Dataanalyse - Lecture 1: Probability

Ege Rubak - rubak@math.aau.dk http://www.math.aau.dk/~rubak/teaching/2010/nano4

8. februar 2010

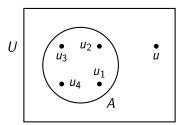
About the course	Probability	Stocastic variables	Distributions
Terminology			
Outcome,	U : The set of all possibl u : An element in the sa A : A collection of outco	mple space, $u \in U$.	
Examples			
Throw a die			
Sample space :	$U = \{1, 2, 3, 4, 5, 6\}$		
An outcome :	Get a 1, since $1 \in U$		
An event :	Get an even number, sir	ice $\{2,4,6\}\subseteq U$	
<u>Throw 2 dices</u>			
Sample space :	$U = \{(m, n) : n, m = 1,$	2, 3, 4, 5, 6	
	$= \{(1,1), (1,2), (1,3), ($	(1, 4), (1, 5), (1, 6), (2, 1),	}
An outcome :	Get two 6, since $(6, 6) \in$	U	
An event :	Get two equal numbers,	since	
	$\{(1,1),(2,2),(3,3),(4,4)\}$	$\{1), (5, 5), (6, 6)\} \subseteq U$	

About the course	Probability	Stocastic variables	Distributions
Terminology			
Outcome,	U : The set of all possibl u : An element in the sa A : A collection of outco	mple space, $u \in U$.	
Examples			
<u>Throw a die</u>			
Sample space :	$U = \{1, 2, 3, 4, 5, 6\}$		
An outcome :	Get a 1, since $1\in U$		
An event :	Get an even number, sin	ce $\{2,4,6\}\subseteq U$	
<u>Throw 2 dices</u>			
Sample space :	$U = \{(m, n) : n, m = 1,$		
		(1, 4), (1, 5), (1, 6), (2, 1),	}
An outcome :	Get two 6, since $(6,6) \in$	U	
An event :	Get two equal numbers,		
	$\{(1,1),(2,2),(3,3),(4,4)\}$	$\{(5,5),(6,6)\} \subseteq U$	

About the course	Probability	Stocastic variables	Distributions
Terminology			
	U : The set of all p u : An element in t	oossible outcomes. the sample space, $u \in U$.	

Event, A : A collection of outcomes, $A \subseteq U$.

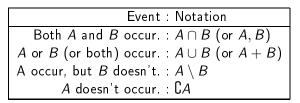
We illustrate this with set drawings (Venn diagrams):



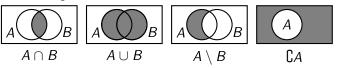
Here $A = \{u_1, u_2, u_3, u_4\}.$

About the course	Probability	Stocastic variables	Distributions
Events			

■ If A and B are events, we can make new events:



■ With set drawings:



About the course	Probability	Stocastic variables	Distributions
Probabilities			

- Let *U* be a sample space.
- \blacksquare *P* is a probability distribution on *U*, if for alle events *A* and *B*
 - 1. $0 \le P(A) \le 1$.
 - 2. $P(\emptyset) = 0.$
 - 3. P(U) = 1.
 - 4. $P(A \cup B) = P(A) + P(B)$, if $A \cap B = \emptyset$.
- P(A) is the probability of observing A.

About the course	Probability	Stocastic variables	Distributions
Conditional	probability		

- Let B be an event with P(B) > 0.
- The conditional probability of A given B is

$$P(A|B) = rac{P(A \cap B)}{P(B)} = P(A ext{ if we know } B ext{ has occured})$$

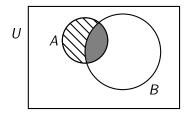
■ We let *B* be a new (and smaller) sample space.

About the course Probability Stocastic variables Distributions Conditional probability

- Let B be an event with P(B) > 0.
- The conditional probability of A given B is

$$P(A|B) = rac{P(A \cap B)}{P(B)} = P(A ext{ if we know } B ext{ has occured})$$

■ We let *B* be a new (and smaller) sample space.



Two events A and B are independent if

 $P(A \cap B) = P(A)P(B).$

■ If *P*(*A*) > 0 and *P*(*B*) > 0:

P(A) = P(A|B) and P(B) = P(B|A)

We don't get any information about A by knowing B (and vice versa).

About the course	Probability	Stocastic variables	Distributions
Independence			

Two events A and B are independent if

 $P(A \cap B) = P(A)P(B).$

■ If P(A) > 0 and P(B) > 0:

P(A) = P(A|B) and P(B) = P(B|A)

We don't get any information about A by knowing B (and vice versa).

About the course	Probability	Stocastic variables	Distributions
Independence			

Two events A and B are independent if

 $P(A \cap B) = P(A)P(B).$

■ If P(A) > 0 and P(B) > 0:

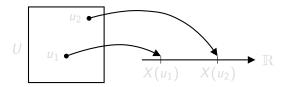
P(A) = P(A|B) and P(B) = P(B|A)

We don't get any information about A by knowing B (and vice versa).

About the course	Probability	Stocastic variables	Distributions
Stocastic variabl	es		

Also called a random variable.

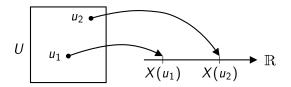
- Heuristic: A variable that takes different values with different probabilities.
- Rigorous: A function whoose set of definition is a sample space with a probability distribution



X is discrete if it only takes countably many values.
X is continuous if it takes uncountably many values.

About the course	Probability	Stocastic variables	Distributions
Stocastic variab	les		

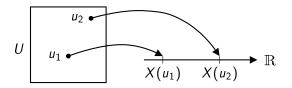
- Also called a random variable.
- Heuristic: A variable that takes different values with different probabilities.
- Rigorous: A function whoose set of definition is a sample space with a probability distribution



X is discrete if it only takes countably many values.
X is continuous if it takes uncountably many values.

About the course	Probability	Stocastic variables	Distributions
Stocastic variables	5		

- Also called a random variable.
- Heuristic: A variable that takes different values with different probabilities.
- Rigorous: A function whoose set of definition is a sample space with a probability distribution



- X is discrete if it only takes countably many values.
- X is continuous if it takes uncountably many values.

Stocastic variables

Examples:

Experiment	Stocastic variable	Туре
Throw a die	# eyes	discrete
Throw a die	\sum eyes	discrete
Weigh a person	Weight	continuous
Measure men in DK	height	continuous

About the course	Probability	Stocastic variables	Distributions
Distributions			

■ If X is a discrete stocastic variable, the probability function for X:

$$f(x) = P(X = x)$$

■ If Y is a continuous stocastic variable, f(y) is the density function for Y if

$$P(a \le Y \le b) = \int_{a}^{b} f(y) \, \mathrm{d}y$$

Note

• P(Y = c) = 0 for any number c.

▶ The "≤" can be replaced by "<".</p>

About the course	Probability	Stocastic variables	Distributions
Distributions			

■ If X is a discrete stocastic variable, the probability function for X:

$$f(x) = P(X = x)$$

If Y is a continuous stocastic variable, f(y) is the density function for Y if

$$P(a \le Y \le b) = \int_a^b f(y) \, \mathrm{d}y$$

Note

P(Y = c) = 0 for any number c

▶ Ihe "≤" can be replaced by "<'

About the course	Probability	Stocastic variables	Distributions
Distributions			

■ If X is a discrete stocastic variable, the probability function for X:

$$f(x) = P(X = x)$$

If Y is a continuous stocastic variable, f(y) is the density function for Y if

$$P(a \le Y \le b) = \int_a^b f(y) \, \mathrm{d}y$$

Note:

- P(Y = c) = 0 for any number c.
- ▶ The "≤" can be replaced by "<".

Two numbers are especially interesting for a stocastic variable X

■ Mean value/Expected value:

E(X)

■ Variance – the expected deviation from the mean value:

$$Var(X) = E((X - E(X))^2) = E(X^2) - E(X)^2$$

Two numbers are especially interesting for a discrete stocastic variable X with probability function f(x)

Mean value/Expected value:

$$E(X) = \sum_{\text{outcome}} xf(x)$$

■ Variance – the expected deviation from the mean value:

$$Var(X) = E((X - E(X))^2) = E(X^2) - E(X)^2$$
$$= \sum_{\text{outcome}} (x - E(X))^2 f(x)$$
$$= \sum_{\text{outcome}} x^2 f(x) - E(X)^2$$

About the course	Probability	Stocastic variables	Distributions
Characteristics			

Two numbers are especially interesting for a continuous stocastic variable X with density function f(x)

Mean value/Expected value:

$$E(X) = \int_{\text{outcome}} x f(x) \, \mathrm{d}x$$

■ Variance – the expected deviation from the mean value:

$$Var(X) = E((X - E(X))^2) = E(X^2) - E(X)^2$$
$$= \int_{outcome} (x - E(X))^2 f(x) dx$$
$$= \int_{outcome} x^2 f(x) dx - E(X)^2$$

About the course	Probability	Stocastic variables	Distributions
Several stocast	ic variables		

- X and Y are discrete stocastic variables with probability functions $f_X(x)$ and $f_Y(y)$, respectively.
- (X, Y) is a new stocastic variable.
- Joint probability function of X and Y, $f_{(X,Y)}(x,y)$:

$$P(a \leq X \leq b, c \leq Y \leq d) = \sum_{x=a}^{b} \sum_{y=c}^{d} f_{(X,Y)}(x,y).$$

$$f_X(x) = \sum_y f_{(X,Y)}(x,y)$$
, $f_Y(y) = \sum_x f_{(X,Y)}(x,y).$

About the course	Probability	Stocastic variables	Distributions
Several stocast	ic variables		

- X and Y are discrete stocastic variables with probability functions $f_X(x)$ and $f_Y(y)$, respectively.
- (X, Y) is a new stocastic variable.
- Joint probability function of X and Y, $f_{(X,Y)}(x,y)$:

$$P(a \leq X \leq b, c \leq Y \leq d) = \sum_{x=a}^{b} \sum_{y=c}^{d} f_{(X,Y)}(x,y).$$

$$f_X(x) = \sum_y f_{(X,Y)}(x,y) , \quad f_Y(y) = \sum_x f_{(X,Y)}(x,y).$$

About the course	Probability	Stocastic variables	Distributions
Several stocast	ic variables		

- X and Y are discrete stocastic variables with probability functions $f_X(x)$ and $f_Y(y)$, respectively.
- (X, Y) is a new stocastic variable.
- Joint probability function of X and Y, $f_{(X,Y)}(x,y)$:

$$P(a \leq X \leq b, c \leq Y \leq d) = \sum_{x=a}^{b} \sum_{y=c}^{d} f_{(X,Y)}(x,y).$$

$$f_X(x) = \sum_y f_{(X,Y)}(x,y) \quad , \quad f_Y(y) = \sum_x f_{(X,Y)}(x,y).$$

About the course	Probability	Stocastic variables	Distributions
Several stocasti	c variables		

- X and Y are continuous stocastic variables with densities $f_X(x)$ and $f_Y(y)$, respectively.
- (X, Y) is a new stocastic variable.
- Joint density of X and Y, $f_{(X,Y)}(x,y)$:

$$P(a \leq X \leq b, c \leq Y \leq d) = \int_a^b \int_c^d f_{(X,Y)}(x,y) \, \mathrm{d}x \, \mathrm{d}y.$$

$$f_X(x) = \int f_{(X,Y)}(x,y) \, dy$$
, $f_Y(y) = \int f_{(X,Y)}(x,y) \, dx$.

About the course	Probability	Stocastic variables	Distributions
Independence			

The conditional distribution of X given Y, $f_{X|Y}(x|y)$:

$$f_{X|Y}(x|y) = \frac{f_{(X,Y)}(x,y)}{f_Y(y)}$$

X and Y are independent if

$$f_X(x) = f_{X|Y}(x|y)$$

or

$$f_{(X,Y)}(x,y) = f_X(x)f_Y(y).$$

About the course	Probability	Stocastic variables	Distributions
Independence			

The conditional distribution of X given Y, $f_{X|Y}(x|y)$:

$$f_{X|Y}(x|y) = \frac{f_{(X,Y)}(x,y)}{f_Y(y)}$$

■ X and Y are independent if

$$f_X(x) = f_{X|Y}(x|y)$$

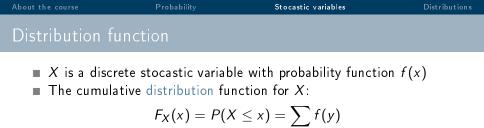
or

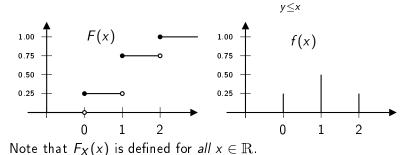
$$f_{(X,Y)}(x,y) = f_X(x)f_Y(y).$$

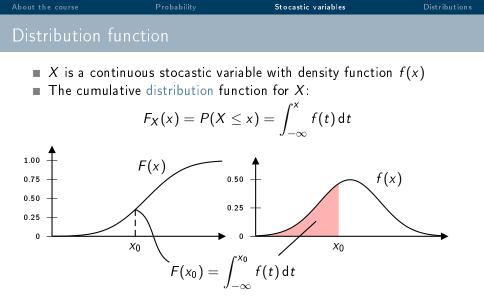
About the course	Probability	Stocastic variables	Distributions
Distribution	function		

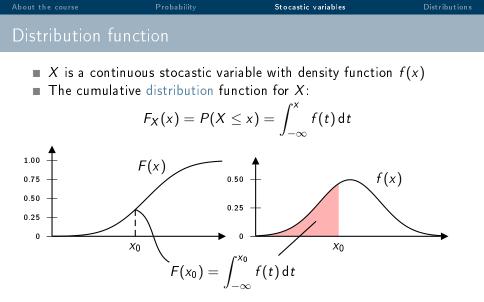
- X is a stocastic variable with function f(x)
- The cumulative distribution function for X:

 $F_X(x) = P(X \le x)$









Note that F'(x) = f(x)

About the course	Probability	Stocastic variables	Distributions
Fractiles			

- X is a stocastic variable with distribution function $F_X(x)$.
- For 0 the*p* $fractile is the number(s) <math>x_p$ where

$$F(x_p) = p.$$

- 50% fractile is called the median og 2. quartil.
- 25% and 75% fractiles are called 1. and 3. quartile, respectively.
- Fractiles for the normal distribution

About the course	Probability	Stocastic variables	Distributions
Fractiles			

- X is a stocastic variable with distribution function $F_X(x)$.
- For 0 the*p* $fractile is the number(s) <math>x_p$ where

$$F(x_p) = p.$$

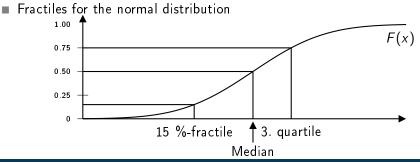
- 50% fractile is called the median og 2. quartil.
- 25% and 75% fractiles are called 1. and 3. quartile, respectively.
 Fractiles for the normal distribution

About the course	Probability	Stocastic variables	Distributions
Fractiles			

- X is a stocastic variable with distribution function $F_X(x)$.
- For 0 the*p* $fractile is the number(s) <math>x_p$ where

$$F(x_p)=p.$$

- 50% fractile is called the median og 2. quartil.
- 25% and 75% fractiles are called 1. and 3. quartile, respectively.



About the course	Probability	Stocastic variables	Distributions
Binomial	distribution		

- X is Bernoulli-distributed with parameter p if $X \in \{0, 1\}$ with P(X = 1) = p og P(X = 0) = 1 p.
- Let X₁, X₂,..., X_n be independent and Bernoulli distributed with parameter p.
- $S = X_1 + X_2 + \cdots + X_n$ is binomial distributed with parameters n and p (Notation: $X \sim B(n, p)$).
- Properties:
 - S takes values in $\{0, 1, 2, \ldots, n\}$.
 - S has probability function

$$P(S=k)=p^k(1-p)^{n-k}.$$

About the course	Probability	Stocastic variables	Distributions
Binomial dis	tribution		

- X is Bernoulli-distributed with parameter p if $X \in \{0, 1\}$ with P(X = 1) = p og P(X = 0) = 1 p.
- Let X₁, X₂,..., X_n be independent and Bernoulli distributed with parameter p.
- $S = X_1 + X_2 + \cdots + X_n$ is binomial distributed with parameters n and p (Notation: $X \sim B(n, p)$).
- Properties:
 - S takes values in $\{0, 1, 2, \ldots, n\}$.
 - S has probability function

$$P(S=k)=p^k(1-p)^{n-k}.$$

About the course Probability Stocastic variables Distributions Binomial distribution

- X is Bernoulli-distributed with parameter p if $X \in \{0, 1\}$ with P(X = 1) = p og P(X = 0) = 1 p.
- Let X₁, X₂,..., X_n be independent and Bernoulli distributed with parameter p.
- $S = X_1 + X_2 + \cdots + X_n$ is binomial distributed with parameters n and p (Notation: $X \sim B(n, p)$).

Properties:

- S takes values in $\{0, 1, 2, \ldots, n\}$.
- S has probability function

$$P(S=k)=p^k(1-p)^{n-k}.$$

About the course Probability Stocastic variables Distributions Binomial distribution

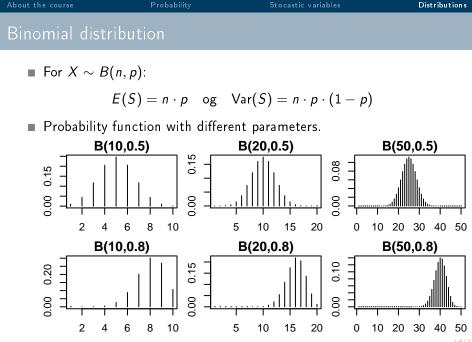
- X is Bernoulli-distributed with parameter p if $X \in \{0, 1\}$ with P(X = 1) = p og P(X = 0) = 1 p.
- Let X₁, X₂,..., X_n be independent and Bernoulli distributed with parameter p.
- $S = X_1 + X_2 + \cdots + X_n$ is binomial distributed with parameters n and p (Notation: $X \sim B(n, p)$).
- Properties:
 - S takes values in $\{0, 1, 2, \ldots, n\}$.
 - ► S has probability function

$$P(S=k) = \binom{n}{k} p^k (1-p)^{n-k}.$$

- X is Bernoulli-distributed with parameter p if $X \in \{0, 1\}$ with P(X = 1) = p og P(X = 0) = 1 p.
- Let X₁, X₂,..., X_n be independent and Bernoulli distributed with parameter p.
- $S = X_1 + X_2 + \cdots + X_n$ is binomial distributed with parameters n and p (Notation: $X \sim B(n, p)$).
- Properties:
 - *S* takes values in $\{0, 1, 2, ..., n\}$.
 - ► S has probability function

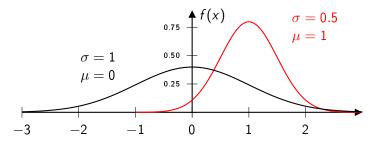
number of ways to choose *k* of *n*

$$P(S=k) = \binom{n}{k} p^k (1-p)^{n-k}.$$



• X is normal distributed with mean μ and variance σ^2 (notation: $X \sim N(\mu, \sigma^2)$) if is has density function

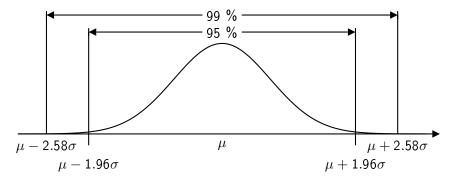
$$f(x) = rac{1}{\sqrt{2\pi\sigma^2}}e^{-rac{(x-\mu)^2}{2\sigma^2}}, \quad x \in \mathbb{R}$$



The normal distribution is the most important distribution you'll encounter!

About the course	Probability	Stocastic variables	Distributions
Normal distribu	ition		

- N(0,1) is the standard normal distribution.
- If $X \sim N(0,1)$ and $Y \sim \mu + \sigma X$, then $Y \sim N(\mu, \sigma^2)$.
- We have:



Normal distribution

Important features:

- Is determined by its mean value and variance.
- If $X_1 \sim N(\mu_1, \sigma_1^2)$ and $X_2 \sim N(\mu_2, \sigma_2^2)$ are independent:

$$X_1 + X_2 \sim N(\mu_1 + \mu_2, \sigma_1^2 + \sigma_2^2).$$

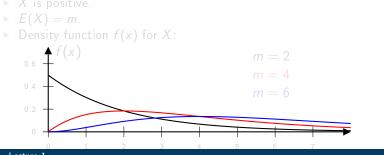
About the course	Probability	Stocastic variables	Distributions
χ^2 distribution			

X₁, X₂,..., X_m are independent, standard normal distributed.
 The sum

$$X = \sum_{i=1}^{m} X_i^2 = X_1^2 + X_2^2 + \dots + X_m^2$$

is χ^2 distributed with *m* degrees of freedom (notation: $X \sim \chi^2(m)$).

Note



About the course	Probability	Stocastic variables	Distributions
χ^2 distribution			

X₁, X₂,..., X_m are independent, standard normal distributed.
 The sum

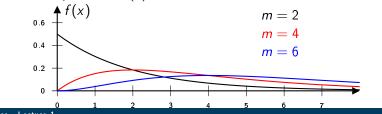
$$X = \sum_{i=1}^{m} X_i^2 = X_1^2 + X_2^2 + \dots + X_m^2$$

is χ^2 distributed with *m* degrees of freedom (notation: $X \sim \chi^2(m)$).

- Note:
 - ► X is positive.

•
$$E(X) = m$$
.

• Density function f(x) for X:



Dataanalyse - Lecture 1

Central limit theorem

Theorem (Central limit theorem)

The sum of many independent, identically distributed (iid) variables is approximately normal distributed.

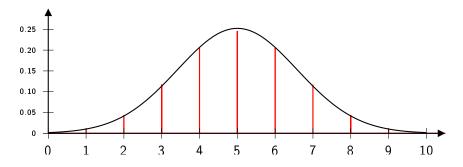
Note:

- The result is true no matter what distribution the terms in the sum follow.
- If each term is normal distributed, we can skip "approximately".
- "many" can be as few as 10.

Distributions

Central limit theorem – example

If n is big, B(n, p) is approx. N(np, np(1-p)).



Online examples: http://bcs.whfreeman.com/ips4e/cat_010/applets/CLT-Binomial.html http://www.stat.sc.edu/~west/javahtml/CLT.html