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Abstract

In this paper, we consider one-round protocols for reliable message
transmission (RMT) when ¢ out of n = 2t 4+ 1 available channels are
controlled by an adversary. We show impossibility of constructing
such a protocol that achieves a transmission rate of less than ©(n)
for constant-size messages and arbitrary reliability parameter. In
addition, we show how to improve two existing protocols for RMT to
allow for either larger messages or reduced field sizes.

1. Introduction

The concept of secure message transmission was first introduced in (3], and
the term comprises a model where a sender and a receiver are connected via
n channels. Up to t of these channels are controlled by a computationally
unbounded active adversary who can read and alter the symbols sent across
these t channels. More specifically, we consider the setting where n = 2t + 1.
In keeping with cryptographic tradition, we will call the sender ‘Alice’, the
receiver ‘Bob’; and the adversary ‘Eve’. The challenge is to devise a strategy
that allows Alice and Bob to communicate securely and reliably in a limited
number of transmission rounds. We focus on one-round protocols.

In the original setting of [3], the protocols are required to be perfectly
secure, meaning that no matter what Eve might attempt, she will gain
no information about the message. They are also required to be perfectly
reliable such that Bob will always recover the correct message. Later, [4]
relaxed these conditions to allow some small failure probabilities for both
security and reliability. Taking this idea even further, [9] considers protocols
where the security of the message delivery is not required, but only reliable
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transmission is of interest. They call this unconditionally reliable message
transmission, but we will omit ‘unconditionally’” and write RMT instead.
To asses the efficiency of a message transmission-protocol, it is common
to use the transmission rate defined as the total number of transmitted bits
divided by the bit-length of the message. Hence, a low transmission rate
is preferable. As shown in [9, Theorem 3|, we cannot do better than Q(1)
for RMT, and this bound is tight. In Section 3, however, we show that this
transmission rate is not achievable for messages of a constant size.

1.1. Related work

RMT has also been studied in [9, 10]. The protocol in [10] is based on list-
decoding of folded Reed-Solomon codes, but although it attains the optimal
transmission rate, the computational cost for the receiver to recover the
message is exponential in the number of channels. The work [9] contains
bounds and constructions for both the secure and the reliable-only settings.
In addition, they achieve this while tolerating a mixed adversary, giving
more fine-grained control of the adversarial assumptions.

Although this paper is only concerned with RMT, we also direct the
reader to related works on secure message transmission; that is, protocols
that also offer privacy. This additional guarantee comes at a cost. As shown
by [3], perfect security for n = 2t + 1 requires at least two rounds, and
a single-round protocol can only offer security in the case n > 3t + 1. In
the former setting, Agarwal et al. [1] gave a perfectly secure two-round
protocol that achieves optimal performance asymptotically, albeit at a high
computational cost. A computationally efficient protocol was subsequently
achieved by Kurosawa and Suzuki [8] using the concept of pseudobases. This
idea was also taken up by [11], who obtained further improvements, reducing
the minimally required message size from O(n*logn) to O(nlogn).

The setting where privacy is perfect, but reliability is not, was initially
handled by [4] under the assumption that channels support multicast. The
proposed solution, however, was inefficient for certain values of ¢ and n.
This was rectified in [13]|, where an efficient protocol for these values was
given.

2. Preliminaries

2.1. Model assumptions

We assume that Alice and Bob are connected via n = 2t+1 simple channels,
meaning that the channels allow both Alice and Bob to transmit data, but



no additional functionality is assumed. Before the protocol begins, Eve
chooses t of these to be under her control. In other words, the adversary in
our model is static and active.

For simple channels, [4] showed that 2t > n leads to a probability of
failure of at least 1/4. Hence, the setting where n = 2¢ + 1 has the maximal
number of corruptions that we can hope to overcome. Since a majority of the
channels are honest — i.e. not controlled by the adversary — a naive solution
to the RMT-problem is to broadcast the message across all n channels. This
leads to a transmission rate of n, but gives perfect reliability. Thus, this is
the benchmark performance.

2.2. Universal hash families

The methods we present rely on the concept of e-almost universal hash
families as introduced by [12].

Definition 2.1:
Let H be a family of hash functions from M to A, and let ¢ € R.. Then
H is called e-almost universal if for any m #m’ € M,

JPr [h(m) = h(m')] < e.

Using the concept of e-almost universal hash families aids in the setting
of message transmission, since it gives a relatively easy, yet general, way
to analyse the probability that an adversary can successfully tamper with
information without being detected.

In particular, we use a hash family based on polynomial evaluation
similar to the one used in 2], but generalized to evaluate in several points.

Definition 2.2:
Let F be a finite field, and IC C . For every pair of positive integers n < a,
define the map PEval”: F* x K" — F" by

PEval’(m, k) = (fm(k1), fm(k2), .- -, fm(ky)),
where fm(x) =Y ¢, mx’. We use the notation PEval](m) = PEval’(m, k).

Proposition 2.3:
Let F be a finite field, and IC C F. For any m #m’ € F*, and 1 < n < a,
the hash function from Definition 2.2 satisfies

a

Py in[PEvall (m) = PEval] (m')] < K



In other words, Hpg,., is (a/|K|)"-almost universal.

PrOOF: Sampling the key k uniformly from K7 corresponds to sampling n
keys ki, ko, ..., k, uniformly and independently from K. Hence, the event

PEval] (m) = PEval] (m’)

reduces to the intersection of events
n
ﬂ (PEvaly, (m) = PEval; (m)),

Since the keys k; are independent random variables, it follows that the indi-
vidual events in the intersection are independent as well, and each happens
with probability at most 08 1c| see [2, Claim 2.5]. Hence, the intersection of the
events happens with probability at most (a/|K|)", proving the proposition.m

3. Constant-size messages

One could hope that the overall optimal transmission rate ©(1) is achievable
for constant-size messages. As we show in Proposition 3.2, however, this is
not possible for arbitrary reliability parameters. The proof of the proposition
relies on the following result from [4, Theorem 5.1].

Theorem 3.1:
Assume that n < 2t, and denote by M the message space. Then any reliable
message transmission protocol fails with probability at least %(1 —1/|IM)).

Proposition 3.2:

Let n =2t + 1, and consider the RMT-problem for a message of size ©(1)
bits. Then it 1s impossible to construct a protocol attaining a transmission
rate lower than ©(n) for arbitrary reliability parameters.

PROOF: Assume for contradiction that P is such a protocol. We show the
existence of an adversarial strategy such that P will fail with a probability
greater than a constant.

Note that if all n available channels are used, at least n bits will be
transmitted during the protocol. Hence, P can use at most n — 1 channels.
Let X € {1,2,...,n} be a random variable describing the unused channel.
No assumptions are made about the probability distribution of X it simply
depends on P. Consider an adversarial strategy where the corrupt channels
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are chosen uniformly at random. Equivalently, we can assume that the hon-
est channels are given by the set {I, I5,..., 111}, where I € {1,2,...,n}
is a uniformly random variable. The remaining I; are defined in a recursive
manner such that for any a € {1,2,...,n},

1 )
Pr[l; = a] = {2t+2__j ifth#a,ly#a,....1,_1#a | "

0 otherwise

It may be shown that in fact Pr[/; = a] = 1/(2t 4+ 1) for any j and a; see
Appendix 1.

Denote by E the event that Alice leaves out one of the honest channels
when following P; that is, X = I; for some j € {1,2,...,¢t+ 1}. Since
Alice does not know the outcomes of I, I, ..., I;;q, it follows that X is
independent from these variables. Using this fact and the fact that the
events X = 1, X =1I,,..., X = I;;; are disjoint, we obtain that

t+1

PriE] =Pr[X =L V- VX =I4] =) Pr[X =1
j=1

i+1 n Hoy n t+1
= Pr|[X =k|Pr|l; = k] = Pr[X =k] = :
]ZI; 1| IPril; = k] ;2t+1; rf ] 2t + 1

If F occurs, it follows from Theorem 3.1 that the probability of protocol
failure is at least (1 — 1/|M|), where M is the message space. Otherwise,
the protocol P gives a contradiction to Theorem 3.1 since for n = 2t, we
could introduce a ‘dummy channel’; discard it, and then mimic protocol P
to obtain a lower probability of failure.

By applying the law of total probability, we obtain

Pr[P fails] = Pr[P fails | E] Pr[E] + Pr[P fails | E] Pr[E]
> Pr[P fails | E] Pr[E]

1 1 t+1 1 1
>_(1-— )| ——>>(1-—].
—2( |M|>2t+1>4( |M|>

In conclusion, it is not possible to obtain arbitrarily levels of reliability with
a transmission rate of less than ©(n) for constant size messages.

It is worth pointing out that this result is true for any RMT-protocol; not
only one-round ones.



4. A method based on list-decoding

As part of a protocol for robust secret sharing, [2| introduced the notion of
a ‘robust distributed storage’. Their method for achieving this can easily
be converted to a one-round protocol for RMT. However, since the original
authors only need the asymptotical performance, they base their method
on the list-decoding algorithm of Sudan, and use messages of size at most
|n/8] + 1. This may be increased to [n/5] + 1 with no penalty in reliability
by applying the Guruswami-Sudan algorithm [5] instead. The full protocol
description is given in Protocol 1 on page 17, and it relies on the following
theorem from [6, Theorem 6.16 (iii)].

Theorem 4.1:
Let C be a Reed-Solomon code of length n and dimension a. If at most

n — \/(1 + p)(a — 1)n errors occur, it is possible to perform list decoding

using a list of size O(p~*y/n/(a—1)).

The adversary can introduce up to ¢ < 7 errors, meaning that we can correct

all ¢ errors if we require that \/(1+ p)(a — 1)n < 2. If we further write
(a — 1) = Rn for some 0 < R < 1, we obtain

V(1 +p)Rn* <

Fixing a desired ‘rate’ R, allows us to fix the value of p; that is, both are
constant values. Thus, by Theorem 4.1 the list size returned by the decoding
algorithm will be

— ([1+pR<

o3
AN,

o@l %ﬁ:oa)

For concreteness, we give explicit list-decoding parameters for R = 1/5. In
order for list decoding of 7 errors to be possible, |7, p. 131] gives the two
conditions

Tgn—ﬁgiﬁ (2)
n(2L—s+1) L(a—1)
STty 2 3)

where s is the multiplicity parameter passed to the algorithm. Since we
wish to correct 7 = t errors out of n = 2t + 1 shares, we can substitute these



into the inequalities, together with a — 1 = Rn = 2t/5+ 1/5. For (2) this
yields

2, 1
tSQt—i—l—M = %t+£§t+l.
S oS 0s

Here, it is seen that L = 5 and s = 2 is a possible solution. Rewriting (3)
in the same way, and substituting the aforementioned values of L and s, we
see that this inequality is satisfied as well. Thus, Protocol 1 is capable of
sending messages of length a = [%J + 1 rather than a = L%J + 1 as in [2].
The output list is 5 codewords in this case.

4.1. Protocol reliability

If the family of hashes H applied in Protocol 1 is e-almost universal, the
reliability of the protocol is nLe, as shown in [Preprint of 2, Theorem 4.3|.
This is stated formally below.

Proposition 4.2:

Protocol 1 fails with probability at most nLe, when the list decoding algorithm
returns a list of at most L elements, and the hash family applied is e-almost
universal.

The crux of the argument is the observation that the original message m
must appear on the list returned by the decoding algorithm. Hence, in
order for the algorithm to fail, there must be some other message m; that
agrees with the hash key/value (k;,v;) of some uncorrupted channel j. By
the e-almost universality, this happens with probability at most €, and the
overall reliability follows from a union bound argument.

4.2. Number of bits transmitted

Each channel receives a single field element s;, a key k; and a hash value v;.
Thus, the total number of F-symbols sent during Protocol 1 is

n(1+ K[+ V),
where || and |V| denote the number of field symbols necessary to represent
the key k; and the hash v;, respectively.
4.3. Using polynomial evaluation

To be more concrete, we consider the use of the hash family HJ . In
this case, it follows that |[IC| = |V| = 1, which gives a total of n(1 + 2n)
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field elements transmitted. In order to determine the transmission rate we
assume that 7 is of constant size, and consider messages of size a = ©(n).
In this case, the transmission rate is % = O(1). Thus, Protocol 1 reaches
the optimal transmission rate for messages of size ©(n).

By Propositions 2.3 and 4.2, the probability of protocol failure is bounded
by nLe = nL(a/|F|)". To obtain some desired reliability J, we can rewrite

this expression to obtain a lower bound on the field size. Doing so yields

a” nlL %
L—<0 = |F|>(— ) 4
In particular, we see that for n = 1 and a = O(n) the required field size has
a quadratic dependence on n. Increasing n allows for smaller field sizes, but
increases the number of field symbols transmitted.

5. A method based on erasure decoding

In the following, we will describe the one-round RMT-protocol given in |9
in the language of Reed-Solomon codes and hash families. In this repres-
entation, the original authors are essentially relying only on the erasure
correcting capabilities of the codes. We show that a careful choice of para-
meters allows correction of errors as well, causing the required field size to
be quadratic rather than cubic in n.

The message we consider is an a x b-matrix M over a finite field F.
Each row of this message is encoded by means of an [n,b] Reed-Solomon
code, yielding an a x n-matrix S where each row is a codeword. Across
the 7’th channel, Alice sends the i’th column s; of S. Since Bob needs to
determine if Eve modified some of these columns during transmission, Alice
also computes n verification tags {v;1, s, . .., v} for each s; by applying
uniformly sampled hash functions from some family H. Denote the keys
of these functions by {k;1, ki, . .., kin}. Across the i’th channel, Alice then
sends {s;} U {kj;, vji}7—;. That is, each channel will transmit the codeword
entries s;, and a key/tag-pair (k;;,v;;) for every channel j.

When Bob receives the possibly modified values {s; }U{k;, vj; }7_;, he will
check the integrity of s, by computing the hash value hk;j (s}) and comparing
the result with the received tag vj;. He will do so for each received key /tag-
pair, and if more than t tags disagree with the computed values, Bob will
mark s, as modified and treat it as an erasure when recovering the message.

With large probability, these checks performed by Bob reveal a consid-
erable part of the corrupt channels delivering erroneous information. This
causes a number of columns in S’ to be marked as erasures. However, some



small number e of corrupted channels may have passed the checks, meaning
that the remaining entries in S” may still contain errors. In fact, each row of
S’ may contain up to t — e erasures and e errors. If the parameter b agreed
upon by Alice and Bob is sufficiently small, Bob may nevertheless correct
these erasures and errors in S’. Since the rows of S” are codewords of an
[n,b] Reed-Solomon code which has minimal distance n — b + 1, Bob can
recover the correct message if

2e+t—e<n—b+1 = b<n—(t+e)=t+1—c.

Thus, after verifying the received values, Bob can determine if the message
can be recovered by simply counting the number of non-erased columns and
computing syndromes. The complete description of our protocol is given
in Protocol 2 on page 18. The correctness of the protocol follows from
essentially the same arguments as used by [9], albeit with the following
modification.

Lemma 5.1:
If at least t — e columns of S’ are marked as erasures in step 4. of Protocol
2, Bob will recover the correct message.

PROOF: Let u >t — e be the number of erased columns, meaning that each
row of S’ contains at most ¢ — u errors. The minimal distance of the code is
d = n—b+1, which means that u erasures and ¢t — u errors can be corrected
if 2(t — u) +u < d. This is true because

2t —u)+u=2t—u<t+e<n-—>b,

where the last inequality follows from the requirement e < ¢+ 1 — b given
in the protocol specification. [ |

5.1. Protocol reliability

Under the assumption that the hash family H applied in the protocol is
e-almost universal, we can bound the probability that Bob cannot recover
the correct message.

Proposition 5.2:
If H is an e-almost universal family of hash functions, then

t(t+1
Pr[Protocol 2 fails] < ﬂ.
e+1



PrOOF: By Lemma 5.1, at least e+ 1 of the channels modified by Eve must
pass the integrity check performed by Bob. To achieve this, it is necessary
that the hash value of the modified s] matches at least one verification tag
v;; sent across an honest channel.

The e-almost universality of H implies that Pry. y[h(s;) = h(s})] < €
whenever s; # s,. Hence, € is an upper bound on the probability that a
single corrupt channel agrees with a single honest channel. Since there are
t+1 honest channels, the probability for a modified channel to be consistent
with at least one honest can be bounded above by (t + 1)e.

Let X be the random variable counting the number of modified but
uncaught channels. Since the hash keys k;;, ki are independent whenever
(i,7) # (i,7'), the integrity checks of the modified channels can be con-
sidered as t independent Bernoulli trials, each with a success probability of
at most (¢4 1)e. Thus, X follows a binomial distribution, and has expected
value E[X] < t(t + 1)e. The Markov inequality now gives

E[X] _ t(t+1)e

Pr| X > 1] <
X e+t ]_e—i-l_ e+1

Y

and the result follows.

5.2. Number of bits transmitted

When Protocol 2 is used to transmit a message, the total number of F-
symbols transmitted is

n(a + n|V| + n|K|),

where |V| and |K| denote the number of field symbols necessary to represent
v;; and k;;, respectively.

5.3. Using polynomial evaluation

For concreteness, we analyse the reliability of Protocol 2 when HJg ., is
applied with I = F. Here, both the keys and the verification tags consist
of 7 field elements. Hence, the total number of transmitted field elements is
2nn%+an. Depending on the message size, this can give various transmission
rates, but under the assumption that n is some constant value, the optimal
transmission rate of ©(1) is obtained when both a and b are ©(n). That is,
when the message is of size O(n?).
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Since the hash family is (a/|F|)"-almost universal, it follows from Pro-
position 5.2 that we must require

t(t + 1)a” Ht+1)\7
CESY ’F|Za((e+1>5)'

in order to obtain reliability 6. In particular, we note that for n = 1, the
original protocol by [9] requires |[F| > n3/d. In the proposed protocol, we
can set both b and e to be ©(n) and obtain the requirement |F| > ©(n?/4).
In other words, by reducing the second dimension of the message, the
required field size is reduced by a factor of n asymptotically. Furthermore,
introducing the parameter n highlights the trade-off between the number of
F-symbols transmitted and the required field size.

6. Comparisons

6.1. Comparison with existing protocols

In order to compare the RMT-protocols proposed in Sections 4 and 5 to
those already in the literature, we will restrict ourselves to the hash family
Hpe,o from Definition 2.2 with £ = F and n = 1.

For five protocols, Table 1 gives an overview of the required field size
given ¢; the message size in F-symbols; whether the protocol attains the
optimal transmission rate; and whether it is computationally efficient. Here,
efficitent means polynomial in the number of available channels. We use the
O-notation to keep the presentation as clear and self-contained as possible.

For the protocol of Section 5, we remark that a = ©(n) was chosen
even though it is in principle possible to use any value smaller than |F|.
Choosing greater values, however, also increases the required field size. We
shall refrain from doing such analysis here since Table 1 already shows the
desired improvement.

As the table indicates, the first two protocols are better suited for small
message sizes. Although both have the same asymptotic performance, the
modification suggested in Section 4 allows a larger message size. The re-
maining three protocols all have ©(n?) as the optimal message size, which
suggests that they should fare better when transmitting larger messages. It
may be noted that the protocol proposed in Section 5 achieves this while
reducing the required field size by a factor of n asymptotically.

Even though Table 1 gives an overview of the general properties of each
protocol, it does not reveal how they will perform in concrete problem
instances. If the message size and the number of channels have already
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Protocol Field size Me'ssage Optimal Compu'tatlonal
size efficiency
2, Sec.4.1]  ©(n2/6) In/8] +1 v v
Protocol 1 0(n?/6) In/5] +1 v v
9, Sec. 4] n3/é O(n?) v v
10, Sec.3.1]  O(n?) O(n?) v X
Protocol 2 O(n?/9) 0(n?) v v

Table 1: Comparison of one-round RMT-protocols. The second column shows the
minimal field size given a desired reliability parameter 6. The third column gives the
message size (in terms of F-elements) that leads to an optimal transmission rate, and
the fourth indicates whether such an optimal transmission rate is achievable. The final
column states whether the computational cost is at most polynomial in the number of
channels.

been fixed, a separate analysis is needed to determine the protocol that will
perform the best.

6.2. Comparing Protocols 1 and 2

In Sections 4 and 5 we saw that Protocols 1 and 2 attain the optimal trans-
mission rate for messages of size ©(n) and O(n?), respectively. Furthermore,
both protocols have a quadratic relation between |F| and n when choosing
the parameters appropriately. Loosely speaking, this indicates that Protocol
1 is suited for smaller messages, and Protocol 2 for larger messages.

In a setting where a steady stream of characters is to be transmitted
rather than a single message, the distinction between ‘small’ and ‘large’
messages looses its importance. Instead, the aim is to achieve as low a
transmission rate as possible and then pack the stream characters in appro-
priately sized messages. In the case n = 1, we show that the right choice of
parameters causes Protocol 2 to outperform Protocol 1 in both transmission
rate and field size.

For Protocol 1, we set the dimension of the code to a = L%J + 1 as in
Section 4. The transmission rate is given by

n(2n+1) 3n

21 [T

which is bounded below by

3n 3n  15n
2] +17 241 n+5




Noticing that this bound increases for greater values of n, we let t,,;, be the
minimal number of corrupt channels considered. This means that

15(2tmin + 1)
—— (5)
2tm1n +6
gives a lower bound on the transmission rate of Protocol 1 for any t > t,.

The requirement of the field size is given in (4), and if n = 1, this leads to
the necessary condition that

anlL ban n?
F|> —=— > —. 6
P> T =20 (6
In the case of Protocol 2 the transmission rate is given by

ﬁgiﬁﬁz(%ﬂu)%. (7)

Recall that the requirement on field size is quadratic only if e = O(n).
In order to get this quadratic dependence, we assume that b = at and
e = (1 — a)t for some o € (0,1). The transmission rate (7) can then be
bounded above by

2n n 2n 2t+1
a b a Sming
o 2n + 1 thint + tmin

\a Otmint

2 2tmin + 1

< <—” + 1) hmin 1

a atmin

In terms of field size, we see that for n = 1,

at(t+1) at(t+1) an
(=) + 15 - ()t +1)8 = 2(1—a)s’

which implies that |F| > 30 ey is a sufficient condition for the field used in
Protocol 2. If we set a = n as in [9], we see that for o < 1/2 this sufficient
condition is less restrictive than the necessary condition of Protocol 1 in
(6). In other words, Protocol 2 allows smaller field sizes than Protocol 1 if
a<1/2.

By comparing the lower bound in (5) with the upper bound in (7),
we may determine t.;, as a function of « such that Protocol 2 always
outperforms Protocol 1 in these cases. We obtain that

15(2tmin + 1) < 3(2tmin + 1) > 6 ‘
2t +6 T At min ~ ba—2
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Figure 1: Minimal values of ¢ where Protocol 2 outperforms Protocol 1 as a function
of a

A plot of the bound is given in Figure 1. We stress that these considerations
relate to the setting where the specific message size is not important.

Bounds can also be made for n > 2, but these do not lead to as mean-
ingful comparisons as above.

6.3. Concrete examples

In order to further highlight the performance differences between the proto-
cols, we will give explicit choices of parameters and compute the transmission
rates for each of the two protocols, when the number of channels and the
message size are given. In every case, we will require a reliability of 27%.
The examples are given in Tables 2 to 5 on page 19. These are by no means
exhaustive. For instance, we have only considered fields of sizes 22 for
Protocol 2.

It is seen that Protocol 1 often requires a large field size in order to
send the entire message in a single run of the protocol. This stems from
the restrictive condition on the dimension of the Reed-Solomon codes used.
A better option may therefore be to split the message into smaller chunks
and run the protocol several times. Of course, some care has to be taken in
doing so, since the reliability will be reduced.

When sending 256 bits for ¢ = 100, Protocol 1 clearly outperforms 2,
while still using a managable field size. Protocol 2 fares better, however,
when the message size increases relative to the number of available channels.
It is worth noting that the message dimensions given in Table 4 allow much
greater message sizes than required. The reason for stating these dimensions
rather than something smaller is that a smaller dimension would not lead
to better transmission rates. More precisely, it is possible to decrease b,
the second dimension, and increase e accordingly, but the requirement for
1 remains the same, giving exactly the same transmission rate.
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Appendix 1

Lemma 1.1:
Let I, Is, ..., I;+1 be defined as in (1). Then for any j € {1,2,...,t+ 1}
and any a € {1,2,...,n}, we have

Prll; =a] = ——.

PROOF: We first prove that Pr[l; #a,...,I; #a] = (2t +1—7)/(2t + 1)
for 7 € {1,2,...,t + 1}, and achieve this by induction. The base case
Pr[ly # a] = (2t)/(2t 4+ 1) is obvious. For the induction step, assume that
the claim is true for some k € {1,2,...n — 1}. We then have

Pr[l; #a,Iy # a, ..., Ix11 # a
=Pr[ly41 #a| L #a,..., Iy #a|Pr[l; #a,..., I} #a]
21— (kD)2 1—k
O 2A+1-k 2t + 1
241 —(k+1)
B 2t + 1 ’

which proves the claim.
To prove the claim of the lemma, we use induction again. The base case
Pr[l; = a] = (1)/(2t 4+ 1) is trivial. For the induction step, we may use the
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law of total probability and the first part of the proof to obtain

Prilys1=a]=Pry1=a| L #a,..., Iy #a]Pr[1 #a,..., I #a] +0

B 1 2+1—k
2%+ 1—k 2t+1
1
S ||
2 + 1

Protocol 1: One-round RMT (using list-decoding)

This protocol allows Alice to reliably send a symbols of a finite field F to
Bob by using n = 2t + 1 channels, ¢ of which may be controlled by an
adversary. The parameter a must be sufficiently small such that applying
the Guruswami-Sudan algorithm on a [n, a] Reed-Solomon code allows cor-
rection of ¢ errors with a list of size L = O(1). The protocol relies on an
e-almost universal hash family H.

1. The message m € F* is encoded using a [n,a] Reed Solomon code,
yielding the codeword (s1, $2, ..., Sy).

2. Fori=1,2,...,n, Alice samples a random key k; € F", and computes

3. Across the i'th channel, Alice transmits {s;, k;, v;}.

4. Bob receives the possibly modified values {s}, kf, v/} for i = 1,2,... n.
He uses the Guruswami-Sudan algorithm on the word (s, s,,...,s))
to obtain a list of L potential messages m;, my, ..., my.

5. For each of the L messages, Bob checks that m; agrees with at least
t + 1 of the hash values v;. If not, he removes m; from the list.

6. If only a single m; remains, Bob outputs this message. Otherwise, the
protocol has failed.
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Protocol 2: One-round RMT-protocol (using erasure-decoding)

This protocol allows Alice to reliably send ab symbols of a finite field F to
Bob in one round by using n = 2t + 1 channels, ¢ of which may be controlled
by an adversary. Beforehand, Alice and Bob have agreed upon a parameter
e € N, which satisfies e < t+ 1 —b. Additionally, they agree on an e-almost
universal hash family H.

1. The message is represented as a matrix M € F**® and each row is
encoded using an [n, b] Reed-Solomon code over F.

2. For each column s; of the resulting codewords, Alice samples uniformly
and independently n keys {ki1, ki2, . . ., kin} and computes vi; = hy,;(s;)
for each j € {1,2,...,n}.

3. Across the i’th channel, Alice transmits {s;} U {kj;, vji}i=12..n-

4. Bob receives the possibly modified values {s}} U {k/;, v};}j=12,..n for
i=1,2,...,n. For each i, he compares the tag v; received from the
j’th channel to the hash value hy, (s}). If these disagree for more than
t channels j € {1,2,...,n}, he will mark s; as modified.

5. For each row in S’, Bob computes the syndrome to check if it contains
errors. Depending on the result, he proceeds with one of the three
following steps.

a) The syndrome is zero: S’ contains no errors, meaning that
Bob can simply use polynomial interpolation to recover the mes-
sage.

b) The syndrome is nonzero, and S’ contains at least ¢ — e
erased columns: Bob uses a decoding algorithm for Reed-
Solomon codes to correct the erasures and errors, hereby recov-
ering the message.

¢) The syndrome is nonzero, and S’ contains less than ¢ —e
erased columns: Too many modified channels have passed the
integrity checks. The protocol has failed.
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Message Percent of

Protocol Field size . . Parameters Bits transmitted
dimension broadcast
1 22048 1 n=1 18432 300.0 %
2 2064 (16,2) n=2,e=0 5376 87.5%
2 232 (32,2) n=3e=0 4800 78.1%
2 216 (64,2) n=9e=0 5664 92.2%

Table 2: Examples of performance of Protocols 1 and 2 when sending a message
consisting of 2048 bits in the case t = 1. All protocols achieve a reliability of 2780,

Broadcast costs 6144 bits.

Protocol Field size Message Parameters Bits transmitted Percent of
dimension broadcast

1 28000000 1 n=1 72000000 300.0%

264 (62500,2) n=2,e=0 12002304 50.0 %

2 232 (125000,2) n=6,e=0 12003456 50.0 %

Table 3: Examples of performance of Protocols 1 and 2 when sending a 1 megabyte
message (8000000 bits) in the case t = 1. All protocols achieve a reliability of 2780.

Broadcast costs 24000000 bits.

Protocol Field size Message Parameters Bits transmitted Percent of
dimension broadcast

1 226 10 n=4 47034 91.4%

2 216 (1,101) n=06,e=0 7760208 1508.1 %

2 28 (1,62) n=11,e=39 7112184 1382.2%

Table 4: Examples of performance of Protocols 1 and 2 when sending a 256 bit message
in the case t = 100. All protocols achieve a reliability of 2730, Broadcast costs 51456

bits.
Protocol Field size Message Parameters  Bits transmitted Percent of
dimension broadcast
1 2195122 41 n=1 117658566 7.3%
2 264 (1238,101) n=2,e=0 26268288 1.6%
2 232 (2476,101) n=5,e=0 28853952 1.8%
2 216 (5000,100) n=25,e=1 48400800 3.0%

Table 5: Examples of performance of Protocols 1 and 2 when sending a 1 megabyte

message (8000000 bits) in the case ¢ = 100. All protocols achieve a reliability of

Broadcast costs 1608000000 bits.
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