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Abstract

In this paper, we study the construction of quantum codes by applying Steane-
enlargement to codes from the Hermitian function field. We cover Steane-
enlargement of both usual one-point Hermitian codes and of order bound im-
proved Hermitian codes. In particular, the paper contains two constructions of
quantum codes whose parameters are described by explicit formulae, and we
show that these codes compare favourably to existing, comparable constructions
in the literature. Furthermore, a number of the new codes meet or even exceed
the quantum Gilbert-Varshamov bound.
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1 Introduction

The prospect of quantum computers potentially surpassing the computa-
tional abilities of classical computers has spawned much interest in studying
and building large-scale quantum computers. Since such quantum systems
would be very susceptible to disturbances from the environment and to im-
perfections in the quantum gates acting on the system, the implementation
of a working quantum computer requires some form of error-correction. This
has led to the study of quantum error-correcting codes, and although such
codes are conceptually similar to their classical brethren, their construction
calls for different techniques. Nevertheless, results have been found that link
classical codes to quantum ones, suggesting that good quantum codes may
be found by considering good classical codes.

A well-known class of algebraic geometric codes is the one-point codes
from the Hermitian function field. For these one-point Hermitian codes,
one of the simplest bounds on the minimal distance is the Goppa bound.
For codes of sufficiently large dimension, however, the Goppa bound does
not give the true minimal distance, and the order bound for dual codes [5,
12] and for primary codes [1, 9, 10] give more information on the minimal
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distance of the codes. These improved bounds also give rise to a family of
improved codes with designed minimal distances, and we shall refer to such
codes as order bound improved codes.

The construction of quantum codes from one-point Hermitian codes has
already been considered in [21], and from order bound improved Hermitian
codes in [3]. Neither of these works, however, explore the potential benefit
from applying Steane-enlargement to the codes under consideration. Thus,
this paper will address this question, and describe the quantum codes that
can be obtained in this manner.

The work is structured as follows. Section 2 contains the preliminary
theory on quantum codes and order bound improved Hermitian codes that
will be necessary in the subsequent sections. Afterwards, Section 3 covers the
results of applying Steane-enlargement to one-point Hermitian codes and or-
der bound improved Hermitian codes. The parameters of the resulting codes
are then compared to codes already in the literature and to the quantum
Gilbert-Varshamov bound in Section 4. Section 5 contains the concluding
remarks.

2 Preliminaries

In this section, we shall reiterate the necessary definitions and results re-
garding both quantum error-correcting codes and order bound improved
Hermitian codes. For both of these, we will be relying on nested pairs of
classical codes, and on the relative distance of such pairs. Thus, recall that
for classical, linear codes C2 ⊊ C1, we define the relative distance of the pair
as

d(C1, C2) = min{wH(c) | c ∈ C1 \ C2},

where wH denotes the Hamming weight.

Quantum codes

A k-dimensional quantum code of length n over Fq is a qk-dimensional
subspace of the Hilbert space Cqn . This space is subject to phase-shift
errors, bit-flip errors, and combinations thereof. For a quantum code, we
define its two minimal distances dz and dx as the maximal integers such that
the code allows simultaneous detection of any dz − 1 phase-shift errors and
any dx − 1 bit-flip errors. When such a code has length n and dimension k,
we refer to it as an [[n, k, dz/dx]]q-quantum code.

The literature contains many works based on the assumption that it is
not necessary to distinguish between the two types of errors. Thus, the
quantum code is only associated with a single minimal distance. That is, we
say that its minimal distance is d = min{dz, dx}, and the notation for the
parameters is presented slightly more compactly as [[n, k, d]]q. In this case,
we refer to the quantum code as being symmetric, and in the previous case
we refer to it as being asymmetric.
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One of the commonly used constructions of quantum codes was provided
by Calderbank, Shor, and Steane [2, 22] and relies on a dual-containing,
classical error-correcting code in order to obtain a quantum stabilizer code.
That is, it relies on a classical code C which contains its Euclidean dual
C⊥. It was later shown that the dual-containing code can be replaced by a
pair of nested codes, giving asymmetric quantum codes. This generalized
CSS-construction is captured in the following theorem found in [20].

Theorem 1. Given Fq-linear codes C2 ⊊ C1 of length n and codimension ℓ,
the CSS-construction ensures the existence of an asymmetric quantum code
with parameters

[[n, ℓ, dz/dx]]q

where dz = d(C1, C2) and dx = d(C⊥
2 , C⊥

1 ).

Corollary 2. If the [n, k, d] linear code C ⊆ Fn
q is dual-containing, then a

[[n, 2k − n, d]]q

symmetric quantum code exists.

When the CSS-construction is applied to a dual-containing binary linear code
as in Corollary 2, Steane [23] proposed a procedure whereby the dimension of
the resulting quantum code may be increased. In the best case, this can be
done with little or no decrease in the minimal distance of the quantum code.
This procedure – eponymously named Steane-enlargement in the literature –
has later been generalized to q-ary codes as well [11, 17].

Theorem 3. Consider a linear [n, k] code C ⊆ Fn
q that contains its Euclidean

dual C⊥. If C ′ is an [n, k′] code such that C ⊊ C ′ and k′ ≥ k + 2, then an[︂[︂
n, k + k′ − n,≥ min

{︁
d,
⌈︁
(1 + 1

q
)d′

⌉︁}︁]︂]︂
q

quantum code exists with d = d(C, C ′⊥) and d′ = d(C ′, C ′⊥).

When presenting the parameters of a Steane-enlarged code in propositions of
this paper, we will often state the dimension in the form 2k−n+(k′−k). In
this way, we highlight the dimension increase since 2k − n is the dimension
of the non-enlarged quantum code.

Order bound improved Hermitian codes

We first recall a number of definitions regarding the Hermitian function field.
For more details, the reader is referred to [24]. The Hermitian function
field H over Fq2 is the function field Fq2(X, Y ) defined by the equation
Xq+1 = Y q + Y . It is well-known that H has q3 + 1 rational places, which
we will denote by P1, P2, . . . , Pq3 , Q where Q is the unique common pole of
X and Y . A divisor of a function field is a formal sum of places, and for the
purpose of coding theory the divisor D = P1 + P2 + · · ·+ Pn where n = q3

is commonly used.
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For any integer λ, the Riemann-Roch space

L(λQ) = {f ∈ H | (f) ≥ −λQ} ∪ {0}

contains – in addition to zero – all the elements of H that have pole order
at most λ in Q and no other poles. Here, (f) is the principal divisor of f .
The one-point algebraic geometric code associated with the divisors D and
λQ is then

CL(D,λQ) = {(f(P1), f(P2), . . . , f(Pn)) | f ∈ L(λQ)},

where f(Pi) denotes the residue class map. Since the support of D con-
tains only rational places and none of these are Q, it may be shown that
CL(D,λQ) ⊆ Fn

q2 and that it is indeed a linear code.
The codes defined below rely heavily on the Weierstraß semigroup of Q.

We denote this by H(Q), and it contains the non-negative integers λ such
that −νQ(f) = λ for some f ∈

⋃︁∞
i=0 L(iQ). As in [3, 10], we consider a

special subset of H(Q), namely

H∗(Q) = {λ ∈ H(Q) | CL(D,λQ) ̸= CL(D, (λ− 1)Q)}.

It may be shown that in fact

H∗(Q) = {iq + j(q + 1) | 0 ≤ i < q2, 0 ≤ j < q}. (1)

Now, fix an element fλ ∈ L(λQ) \ L((λ − 1)Q) for each λ ∈ H∗(Q), and
define the map σ : H∗(Q) → N given by

σ(iq + j(q + 1)) =

{︄
q3 − iq − j(q + 1) if 0 ≤ i < q2 − q

(q2 − i)(q − j) if q2 − q ≤ i < q2
. (2)

This map is the order bound for primary Hermitian codes, and it provides
a lower bound on the weight of codewords. In particular, any codeword in
CL(D,λQ)\CL(D, (λ−1)Q) has weight at least σ(λ). Thus, by strategically
picking out only those codewords that are guaranteed to have a certain
designed distance, it is possible to construct an improved primary code

Ẽ(δ) = SpanFq2
{(fλ(P1), fλ(P2), . . . , fλ(Pn)) | σ(λ) ≥ δ}.

Furthermore, it was shown in [3] as a special case of [9] that Ẽ(δ) has minimal
distance exactly δ whenever δ ∈ σ(H∗(Q)).

For the order bound to produce an improved code, the designed distance
must be sufficiently small. Otherwise, the code Ẽ(δ) simply corresponds to
one of the usual one-point Hermitian codes. This correspondence is given in
the following result from [3; Cor. 4].

Lemma 4. For δ > q2−q we have Ẽ(δ) = CL(D, (q3−δ)Q), but CL(D, (q3−
(q2 − q))Q) is strictly contained in Ẽ(q2 − q).
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For δ ≤ q2−q, the work [3] contains a lower bound on the dimension of Ẽ(δ).
In Proposition 6 below, we give an explicit formula describing the dimension
in this case. This formula relies on the number of (number theoretic) divisors
of a certain type, as specified in the following definition.

Definition 5. For n ∈ Z+, we let τ (q)(n) denote the number of divisors d
of n such that 0 ≤ d ≤ q and n/d ≤ q.

From the definition it should be clear that τ (q)(n) can be computed in O(q)
operations.

Proposition 6. Let 1 ≤ δ ≤ q2, and write δ − 1 = aq + b for 0 ≤ b < q.
Then

dim(Ẽ(δ)) = q3 − q2 − a(a− 1)

2
−min{a, b}+

q2∑︂
i=δ

τ (q)(i).

Proof. We give the proof by partitioning H∗(Q) in three disjoint sets:

Λ1 = {iq + j(q + 1) ∈ H∗(Q) | i+ j < q2 − q, 0 ≤ i < q2 − q, 0 ≤ j < q}
Λ2 = {iq + j(q + 1) ∈ H∗(Q) | i+ j ≥ q2 − q, 0 ≤ i < q2 − q, 0 ≤ j < q}
Λ3 = {iq + j(q + 1) ∈ H∗(Q) | q2 − q ≤ i < q2, 0 ≤ j < q}.

We first determine the cardinality of Λ2. Considering some iq+j(q+1) ∈ Λ2,
and writing i = q2 − q − k, there are q − k possible values of j. There are
q − 1 such integers k since q2 − 2q + 1 ≤ i < q2 − q within the set Λ2. This
implies that

|Λ2| =
q−1∑︂
k=1

(q − k) =
q(q − 1)

2
= g,

where g is the genus of the Hermitian function field. From this, it is also
seen that |Λ1| = q3 − q2 − |Λ2| = q3 − q2 − g.

All elements λ of Λ1 satisfy σ(λ) = q3−λ. The largest element λ′ in Λ1 is
given by λ′ = (q2 − 2q)q+(q− 1)(q+1), which has σ(λ′) = q2 +1. Thus, all
elements of Λ1 have σ(λ) ≥ δ, meaning that Λ1 contributes |Λ1| = q3−q2−g
to the dimension of Ẽ(δ).

In order to determine the number of elements in Λ2 that satisfy σ(λ) ≥ δ,
we compute |Λ2|−|{λ ∈ Λ2 | σ(λ) < δ}|. As was the case for Λ1, all elements
of Λ2 have σ(λ) = q3 − λ. From this it follows that

σ(Λ2) = {q+1, 2q+1, 2q+2, 3q+1, 3q+2, 3q+3, 4q+1, . . . , (q−1)q+(q−1)}.

Combining this with the assumption that δ− 1 = aq+ b, where both a and b
are non-negative, the number of elements in σ(Λ2) smaller than δ is exactly

a−1∑︂
i=1

i+min{a, b} =
a(a− 1)

2
+ min{a, b}.
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Because the total number of elements is |Λ2| = g, the set Λ2 contributes
g − a(a− 1)/2−min{a, b} to the dimension.

Finally, consider σ(Λ3) = {σ(λ) | λ ∈ Λ3} as a multiset. We will count
(with multiplicity) the number of elements s ∈ σ(Λ3) with s ≥ δ. Observe
that σ(λ) = (q2− i)(q− j) for all the elements λ = iq+ j(q+1) ∈ Λ3. Hence,
s ∈ σ(Λ3), if and only if s = d · s

d
where d ≤ q and s

d
≤ q. Since there are

τ (q)(s) such divisors d, it follows that the multiplicity of s in σ(Λ3) is given
by τ (q)(s). Subsequently, the number of elements satisfying s ≥ δ is

q2∑︂
s=δ

τ (q)(s).

By summing the contribution from each of the sets Λ1, Λ2, and Λ3, we obtain
the dimension as claimed.

We note that the dimension formula in Proposition 6 does not provide an
efficient method for computing the dimension of the code Ẽ(δ). Since the
set Λ3 defined in the proof has q2 elements, we can loop over all of these
and compute the σ-value of each in Θ(q2) operations, thus determining the
dimension of Ẽ(δ). Using the formula in Proposition 6, however, requires the
computation of τ (q)(s) for up to q2 values of s. This gives a total complexity
of O(q3) operations. The formula in Proposition 6 does, however, provide
an advantage when we are not interested in a dimension, but rather certain
codimensions as will be the case in Section 3. Here, we will only need to
compute τ (q) for m values, where m is a small integer; typically m = 1 or
m = 2.

If only a lower bound for the dimension is needed, Lemma 6 of [3] implies
that the sum in Proposition 6 can be bounded below by q2−⌊δ+ δ ln(q2/δ)⌋
for q ≤ δ < q2 and by q2 − ⌊δ + δ ln(δ)⌋ for δ < q.

3 Steane-enlargement of Hermitian codes

In order to apply Steane-enlargement to the codes defined in Section 2, we
now determine a necessary and sufficient condition for Ẽ(δ) to be dual-
containing. While this is possible to do by considering the improved codes
directly, it is easier to prove via a condition for the usual one-point Hermitian
codes to be dual-containing. The latter is well-known, and the following
result was given in [25], and can also be found in [24; Prop. 8.3.2].

Proposition 7. The code CL(D, (q3 − δ)Q) is dual-containing, if and only
if

δ ≤
⌊︃
1

2
(q3 − q2 + q)

⌋︃
+ 1. (3)

Corollary 8. The code Ẽ(δ) is dual-containing, if and only if δ satisfies (3).

Proof. For δ > q2 − q, Lemma 4 ensures that Ẽ(δ) = CL(D, (q3 − δ)Q), and
the result follows from Proposition 7. For smaller values of δ, the result
follows from the observation that Ẽ(q2 − q + 1) ⊊ Ẽ(δ).
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In Theorem 3, the relative distances d(C, C ′⊥) and d(C ′, C ′⊥) of the code pairs
are used to determine the distance of the resulting quantum code. In the case
of one-point Hermitian codes and order bound improved Hermitian codes,
however, these specific relative distances coincide with the corresponding
non-relative distances. To see this, consider two codes C and C ′ that are
either of the form CL(D,λQ) or Ẽ(δ). In order to apply Theorem 3, we
must require C⊥ ⊊ C ⊊ C ′, and we claim that this implies d(C, C ′⊥) = d(C)
and d(C ′, C ′⊥) = d(C ′). Indeed, since C is dual-containing, Proposition 7 and
Corollary 8 ensure that it contains the smallest dual-containing Hermitian
code. That is, CL(D, (q3 − δmax)Q) ⊆ C where δmax =

⌊︁
1
2
(q3 − q2 + q)

⌋︁
+ 1

as in (3). This observation combined with C ⊊ C ′ implies the inclusion
C ′⊥ ⊊ CL(D, (q3−δmax)Q), which in turn gives C ′⊥ ⊆ CL(D, (q3−δmax−1)Q).
Thus, every codeword of C ′⊥ has Hamming weight at least d(CL(D, (q3 −
δmax − 1)Q)) = δmax + 1. This exceeds both d(C) and d(C ′), and our claim
on the relative distances follows. For this reason, we only need to consider
the non-relative distances in the proofs below.

In the following proposition, we explore the Steane-enlargement from
Theorem 3 applied to the usual one-point Hermitian codes. That is, we show
by how much the dimension of the symmetric quantum error correcting code
can be increased without decreasing its minimal distance. Before giving the
result itself, we state the following lemma, which follows from [26].

Lemma 9. Let g = q(q − 1)/2 be the genus of the Hermitian function field.
If λ ∈ N satisfies 2g ≤ λ < q3, then λ ∈ H∗(Q).

Proposition 10. Assume that δ satisfies (3), and additionally that δ ≥
q2 + 3. If k denotes the dimension of CL(D, (q3 − δ)Q), then there exists a
quantum code with parameters[︂[︂

q3, 2k − q3 +
⌈︁

δ−1
q2+1

⌉︁
,≥ δ

]︂]︂
q2
. (4)

Proof. According to Proposition 7, the code CL(D, (q3−δ)Q) is dual-contain-
ing. Letting δ′ = δ−⌈(δ−1)/(q2+1)⌉, it is also seen that CL(D, (q3−δ)Q) ⊆
CL(D, (q3 − δ′)Q). Lemma 9 ensures that the ⌈(δ − 1)/(q2 + 1)⌉ integers
δ − 1, δ − 2, . . . , δ′ are all included in H∗(Q), meaning that the dimension
of CL(D, (q3 − δ′)Q) is k + ⌈(δ − 1)/(q2 + 1)⌉ ≥ k + 2. Thus, we can apply
Theorem 3 to obtain a quantum code over Fq2 of length and dimension as
in (4). This code has minimal distance at least δ since(︃

1 +
1

q2

)︃
δ′ >

(︃
1 +

1

q2

)︃(︃
δ − δ − 1

q2 + 1
− 1

)︃
= δ − 1,

and since Lemma 4 ensures that d
(︁
CL(D, (q3 − δ)Q)

)︁
= d(Ẽ(δ)) = δ.

We now turn our attention to the order bound improved codes, and begin by
considering the case where both codes can be described as improved codes.
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Proposition 11. Assume that δ ∈ σ(H∗(Q)), and that 2 ≤ δ ≤ q2. Let k
denote the dimension of Ẽ(δ), and choose an m ∈ {1, 2, . . . , δ − 1}. Write
δ − 1 = aq + b and δ −m− 1 = a′q + b′ such that 0 ≤ b, b′ < q, and define

K = min{a, b} −min{a′, b′}+ a(a− 1)− a′(a′ − 1)

2
+

m∑︂
i=1

τ (q)(δ − i). (5)

If K ≥ 2, then there exists a [[q3, 2k− q3 +K,≥ δ−m+1]]q2 quantum code.

Proof. Consider any m such that 1 ≤ m < δ, and define δ′ = δ − m. By
Corollary 8, the code Ẽ(δ) is dual-containing. Furthermore, Ẽ(δ) ⊆ Ẽ(δ′),
and Proposition 6 implies that the dimension difference is dim(Ẽ(δ′)) −
dim(Ẽ(δ)) = K. Thus, if K ≥ 2, we can apply Theorem 3 to obtain a
quantum code, whose dimension is 2k − q3 +K. To determine its minimal
distance, we see that⌈︃(︃

1 +
1

q2

)︃
δ′
⌉︃
=

⌈︃
(δ −m) +

δ −m

q2

⌉︃
= δ −m+ 1.

The result follows from the fact that min{δ, δ −m+ 1} = δ −m+ 1.

To fully describe the quantum codes that can be constructed using the
order bound improved codes, it is also necessary to consider the case where
an ordinary one-point Hermitian code is enlarged to an improved code.
Otherwise, we would neglect certain cases where the order bound improved
codes are in some sense ‘too good’ to be used for enlargement as shown in
the following example.

Example 1. Consider the code pair CL(D, 52Q) ⊊ CL(D, 54Q) over F16.
These codes have codimension 2, and CL(D, 52Q) is dual-containing, meaning
that we can apply Theorem 3 to obtain a quantum code of dimension 2 · 47−
64 + 2 = 32 and minimal distance d = min{12, (1 + 1/16) · 10} = 11. Using
improved codes only, it is not possible to obtain as good parameters. The
reason for this is that the codimension between Ẽ(12) and Ẽ(10) is only 1.
In fact, we have the inclusions

CL(D, 52Q) ⊊ Ẽ(12) ⊊ Ẽ(10) = CL(D, 54Q).

Thus, if we restrict ourselves to improved codes only, we need to either start
from a code smaller than Ẽ(12) or enlarge to a code larger than Ẽ(10). But
neither option gives as good parameters as applying Steane-enlargement to
CL(D, 52Q) ⊊ Ẽ(10).

Despite the above observations, we shall refrain from stating the resulting
parameters in a separate proposition since it would essentially say no more
than Theorem 3. That is, such enlargements are generally not well-behaved
enough to give meaningful formulae for their codimensions and minimal
distances apart from the obvious ones, which already appear in Theorem 3.

To conclude this section, we give a few examples over F16 to illustrate
the constructions presented in this section.
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Example 2. Let q = 4, δ = 20, and consider the code CL(D, (q3 − δ)Q) =
CL(D, 44Q). As in Proposition 10 we set δ′ = 20−⌈19/17⌉ = 18, and apply
Theorem 3 to the pair CL(D, 44Q) ⊊ CL(D, 46Q). This yields a quantum
code with parameters [[64, 16, 20]]16. Had we instead applied Corollary 2
directly to CL(D, 44Q), the resulting parameters would be [[64, 14, 20]]16.

Example 3. The order bound improved code Ẽ(5) is dual-containing by
Corollary 8, and has parameters [64, 56, 5]16. This code is contained in Ẽ(4),
which is a [64, 59, 4]16-code. By applying the Steane-enlargement-technique,
Theorem 3, we obtain a quantum code of length 64, dimension 2 · 56− 64+3,
and a minimal distance of at least

min

{︃
5,

⌈︃(︃
1 +

1

16

)︃
4

⌉︃}︃
= 5.

That is, we can construct a [[64, 51, 5]]16-quantum code. If only one-point Her-
mitian codes are used, the best quantum code of dimension 51 has parameters
[[64, 51, 4]]16 stemming from CL(D, 60Q) ⊊ CL(D, 66Q).

A graphical representation of the code inclusions can be found in Figure 1.
Here, the top grid shows H∗(Q) arranged according to indices i and j as in
(1). The bottom grid shows the same arrangement, but with the map σ from
(2) applied to each element.

The different shaded regions indicate the basis vectors of the codes Ẽ(5),
and Ẽ(4) used above. The code Ẽ(5) is spanned by codewords on the form
(fλ(P1), fλ(P2), . . . , fλ(Pn)) with σ(λ) ≥ 5. The elements λ ∈ H(Q)∗ satisfy-
ing this are exactly those in the lightly shaded regions. The elements in the
darkly shaded region contains those λ ∈ H∗(Q) for which σ(λ) = 4, meaning
that the corresponding codewords (fλ(P1), fλ(P2), . . . , fλ(Pn)) are in Ẽ(4),
but not in Ẽ(5).
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Figure 1. Graphical representation of the inclusions Ẽ(5) ⊊ Ẽ(4) over F16 from Ex-
ample 3. Additional explanation may be found within the example.
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4 Comparison with existing constructions

We will now compare the Steane-enlarged quantum codes from Section 3
to some of those already in the literature. In order to conserve space, the
examples presented in this section will primarily be those where the construc-
tions of the present paper improve upon existing constructions. This is not
meant to imply that such improvements can always be expected – the cited
works also contain specific examples of quantum codes whose parameters
exceed what can be obtained using the results in Section 3.

For each code presented here, its parameters will also be compared to
the Gilbert-Varshamov bound from [6].

Theorem 12. Let n > k ≥ 2 with n ≡ k (mod 2), and let d ≥ 2. Then
there exists a pure stabilizer quantum code [[n, k, d]]q if the inequality

d−1∑︂
i=1

(q2 − 1)i
(︃
n

i

)︃
< qn−k+2 − 1 (6)

is satisfied.

We will follow the same convention as [18] and write [[n, k, d]]‡q if the para-
meters (n, k, d) do not satisfy (6). That is, the ‡ indicates that the code
parameters exceed those that are guaranteed by the Gilbert-Varshamov
bound. If (6) instead holds for (n, k, d), but not for (n, k, d + 1), we will
denote the parameters of the code by [[n, k, d]]†q. As stated in Theorem 12,
these comparisons are only possible for n ≡ k (mod 2). For code parameters
(n, k, d) with n ̸≡ k (mod 2) we shall use the same notation, but applied to
(n, k − 1, d). We note that [13; Cor. 4.3] is another Gilbert-Varshamov-type
bound that allows n ̸≡ k (mod 2), but for the codes presented in the follow-
ing, Theorem 12 is stronger than [13; Cor. 4.3]. Therefore, only Theorem 12
will be used.

Example 4. Comparing the codes found in Example 2 to Theorem 12, we
obtain [[64, 16, 20]]‡16 and [[64, 14, 20]]†16. Thus, the Steane-enlarged code ex-
ceeds the Gilbert-Varshamov bound, whereas the CSS-code only meets the
bound.

Neither of the two codes presented in Example 3 meet or exceed the bound
of Theorem 12.

In the two following examples, we will focus on comparison of quantum codes
derived from the Hermitian function field. Specifically, we will compare the
Steane-enlarged codes from Section 3 with the CSS-codes considered in [3].

Example 5. For the order bound improved Hermitian codes from Section 3,
we give in Table 1 a number of examples where the Steane-enlargement in
Proposition 6 yields better parameters than those achievable in [3]. In all of
these examples, the construction of [3] gives an asymmetric quantum code
where dz − dx = 1. By using the Steane-enlargement technique, the minimal
distance dx can be increased by one, yielding a symmetric quantum code of
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the same dimension. That is, Steane-enlargement yields a code of parameters
[[n, k, d]]q2, where the construction of [3] yields [[n, k, d/(d− 1)]]q2. Had we
not applied Steane-enlargement in these cases, we would have to resort to
the lower of the minimal distances when considering symmetric codes.

All the codes given in Table 1 retain their original minimal distance
during enlargement, and the columns marked Dim. increase indicate the
increase in dimension when applying Theorem 3 rather than Corollary 2.

Example 6. To exemplify the advantage of using the order bound improved
codes and the Steane-enlargement technique, Table 2 shows a number of
possible quantum code parameters over F16 when using different constructions
based on the Hermitian function field. The codes in the first two columns stem
from the CSS-construction applied to the usual one-point Hermitian codes,
when bounding the distance by either the Goppa bound or the order bound.
The third and fourth columns show the possible quantum code parameters
when using order bound improved codes. In the third column, only the CSS-
construction is used, and in the fourth Steane-enlargement is applied. Codes
marked with ∗ have better parameters than all preceding codes in the same
row.

As is evident from the table, the use of the order bound gives more know-
ledge on the minimal distance in column two, but also provides even better
parameters when applying Steane-enlargement to the order bound improved
codes.

A different way to produce codes over F9 of length 27 is to consider codes
from a Cartesian product of size 3 · 9 = 27, e.g. F3 × F9, as described in
[7]. In the next example, we consider two such Cartesian products and show

Code Dim. increase

[[ 8, 4, 3]]‡4 2

[[ 27, 23, 3]]‡9 2

[[ 27, 19, 4]]†9 2

[[ 27, 11, 7]]†9 2

[[ 64, 60, 3]]‡16 2

[[ 64, 56, 4]]†16 2
[[ 64, 51, 5]]16 3

[[ 64, 40, 9]]†16 2
[[ 64, 36, 10]]16 2

[[ 64, 30, 13]]†16 2

[[125, 121, 3]]‡25 2

[[125, 117, 4]]†25 2
[[125, 112, 5]]25 3
[[125, 107, 6]]25 2
[[125, 97, 9]]25 2
[[125, 91, 11]]25 2
[[125, 79, 16]]25 2
[[125, 75, 17]]25 2

Code Dim. increase

[[125, 67, 21]]25 2

[[343, 339, 3]]‡49 2

[[343, 335, 4]]‡49 2

[[343, 330, 5]]†49 3
[[343, 325, 6]]49 2
[[343, 319, 7]]49 4
[[343, 313, 8]]49 2
[[343, 308, 9]]49 3
[[343, 289, 15]]49 2
[[343, 284, 16]]49 3
[[343, 271, 21]]49 2
[[343, 267, 22]]49 2
[[343, 258, 25]]49 3
[[343, 251, 29]]49 2
[[343, 244, 31]]49 3
[[343, 235, 36]]49 2
[[343, 231, 37]]49 2
[[343, 219, 43]]49 2

Table 1. Comparison between nearly symmetric codes obtained via the procedure in
Section 5 of [3] and the Steane enlarged codes from this paper. Further details are given
in Example 5.
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One-point codes Order bound improved

Goppa bound Order bound CSS Steane-enlargement

[[64, 30, 12]]16 [[64, 30, 12]]16 [[64, 30, 12]]16 [[64, 30, 13]]†16∗
[[64, 32, 11]]16 [[64, 32, 11]]16 [[64, 32, 12]]†16∗ [[64, 32, 11]]16
[[64, 34, 10]]16 [[64, 34, 10]]16 [[64, 34, 10]]16 [[64, 34, 10]]16
[[64, 36, 9]]16 [[64, 36, 9]]16 [[64, 36, 9]]16 [[64, 36, 10]]16∗
[[64, 38, 8]]16 [[64, 38, 9]]16∗ [[64, 38, 9]]16 [[64, 38, 9]]16
[[64, 39, 7]]16 [[64, 39, 9]]16∗ [[64, 39, 6]]16 [[64, 39, 9]]16
[[64, 40, 7]]16 [[64, 40, 8]]16∗ [[64, 40, 8]]16 [[64, 40, 9]]†16∗
[[64, 42, 6]]16 [[64, 42, 6]]16 [[64, 42, 8]]16∗ [[64, 42, 7]]16
[[64, 44, 5]]16 [[64, 44, 5]]16 [[64, 44, 6]]16∗ [[64, 44, 7]]16∗
[[64, 45, 4]]16 [[64, 45, 5]]16∗ [[64, 45, 5]]16 [[64, 45, 6]]16∗
[[64, 46, 4]]16 [[64, 46, 5]]16∗ [[64, 46, 6]]16∗ [[64, 46, 5]]16
[[64, 48, 3]]16 [[64, 48, 5]]16∗ [[64, 48, 5]]16 [[64, 48, 5]]16
[[64, 50, 2]]16 [[64, 50, 4]]16∗ [[64, 50, 4]]16 [[64, 50, 5]]16∗
[[64, 51, 0]]16 [[64, 51, 4]]16∗ [[64, 51, 4]]16 [[64, 51, 5]]16∗
[[64, 54, 0]]16 [[64, 54, 4]]16∗ [[64, 54, 4]]16 [[64, 54, 3]]16
[[64, 56, 0]]16 [[64, 56, 3]]16∗ [[64, 56, 3]]16 [[64, 56, 4]]†16∗
[[64, 58, 3]]†16 [[64, 58, 3]]†16∗ [[64, 58, 3]]†16 [[64, 58, 3]]†16
[[64, 60, 0]]16 [[64, 60, 2]]†16∗ [[64, 60, 2]]†16 [[64, 60, 3]]‡16∗
[[64, 62, 0]]16 [[64, 62, 2]]†16∗ [[64, 62, 2]]†16 [[64, 62, 2]]†16

Table 2. Comparison between different methods for constructing quantum codes from
the Hermitian function field over F16. Further details are given in Example 10.

how the resulting quantum code parameters compare against those of the
Steane-enlarged codes from Section 3.

Example 7. If we apply Theorem 3 to Ẽ(7) ⊊ Ẽ(6), we obtain a quantum
code with parameters [[27, 11, 7]]†9. Had we instead used the CSS-construction,
Theorem 1, the best parameters would be [[27, 9, 7]]†9 obtained from the code
Ẽ(7) = CL(D, 20Q). If we apply the CSS-construction to codes defined from
the Cartesian product F3 × F9, the best parameters with minimal distance
7 are [[27, 5, 7]]9. By considering Steane-enlargement of codes from such
Cartesian products as done in [4], the best parameters are instead [[27, 8, 7]]9.
Hence, the quantum code derived from Steane-enlargement of Hermitian codes
improves the dimension significantly compared to the other three methods.

Similar examples can be found over other fields. For instance, over F16

the Steane-enlargement of Ẽ(9) ⊊ Ẽ(8) produces parameters [[64, 40, 9]]†16,
whereas the CSS-construction applied to Hermitian codes yields [[64, 38, 9]]16.
The two Cartesian constructions give [[64, 32, 9]]16 and [[64, 35, 9]]16.

Instead of considering one-point algebraic geometric codes, it is also possible
to consider the more general t-point codes in the hope of finding better
parameters. The next example considers quantum codes from two- and
three-point codes.

Example 8. In [16], the authors give a general description of quantum
codes that can be obtained by applying Theorem 1 to nested t-point algebraic
geometric codes. They also give a number of corollaries [16; Cors. 3.3, 3.5,
3.6] that can readily be applied to the Hermitian function field to give specific
parameters. For instance, [16; Table 2] contains the two-point Hermitian
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Two-Point Code Three-Point Code Section 3

[[26, 16, 3]]9 [[25, 15, 3]]9 [[27, 23, 3]]‡9
[[26, 14, 4]]9 [[25, 13, 4]]9 [[27, 19, 4]]†9
[[26, 12, 5]]9 [[25, 11, 5]]9 [[27, 15, 5]]†9
[[26, 4, 9]]†9 [[25, 3, 9]]†9 [[27, 5, 9]]‡9
[[26, 2, 10]]†9 [[25, 1, 10]]†9 [[27, 3, 10]]‡9

Table 3. Examples of quantum codes from two- and three-point Hermitian codes over
F9 from [16; Cor. 3.5] and [16; Cor. 3.6], respectively, along with the comparable codes
from Section 3.

codes listed in the first column of Table 3. Turning to the three-point codes
produced by [16; Cor. 3.6], the quantum codes with the same distances as the
aforementioned two-point codes are given in the second column of Table 3.
Finally, the third column shows the parameters produced by applying The-
orem 3 to improved codes. The lengths of these are all one or two higher
than the corresponding quantum code from the two-point and three-point Her-
mitian codes, respectively, but as evident from Table 3 the dimensions are
significantly higher for small distances.

The last construction we will consider is La Guardia’s construction of quantum
generalized Reed-Solomon codes defined in [15]. These codes are asymmet-
ric, but as mentioned in Section 2 they can be considered as symmetric by
disregarding the highest of the two minimal distances.

Example 9. Figure 2 shows the best possible dimension that can be obtained
from three different methods given a desired minimal distance. The first
method is the Steane-enlargement described in Section 3, and the second is
the CSS-construction applied to Hermitian codes as in [3]. The final method
comes from [15; Thm. 7.1] which yields quantum generalized Reed-Solomon
codes. In this latter construction, codes of length q3 over Fq2 are produced by
choosing the defining parameters appropriately. But as noted in [7], better
parameters can commonly be found by searching for codes of shorter length
and then padding with zeros to obtain codes of length q3. Thus, Figure 2
shows the best parameters when using this trick.

As a final example, we will compare the codes from the current section to
the quantum Singleton bound [14, 19].

Theorem 13. Let C be a quantum code with parameters [[n, k, d]]q, where
k > 0. Then

2d ≤ n− k + 2.

Example 10. A number of the codes presented in the preceding examples
meet the quantum Singleton bound, Theorem 13. More precisely, this holds
true for the code [[27, 23, 3]]‡9 from Tables 1 and 3; the codes [[64, 60, 3]]‡16,
[[125, 121, 3]]‡25, and [[343, 339, 3]]‡49 from Table 1; and the codes [[64, 62, 2]]†16
and [[64, 60, 3]]‡16 from Table 2.
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5 Concluding remarks and acknowledgements

The results obtained in this work demonstrate that Steane-enlargement of
improved Hermitian codes can produce quantum codes with significantly
better parameters than other known constructions, especially for small de-
signed distances. It is interesting whether similar, or better, parameters
can be produced by the Steane-like technique from [8] when applied to such
codes, but we leave this question open.

The authors wish to thank the anonymous reviewers for their thorough
reading of the manuscript and their valuable suggestions.
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Figure 2. Plots showing the highest achievable dimension for a given minimal distance
using the methods from Section 3, [3], and [15; Thm. 7.1].
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