a pair of antipodes =+a.
Can F contain such a pair? No, for if it did H(a) and H(—a) would each contain
fewer than n points from our underlying (2n + k)-element set, which would mean that
at least k + 2 points lie on the great k-sphere S(a), contradicting the distribution of
these points. Therefore, both a and —a lie in U; for some i. It follows that both H (a)
and H(—a) contain n-element subsets in the class A;, and these subsets are plainly
disjoint. |

In Bérdny's proof of Kneser's conjecture, Gale’s theorem was used to distribute
the 2n + k points on S* in such a way that each open hemisphere contained at least

n points. This distribution guaranteed that the sets U; themselves covered S*, so that
the open version of the LSB-theorem on S* could be applied. By contrast, our proof
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distributes the points on S**' in less restrictive fashion, avoiding the use of Gale’s
theorem, and then appeals to our modification of the LSB-theorem.
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