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Sampling Normal distributed data Confidence interval Hypothesis test Test in practice

Terminology

� Population: All the individuals we are interested in.
◮ E.g.: All companys in Denmark

� Sample: A subset of the population.
◮ E.g.: 50 randomly chosen companys.

� Parameter: A descriptive measure of the population.
◮ E.g.: Mean or variance.
◮ E.g.: The average number of employees in Danish companies.

� Sample statistic: A descriptive measure of the sample.
◮ E.g.: The average number of employees in the sample.

� Goal: Make conclusion about population by using sample.
◮ Method: Make conclusion about parameter from sample statistic.
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Sampling Normal distributed data Confidence interval Hypothesis test Test in practice

Sampling

� We want to do calculations with data.

� Observations are realizations of stocastics variables.

� We need to know the distribution of data.

X1 X2 · · · Xn

x1 x2 · · · xn

Terminology:

� X1, . . . ,Xn is a sample.

� x1, . . . , xn is an observed sample.
We also call this observations.
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Sampling Normal distributed data Confidence interval Hypothesis test Test in practice

Sampling

� We want to do calculations with data.

� Observations are realizations of stocastics variables.

� We need to know the distribution of data.

X1 X2 · · · Xn

x1 x2 · · · xn

Terminology when Xi ∼ N(µ, σ):

� X1, . . . ,Xn is a sample from a normal distribution N(µ, σ).

� x1, . . . , xn is an observed sample from a normal distribution
N(µ, σ).
We also call this observations.
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Sampling Normal distributed data Confidence interval Hypothesis test Test in practice

Estimator

� We have a identically distributed sample X1, . . . ,Xn.

� An estimator of a population parameter is a sample statistic used
to estimate the parameter.

� Estimators for mean and variance is X and S2, respectively:

X =
1

n

n
∑

i=1

Xi =
1

n
(X1 + X2 + · · · + Xn)

S2 =
1

n − 1

n
∑

i=1

(Xi − X )2 =
1

n − 1

(

n
∑

i=1

X 2

i − nX
2
)

� X and S2 are also stocastic variables.

� If E (X ) = µ and Var(X ) = σ2:

E (X ) = µ, Var(X ) =
σ2

n
og E (S2) = σ2.
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Sampling Normal distributed data Confidence interval Hypothesis test Test in practice

Estimates

� We have observed a sample x1, . . . , xn:

Xi ∼ N(µ, σ2)

� An estimate of a parameter is a certain value of a sample statistic.
� Estimator → estimate by Xi → xi :

X1 X2 · · · Xn X S2

x1 x2 · · · xn x s2

� We estimate µ and σ2 with x and s2, respectively:

x =
1

n

n
∑

i=1

xi =
1

n
(x1 + x2 + · · · + xn)

s2 =
1

n − 1

n
∑

i=1

(xi − x)2 =
1

n − 1

(

n
∑

i=1

x2

i − nx2

)
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Sampling Normal distributed data Confidence interval Hypothesis test Test in practice

Normally distributed data

... is our favorite situation!

� Easy calculations.

� Beatiful theory :-)

� So we also use it if data is approximately normal distributed.

Remember from last time:

� Mean and variance characterises the normal distribution.

� If X1 ∼ N(µ1, σ
2
1
) and X2 ∼ N(µ2, σ

2
2
) are independent:

aX1 + bX2 ∼ N(aµ1 + bµ2, a
2σ2

1 + b2σ2

2).
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Sampling Normal distributed data Confidence interval Hypothesis test Test in practice

Estimators for normal data

� We have a normal distributed sample with independent
observations:

Xi ∼ N(µ, σ2)

� Estimators for µ and σ2:

X =
1

n

n
∑

i=1

Xi =
1

n
(X1 + X2 + · · · + Xn) ∼ N(µ,

σ2

n
)

S2 =
1

n − 1

n
∑

i=1

(Xi − X )2 ∼ σ2

n − 1
χ2(n − 1)

� We have:

E (X ) = µ, Var(X ) =
σ2

n
og E (S2) = σ2, Var(S2) =

2σ4

n − 1

X and S2 are independent.
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Sampling Normal distributed data Confidence interval Hypothesis test Test in practice

Effect of more observations

X ∼ N(µ,
σ2

n
)

µ

Density for X

n = 1

n = 5

n = 10
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Sampling Normal distributed data Confidence interval Hypothesis test Test in practice

Estimates

� We have a normal distributed sample x1, . . . , xn:

Xi ∼ N(µ, σ2)

� We estimate µ and σ2 with x and s2:

x =
1

n

n
∑

i=1

xi =
1

n
(x1 + x2 + · · · + xn)

s2 =
1

n − 1

n
∑

i=1

(xi − x)2 =
1

n − 1

(

n
∑

i=1

x2

i − nx2

)

� We replace Xi with the observations xi .

X1 X2 · · · Xn X S2

x1 x2 · · · xn x s2
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Sampling Normal distributed data Confidence interval Hypothesis test Test in practice

Confidence interval

� A point estimate is not interesting alone.

� We want to say something about the uncertainty of the estimate.

� We need the distribution of the estimate.

� We are going to look at 2 confidence intervals:

1. µ in normal dsitribution with known σ.
2. µ in normal distribution with unknown σ.
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Sampling Normal distributed data Confidence interval Hypothesis test Test in practice

Confidence interval for µ with known σ

� Sample (X1, . . . ,Xn), Xi ∼ N(µ, σ2).

� Remember from last time: If Y ∼ N(µ, σ2) then Y−µ
σ ∼ N(0, 1):

P(−1.96 ≤ Y − µ

σ
≤ 1.96) = 0.95

� Remember: X ∼ N(µ, σ2

n
):

P
(

−1.96 ≤ X − µ

σ/
√

n
≤ 1.96

)

= 0.95

m
P

(

X − 1.96
σ√
n
≤ µ ≤ X + 1.96

σ√
n

)

= 0.95
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Sampling Normal distributed data Confidence interval Hypothesis test Test in practice

� What can we learn from

P
(

X − 1.96
σ√
n
≤ µ ≤ X + 1.96

σ√
n

)

= 0.95?

� The probability that X takes a value x , such that the interval
[x − 1.96 σ√

n
; x + 1.96 σ√

n
] contains µ, is 0.95.

◮ This interval is called a 95% confidence interval for µ.

� The interval is stocastic.

� Generally: 100(1 − α)% confidence interval for µ:

[x − |zα/2|
σ√
n
; x + |zα/2|

σ√
n
].

zα/2 is the α/2 fractile for standard normal distribution.

� Note the notation in the book is with η = (1 − α).
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Sampling Normal distributed data Confidence interval Hypothesis test Test in practice

Interpretation

� An experiment with sample size n is repeated k times:

1: x1,1, x1,2, . . . , x1,n → x1

2: x2,1, x2,2, . . . , x2,n → x2

...
k : xk,1, xk,2, . . . , xk,n → xk

� Evaluate 95% confidence interval for each of x1, x2, . . . , xk .

� We expect that 95% of confidence intervals contains µ.
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Sampling Normal distributed data Confidence interval Hypothesis test Test in practice

Illustration of confidence intervals

20 samples with 100 observations:

(x1,1, . . . , x1,100), . . . , (x20,1, . . . , x20,100), Xi ,j ∼ N(0, 2)

x i ,· =
1

100

100
∑

j=1

Xi ,j ∼ N(0,
2

10
)

b

1

b

2

b

3

b

4

b

5

b

6

b

7

b

8

b

9

b

10

b

11

b

12

b

13

b

14

b

15

b

16

b

17

b

18

b

19

b

20

0

0.2

0.4

0.6

0.8

-0.2

-0.4

-0.6

-0.8
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Sampling Normal distributed data Confidence interval Hypothesis test Test in practice

Facts about confidence intervals

� The smaller the better.

� More observations give smaller confidence intervals.

� Larger % gives larger confidence interval (95% CI is contained in
99% CI).
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Sampling Normal distributed data Confidence interval Hypothesis test Test in practice

t distribution

� U ∼ N(0, 1)

� W ∼ χ2(k)

� U and W are independent.

� Then

T =
U

√

W /k

is t distributed with k degrees of freedom (notation: T ∼ t(k)).

Density for t(k):

0.1

0.2

0.3

0.4

0 1 2 3 4−1−2−3−4

m = 1
m = 10

f (x)
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Sampling Normal distributed data Confidence interval Hypothesis test Test in practice

t distribution

� For T ∼ t(k) we have

E (T ) = 0 og Var(T ) =
k

k − 2
, for k > 2.

� The larger k , the more t(k) looks like N(0, 1).

0.1

0.2

0.3

0.4

0 1 2 3−1−2−3−4

f (x)
t(1)

t(10)

N(0, 1)
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Sampling Normal distributed data Confidence interval Hypothesis test Test in practice

Confidence interval for µ with unknown σ

Sample with (X1, . . . ,Xn) independent, Xi ∼ N(µ, σ2).

� We have: X ∼ N(µ, σ2/n) and S2 ∼ σ2

n−1
χ2(n − 1).

� Remember from before:

X − µ
√

S2/n
∼ t(n − 1)

� Like when σ is known:

P
(

−|tα/2| ≤
X − µ
√

S2/n
≤ |tα/2|

)

= 1 − α

m

P
(

X − t|α/2|
S√
n
≤ µ ≤ X + |tα/2|

S√
n

)

= 1 − α

tα/2 is α/2-fractile in t(n − 1) distribution.
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Sample with (X1, . . . ,Xn) independent, Xi ∼ N(µ, σ2).

� We have: X ∼ N(µ, σ2/n) and S2 ∼ σ2

n−1
χ2(n − 1).

� Remember from before:

X − µ
√

S2/n
∼ t(n − 1)

� Like when σ is known:

P
(

−|tα/2| ≤
X − µ
√

S2/n
≤ |tα/2|

)

= 1 − α

m

P
(

X − t|α/2|
S√
n
≤ µ ≤ X + |tα/2|

S√
n

)

= 1 − α

tα/2 is α/2-fractile in t(n − 1) distribution.
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Sampling Normal distributed data Confidence interval Hypothesis test Test in practice

� 100(1 − α)%-confidence interval for µ when σ is unknown:

[x − |tα/2|
s√
n
; x + |tα/2|

s√
n
]

� Note:
◮ |tα| > |zα| regardless of the degree of freedom.

◮ The confidence interval is greater than when we know σ

◮ Natural to introduce more uncertainty when two parameters are
unknown.

◮ When the number of degrees of freedom grows, tα → zα.
◮ With many observations, it doesn’t matter if σ is known or

unknown.
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Sampling Normal distributed data Confidence interval Hypothesis test Test in practice

Hypothesis testing

� A hypothesis is a statement that is either true or false
◮ The average income in Aalborg is at least 100.000 kr.
◮ The average height of males is the same in Sweden and Denmark.
◮ The proportion of female students is the same on computer

science and sociologi.
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Sampling Normal distributed data Confidence interval Hypothesis test Test in practice

Formulation of hypothesis

� We start with quantitative hypothesis:
◮ We are interested in a parameter θ.
◮ θ0 is a number.

� 3 kinds of hypothesis:

H0 : θ = θ0 H0 : θ ≥ θ0 H0 : θ ≤ θ0

H1 : θ 6= θ0 H1 : θ < θ0 H1 : θ > θ0

� H0 is called the null hypothesis.
H1 (sometimes noted HA) is called the alternative hypothesis.

� The sign by H1 determines if the test is 1- og 2-sided:
◮ “ 6=”: 2-sided test – we have 2 directions if H0 is rejected.
◮ “≥”, “≤”: 1-sidet test – we have 1 direction if H0 is rejected.
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Sampling Normal distributed data Confidence interval Hypothesis test Test in practice

Examples of hypothesis

Examples from before:

� The average income in Aalborg is at least 100.000 kr.

H0 : µincome ≥ 100.000

H1 : µincome < 100.000

� The average height of males is the same in Sweden and Denmark.

H0 : µS = µD

H1 : µS 6= µD

� The proportion of female students is the same on computer
science and sociologi.

H0 : pcs = ps

H1 : pcs 6= ps
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Sampling Normal distributed data Confidence interval Hypothesis test Test in practice

Types of errors

� We can make two types of errors:
◮ Type I error: Reject a true hypothesis.
◮ Type II error: Accept a false hypothesis.

Choice H0 is true H0 is false

Reject H0 Type I error No error
Accept H0 No error Type II error

� Type I is the worst error: “We would rather let a criminal go free
than put an innocent in prison”.

� Ideally we want a test where it is difficult to make errors.
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Sampling Normal distributed data Confidence interval Hypothesis test Test in practice

Errors

� Tests without errors do not exist!

� Furthermore:
◮ If a test rarely makes Type I errors, it (more) often makes Type II

errors.
◮ If a test rarely makes Type II errors, it (more) often makes Type I

errors.

� The chance of making errors decrease when the sample size
increase.
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Sampling Normal distributed data Confidence interval Hypothesis test Test in practice

Level of significance

� Level of significance:

α = P(Type I error) = P(reject H0 |H0 is true)

= P(reject H0 when H0 is true).

� α is chosen before we test.
◮ Commonly: α = 5%.
◮ Generally: Adapt α to the situation.

� We don’t control

β = P(Type II error) = P(accept H0 when H0 is false).
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Sampling Normal distributed data Confidence interval Hypothesis test Test in practice

Consequences of controlling

α = P(Type I error)

and not
β = P(Type II error)

� We have faith in our decision if we reject H0

� If H0 is not rejected, we cannot conclude that H0 is true.

� Terminology if H0 can’t be rejected:

Data does not allow us to reject the hypothesis H0.

We don’t say:

Data confirms the hypothesis H0.
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Sampling Normal distributed data Confidence interval Hypothesis test Test in practice

Decision rule

A decision rule is a rule, that tell us when to reject H0.

� Test statistic: Function that tells us if data supports H0.

� Critical values: Where the test statistic rejects H0.

Hypothesis: “Is the average height (µh) in Denmark 180 cm?”

H0 : µh = 180

H1 : µh 6= 180

Procedure:

� We have observations from 100 people, (x1, . . . , x100):

x1 x2 · · · x100

178 cm 183 cm · · · 175 cm

� Idea: See if the average x is close to 180.
◮ But what is “close”?
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Sampling Normal distributed data Confidence interval Hypothesis test Test in practice

� We have observations (x1, x2, . . . , x100), Xi ∼ N(µh, σ
2). Assume

that we know σ2 = 25.

� Estimate:

x =
1

100
(178 + 183 + · · · + 175) = 178.

� Remember:

Z =
X − µh

σ/
√

n
=

X − 180

1/2
∼ N(0, 1)

We assume H0 is true.

� Therefore:

P(180−|z0.025|
1

2
≤ X ≤ 180+|z0.025|

1

2
) ≈ P(179 ≤ X ≤ 181) = 0.95.
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� Remember:

Z =
X − µh

σ/
√

n
=

X − 180

1/2
∼ N(0, 1)

We assume H0 is true.

� Therefore:

P(180−|z0.025|
1

2
≤ X ≤ 180+|z0.025|

1

2
) ≈ P(179 ≤ X ≤ 181) = 0.95.

2.5% quantile

in N(0, 1)
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Sampling Normal distributed data Confidence interval Hypothesis test Test in practice

Conclusion

Putting the pieces together:

� Our hypothesis:

H0 : µh = 180

H1 : µh 6= 180

� If H0 is true, 95% of all samples with 100 persons has an average
between 179 and 181 cm.

� In our experiment:

1. The average is 178 cm.
2. This is an event that occurs in at most 5% of the samples
3. Conclusion: Our observation is very unlikely!

We reject H0.

� The level of significance is
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Conclusion

Putting the pieces together:

� Our hypothesis:

H0 : µh = 180

H1 : µh 6= 180

� If H0 is true, 95% of all samples with 100 persons has an average
between 179 and 181 cm.

� In our experiment:

1. The average is 178 cm.

2. This is an event that occurs in at most 5% of the samples

3. Conclusion: Our observation is very unlikely!
We reject H0.

� The level of significance is 5% .
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Sampling Normal distributed data Confidence interval Hypothesis test Test in practice

Test with unknown variance

� We have observations (x1, x2, . . . , xn), Xi ∼ N(µ, σ2). σ2 is
unknown

� Estimates:

x =
1

100
(178 + 183 + · · · + 175) = 178

s2 =
1

99

(

(178 − 178)2 + · · · + (175 − 178)2
)

= 25.

� Assume H0 is true. Remember:

T =
x − µ

s/
√

n
=

178 − µ

1/2
∼ t(99).

� Hence:

P(180−|t0.025|
1

2
≤ X ≤ 180+|t0.025|

1

2
) ≈ P(179 ≤ X ≤ 181) = 0.95.
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Sampling Normal distributed data Confidence interval Hypothesis test Test in practice

General decision rule for normal distributed data

Hypothesis:

H0 : µ = µ0

H1 : µ 6= µ0

Procedure for sample (x1, . . . , xn) with known variance σ2.

� Choose level of significance α.
� Calculate sample mean x .
� Check if

µ0 − |zα/2|
σ√
n
≤ x ≤ µ0 + |zα/2|

σ√
n

If yes: We cannot reject H0.
If no: Reject H0.

µ0

supports µ = µ0

supports µ < µ0 supports µ > µ0
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General decision rule for normal distributed data

Hypothesis:

H0 : µ = µ0

H1 : µ 6= µ0

Procedure for sample (x1, . . . , xn) with unknown variance.

� Choose level of significance α.
� Calculate sample mean x and standard deviation s.
� Check if

µ0 − |tα/2|
s√
n
≤ x ≤ µ0 + |tα/2|

s√
n

If yes: We cannot reject H0.
If no: Reject H0.
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Decision rule with confidence interval

Hypothesis:

H0 : µ = µ0

H1 : µ 6= µ0

Procedure for sample (x1, . . . , xn) with known variance σ2 and level of
significance α:

� Calculate sample mean x .

� Calculate confidence interval for µ:

[x − |zα/2|
σ√
n
; x + |zα/2|

σ√
n
]

� Is µ0 in the confidence interval?

If yes: We cannot reject H0.
If no: Reject H0.
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Decision rule with confidence interval

Hypothesis:

H0 : µ = µ0

H1 : µ 6= µ0

Procedure for sample (x1, . . . , xn) with unknown and level of
significance α:

� Calculate sample mean x and standard deviation s.

� Calculate confidence interval for µ:

[x − |tα/2|
s√
n
; x + |tα/2|

s√
n
]

� Is µ0 in the confidence interval?

If yes: We cannot reject H0.
If no: Reject H0.
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