Dataanalyse - Sampling & estimation - Kursusgang 2

Ege Rubak - rubak@math.aau.dk http://www.math.aau.dk/~rubak/teaching/2010/nano4

12. februar 2010

Sampling	Normal distributed data	Confidence interval	Hypothesis test	Test in practice
Termino	ology			

Population: All the individuals we are interested in.

• E.g.: All companys in Denmark

- Sample: A subset of the population.
 - E.g.: 50 randomly chosen companys.
- Parameter: A descriptive measure of the population.
 - E.g.: Mean or variance.
 - E.g.: The average number of employees in Danish companies.
- Sample statistic: A descriptive measure of the sample.
 - E.g.: The average number of employees in the sample.
- Goal: Make conclusion about population by using sample.
 - Method: Make conclusion about parameter from sample statistic.

Sampling	Normal distributed data	Confidence interval	Hypothesis test	Test in practice
Terminc	ology			

- Population: All the individuals we are interested in.
 - E.g.: All companys in Denmark
- Sample: A subset of the population.
 - E.g.: 50 randomly chosen companys.
- Parameter: A descriptive measure of the population.
 - E.g.: Mean or variance.
 - E.g.: The average number of employees in Danish companies.
- Sample statistic: A descriptive measure of the sample.
 - E.g.: The average number of employees in the sample.
- Goal: Make conclusion about population by using sample.
 - Method: Make conclusion about parameter from sample statistic.

Sampling	Normal distributed data	Confidence interval	Hypothesis test	Test in practice
Termino	ology			

- Population: All the individuals we are interested in.
 - E.g.: All companys in Denmark
- Sample: A subset of the population.
 - E.g.: 50 randomly chosen companys.
- Parameter: A descriptive measure of the population.
 - E.g.: Mean or variance.
 - E.g.: The average number of employees in Danish companies.
- Sample statistic: A descriptive measure of the sample.
 E.g.: The average number of employees in the sample.
- Goal: Make conclusion about population by using sample.
 - Method: Make conclusion about parameter from sample statistic.

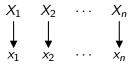
Sampling	Normal distributed data	Confidence interval	Hypothesis test	Test in practice
Termino	logy			

- Population: All the individuals we are interested in.
 - E.g.: All companys in Denmark
- Sample: A subset of the population.
 - E.g.: 50 randomly chosen companys.
- Parameter: A descriptive measure of the population.
 - E.g.: Mean or variance.
 - E.g.: The average number of employees in Danish companies.
- Sample statistic: A descriptive measure of the sample.
 - E.g.: The average number of employees in the sample.
- Goal: Make conclusion about population by using sample.
 - Method: Make conclusion about parameter from sample statistic.

Sampling	Normal distributed data	Confidence interval	Hypothesis test	Test in practice
Termino	logy			

- Population: All the individuals we are interested in.
 - E.g.: All companys in Denmark
- Sample: A subset of the population.
 - E.g.: 50 randomly chosen companys.
- Parameter: A descriptive measure of the population.
 - E.g.: Mean or variance.
 - E.g.: The average number of employees in Danish companies.
- Sample statistic: A descriptive measure of the sample.
 - E.g.: The average number of employees in the sample.
- Goal: Make conclusion about population by using sample.
 - ▶ Method: Make conclusion about parameter from sample statistic.

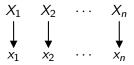
- We want to do calculations with data.
- Observations are realizations of stocastics variables.
- We need to know the distribution of data.



Terminology:

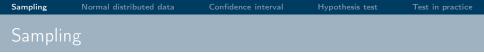
- X_1, \ldots, X_n is a sample.
- x₁,...,x_n is an observed sample. We also call this observations.

- We want to do calculations with data.
- Observations are realizations of stocastics variables.
- We need to know the distribution of data.

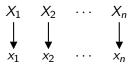


Terminology:

- X_1, \ldots, X_n is a sample.
- x₁,..., x_n is an observed sample. We also call this observations.



- We want to do calculations with data.
- Observations are realizations of stocastics variables.
- We need to know the distribution of data.

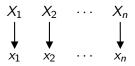


Terminology:

- X_1, \ldots, X_n is a sample.
- x₁,..., x_n is an observed sample. We also call this observations.

Sampling	Normal distributed data	Confidence interval	Hypothesis test	Test in practice
Sampling	5			

- We want to do calculations with data.
- Observations are realizations of stocastics variables.
- We need to know the distribution of data.



Terminology when $X_i \sim N(\mu, \sigma)$:

- X_1, \ldots, X_n is a sample from a normal distribution $N(\mu, \sigma)$.
- x_1, \ldots, x_n is an observed sample from a normal distribution $N(\mu, \sigma)$. We also call this observations.

Sampling	Normal distributed data	Confidence interval	Hypothesis test	Test in practice
Estima	tor			

- We have a identically distributed sample X_1, \ldots, X_n .
- An estimator of a population parameter is a sample statistic used to estimate the parameter.
- Estimators for mean and variance is \overline{X} and S^2 , respectively:

$$\overline{X} = \frac{1}{n} \sum_{i=1}^{n} X_i = \frac{1}{n} (X_1 + X_2 + \dots + X_n)$$
$$S^2 = \frac{1}{n-1} \sum_{i=1}^{n} (X_i - \overline{X})^2 = \frac{1}{n-1} \left(\sum_{i=1}^{n} X_i^2 - n\overline{X}^2 \right)$$

X̄ and S² are also stocastic variables.
 If E(X) = μ and Var(X) = σ²:

$$E(\overline{X}) = \mu$$
, $Var(\overline{X}) = rac{\sigma^2}{n}$ og $E(S^2) = \sigma^2$.

Sampling	Normal distributed data	Confidence interval	Hypothesis test	Test in practice
Estimat	or			

- We have a identically distributed sample X_1, \ldots, X_n .
- An estimator of a population parameter is a sample statistic used to estimate the parameter.
- Estimators for mean and variance is \overline{X} and S^2 , respectively:

$$\overline{X} = \frac{1}{n} \sum_{i=1}^{n} X_i = \frac{1}{n} (X_1 + X_2 + \dots + X_n)$$
$$S^2 = \frac{1}{n-1} \sum_{i=1}^{n} (X_i - \overline{X})^2 = \frac{1}{n-1} \left(\sum_{i=1}^{n} X_i^2 - n\overline{X}^2 \right)$$

X̄ and S² are also stocastic variables.
 If E(X) = μ and Var(X) = σ²:

$$E(\overline{X})=\mu, \quad {
m Var}(\overline{X})=rac{\sigma^2}{n} \quad {
m og} \quad E(S^2)=\sigma^2.$$

Sampling	Normal distributed data	Confidence interval	Hypothesis test	Test in practice
Estimat	or			

- We have a identically distributed sample X_1, \ldots, X_n .
- An estimator of a population parameter is a sample statistic used to estimate the parameter.
- Estimators for mean and variance is \overline{X} and S^2 , respectively:

$$\overline{X} = \frac{1}{n} \sum_{i=1}^{n} X_i = \frac{1}{n} (X_1 + X_2 + \dots + X_n)$$
$$S^2 = \frac{1}{n-1} \sum_{i=1}^{n} (X_i - \overline{X})^2 = \frac{1}{n-1} \left(\sum_{i=1}^{n} X_i^2 - n\overline{X}^2 \right)$$

X̄ and S² are also stocastic variables.
 If E(X) = μ and Var(X) = σ²:

$$E(\overline{X})=\mu, \quad {
m Var}(\overline{X})=rac{\sigma^2}{n} \quad {
m og} \quad E(S^2)=\sigma^2.$$

Sampling	Normal distributed data	Confidence interval	Hypothesis test	Test in practice
Estimat	or			

- We have a identically distributed sample X_1, \ldots, X_n .
- An estimator of a population parameter is a sample statistic used to estimate the parameter.
- Estimators for mean and variance is \overline{X} and S^2 , respectively:

$$\overline{X} = \frac{1}{n} \sum_{i=1}^{n} X_i = \frac{1}{n} (X_1 + X_2 + \dots + X_n)$$
$$S^2 = \frac{1}{n-1} \sum_{i=1}^{n} (X_i - \overline{X})^2 = \frac{1}{n-1} \left(\sum_{i=1}^{n} X_i^2 - n\overline{X}^2 \right)$$

X̄ and S² are also stocastic variables.
 If E(X) = μ and Var(X) = σ²:
 E(X̄) = μ, Var(X̄) = σ²/n og E(S²) = σ².

Sampling	Normal distributed data	Confidence interval	Hypothesis test	Test in practice
Estimato	pr			

- We have a identically distributed sample X_1, \ldots, X_n .
- An estimator of a population parameter is a sample statistic used to estimate the parameter.
- Estimators for mean and variance is \overline{X} and S^2 , respectively:

$$\overline{X} = \frac{1}{n} \sum_{i=1}^{n} X_i = \frac{1}{n} (X_1 + X_2 + \dots + X_n)$$
$$S^2 = \frac{1}{n} \sum_{i=1}^{n} (X_i - \overline{X})^2 = \frac{1}{n} \left(\sum_{i=1}^{n} X_i^2 - n\overline{X}^2 \right)$$

X̄ and S² are also stocastic variables.
 If E(X) = μ and Var(X) = σ²:
 E(X̄) = μ, Var(X̄) = σ²/n og E(S²) = n-1/n σ².

Sampling	Normal distributed data	Confidence interval	Hypothesis test	Test in practice
Estimat	es			

• We have observed a sample x_1, \ldots, x_n :

$$X_i \sim N(\mu, \sigma^2)$$

An estimate of a parameter is a certain value of a sample statistic.
 Estimator → estimate by X_i → x_i:

• We estimate μ and σ^2 with \overline{x} and s^2 , respectively:

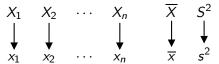
$$\overline{x} = \frac{1}{n} \sum_{i=1}^{n} x_i = \frac{1}{n} (x_1 + x_2 + \dots + x_n)$$
$$s^2 = \frac{1}{n-1} \sum_{i=1}^{n} (x_i - \overline{x})^2 = \frac{1}{n-1} \left(\sum_{i=1}^{n} x_i^2 - n\overline{x}^2 \right)$$

Sampling	Normal distributed data	Confidence interval	Hypothesis test	Test in practice
Estimat	ces			

• We have observed a sample x_1, \ldots, x_n :

$$X_i \sim N(\mu, \sigma^2)$$

An estimate of a parameter is a certain value of a sample statistic.
 Estimator → estimate by X_i → x_i:



• We estimate μ and σ^2 with \overline{x} and s^2 , respectively:

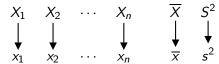
$$\overline{x} = \frac{1}{n} \sum_{i=1}^{n} x_i = \frac{1}{n} (x_1 + x_2 + \dots + x_n)$$
$$s^2 = \frac{1}{n-1} \sum_{i=1}^{n} (x_i - \overline{x})^2 = \frac{1}{n-1} \left(\sum_{i=1}^{n} x_i^2 - n\overline{x}^2 \right)$$

Sampling	Normal distributed data	Confidence interval	Hypothesis test	Test in practice
Estimat	ces			

• We have observed a sample x_1, \ldots, x_n :

$$X_i \sim N(\mu, \sigma^2)$$

An estimate of a parameter is a certain value of a sample statistic.
 Estimator → estimate by X_i → x_i:



• We estimate μ and σ^2 with \overline{x} and s^2 , respectively:

$$\overline{x} = \frac{1}{n} \sum_{i=1}^{n} x_i = \frac{1}{n} (x_1 + x_2 + \dots + x_n)$$
$$s^2 = \frac{1}{n-1} \sum_{i=1}^{n} (x_i - \overline{x})^2 = \frac{1}{n-1} \left(\sum_{i=1}^{n} x_i^2 - n\overline{x}^2 \right)$$

... is our favorite situation!

- Easy calculations.
- Beatiful theory :-)

So we also use it if data is approximately normal distributed.

Remember from last time:

- Mean and variance characterises the normal distribution.
- If $X_1 \sim N(\mu_1, \sigma_1^2)$ and $X_2 \sim N(\mu_2, \sigma_2^2)$ are independent:

$$aX_1 + bX_2 \sim N(a\mu_1 + b\mu_2, a^2\sigma_1^2 + b^2\sigma_2^2).$$

- ... is our favorite situation!
 - Easy calculations.
 - Beatiful theory :-)
 - So we also use it if data is approximately normal distributed.

Remember from last time:

Mean and variance characterises the normal distribution.

If $X_1 \sim N(\mu_1, \sigma_1^2)$ and $X_2 \sim N(\mu_2, \sigma_2^2)$ are independent:

$$aX_1 + bX_2 \sim N(a\mu_1 + b\mu_2, a^2\sigma_1^2 + b^2\sigma_2^2).$$

- ... is our favorite situation!
 - Easy calculations.
 - Beatiful theory :-)
 - So we also use it if data is approximately normal distributed.

Remember from last time:

- Mean and variance characterises the normal distribution.
- If $X_1 \sim N(\mu_1, \sigma_1^2)$ and $X_2 \sim N(\mu_2, \sigma_2^2)$ are independent:

$$aX_1+bX_2\sim N(a\mu_1+b\mu_2,a^2\sigma_1^2+b^2\sigma_2^2).$$

Confidence interval

Hypothesis test

Estimators for normal data

We have a normal distributed sample with independent observations:

$$X_i \sim N(\mu, \sigma^2)$$

• Estimators for μ and σ^2 :

$$\overline{X} = \frac{1}{n} \sum_{i=1}^{n} X_i = \frac{1}{n} (X_1 + X_2 + \dots + X_n) \sim N(\mu, \frac{\sigma^2}{n})$$
$$S^2 = \frac{1}{n-1} \sum_{i=1}^{n} (X_i - \overline{X})^2 \sim \frac{\sigma^2}{n-1} \chi^2(n-1)$$

We have:

$$E(\overline{X}) = \mu$$
, $Var(\overline{X}) = \frac{\sigma^2}{n}$ og $E(S^2) = \sigma^2$, $Var(S^2) = \frac{2\sigma^4}{n-1}$

 \overline{X} and S^2 are independent.

Confidence interval

Hypothesis test

Estimators for normal data

We have a normal distributed sample with independent observations:

.

$$X_i \sim N(\mu, \sigma^2)$$

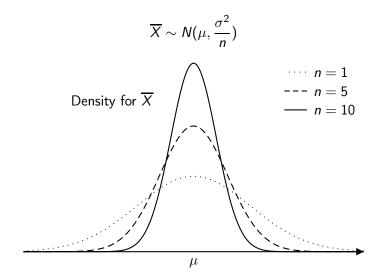
• Estimators for μ and σ^2 :

$$\overline{X} = \frac{1}{n} \sum_{i=1}^{n} X_i = \frac{1}{n} (X_1 + X_2 + \dots + X_n) \sim N(\mu, \frac{\sigma^2}{n})$$
$$S^2 = \frac{1}{n-1} \sum_{i=1}^{n} (X_i - \overline{X})^2 \sim \frac{\sigma^2}{n-1} \chi^2(n-1)$$

We have:

$$E(\overline{X}) = \mu$$
, $Var(\overline{X}) = \frac{\sigma^2}{n}$ og $E(S^2) = \sigma^2$, $Var(S^2) = \frac{2\sigma^4}{n-1}$

 \overline{X} and S^2 are independent.



Sampling	Normal distributed data	Confidence interval	Hypothesis test	Test in practice
Estima	tes			

• We have a normal distributed sample x_1, \ldots, x_n :

 $X_i \sim N(\mu, \sigma^2)$

• We estimate μ and σ^2 with \overline{x} and s^2 :

$$\overline{x} = \frac{1}{n} \sum_{i=1}^{n} x_i = \frac{1}{n} (x_1 + x_2 + \dots + x_n)$$
$$s^2 = \frac{1}{n-1} \sum_{i=1}^{n} (x_i - \overline{x})^2 = \frac{1}{n-1} \left(\sum_{i=1}^{n} x_i^2 - n\overline{x}^2 \right)$$

• We replace X_i with the observations x_i .

- A point estimate is not interesting alone.
- We want to say something about the uncertainty of the estimate.
- We need the distribution of the estimate.
- We are going to look at 2 confidence intervals:
 - 1. μ in normal dsitribution with known σ .
 - 2. μ in normal distribution with unknown σ .

- A point estimate is not interesting alone.
- We want to say something about the uncertainty of the estimate.
- We need the distribution of the estimate.
- We are going to look at 2 confidence intervals:
 - 1. μ in normal dsitribution with known σ .
 - 2. μ in normal distribution with unknown σ .

- A point estimate is not interesting alone.
- We want to say something about the uncertainty of the estimate.
- We need the distribution of the estimate.
- We are going to look at 2 confidence intervals:
 - 1. μ in normal dsitribution with known $\sigma.$
 - 2. μ in normal distribution with unknown σ .

Confidence interval for μ with known σ

- Sample (X_1, \ldots, X_n) , $X_i \sim N(\mu, \sigma^2)$.
- Remember from last time: If $Y \sim N(\mu, \sigma^2)$ then $\frac{Y-\mu}{\sigma} \sim N(0, 1)$:

$$P(-1.96 \le rac{Y-\mu}{\sigma} \le 1.96) = 0.95$$

Remember: $\overline{X} \sim N(\mu, \frac{\sigma^2}{n})$:

$$P(\overline{X} - 1.96\frac{\sigma}{\sqrt{n}} \le \mu \le \overline{X} + 1.96\frac{\sigma}{\sqrt{n}}) = 0.95?$$

The probability that \overline{X} takes a value \overline{x} , such that the interval $[\overline{x} - 1.96\frac{\sigma}{\sqrt{n}}; \overline{x} + 1.96\frac{\sigma}{\sqrt{n}}]$ contains μ , is 0.95.

The interval is stocastic.

Generally: $100(1 - \alpha)\%$ confidence interval for μ :

$$[\overline{x} - |z_{\alpha/2}| \frac{\sigma}{\sqrt{n}}; \overline{x} + |z_{\alpha/2}| \frac{\sigma}{\sqrt{n}}].$$

 $z_{\alpha/2}$ is the $\alpha/2$ fractile for standard normal distribution.

$$P(\overline{X} - 1.96\frac{\sigma}{\sqrt{n}} \le \mu \le \overline{X} + 1.96\frac{\sigma}{\sqrt{n}}) = 0.95?$$

- The probability that \overline{X} takes a value \overline{x} , such that the interval $[\overline{x} 1.96\frac{\sigma}{\sqrt{n}}; \overline{x} + 1.96\frac{\sigma}{\sqrt{n}}]$ contains μ , is 0.95.
 - This interval is called a 95% confidence interval for μ .
- The interval is stocastic.
- Generally: 100(1-lpha)% confidence interval for μ :

$$[\overline{x} - |z_{\alpha/2}| \frac{\sigma}{\sqrt{n}}; \overline{x} + |z_{\alpha/2}| \frac{\sigma}{\sqrt{n}}].$$

 $z_{\alpha/2}$ is the $\alpha/2$ fractile for standard normal distribution.

$$P(\overline{X} - 1.96\frac{\sigma}{\sqrt{n}} \le \mu \le \overline{X} + 1.96\frac{\sigma}{\sqrt{n}}) = 0.95?$$

- The probability that \overline{X} takes a value \overline{x} , such that the interval $[\overline{x} 1.96\frac{\sigma}{\sqrt{n}}; \overline{x} + 1.96\frac{\sigma}{\sqrt{n}}]$ contains μ , is 0.95.
 - This interval is called a 95% confidence interval for μ .
- The interval is stocastic.

Generally: 100(1-lpha)% confidence interval for μ :

$$[\overline{x} - |z_{\alpha/2}| \frac{\sigma}{\sqrt{n}}; \overline{x} + |z_{\alpha/2}| \frac{\sigma}{\sqrt{n}}].$$

 $z_{\alpha/2}$ is the $\alpha/2$ fractile for standard normal distribution.

$$P(\overline{X} - 1.96\frac{\sigma}{\sqrt{n}} \le \mu \le \overline{X} + 1.96\frac{\sigma}{\sqrt{n}}) = 0.95?$$

- The probability that \overline{X} takes a value \overline{x} , such that the interval $[\overline{x} 1.96\frac{\sigma}{\sqrt{n}}; \overline{x} + 1.96\frac{\sigma}{\sqrt{n}}]$ contains μ , is 0.95.
 - This interval is called a 95% confidence interval for μ .
- The interval is stocastic.
- Generally: $100(1 \alpha)$ % confidence interval for μ :

$$[\overline{x} - |z_{\alpha/2}| \frac{\sigma}{\sqrt{n}}; \overline{x} + |z_{\alpha/2}| \frac{\sigma}{\sqrt{n}}].$$

 $z_{\alpha/2}$ is the $\alpha/2$ fractile for standard normal distribution.

$$P(\overline{X} - 1.96\frac{\sigma}{\sqrt{n}} \le \mu \le \overline{X} + 1.96\frac{\sigma}{\sqrt{n}}) = 0.95?$$

- The probability that \overline{X} takes a value \overline{x} , such that the interval $[\overline{x} 1.96\frac{\sigma}{\sqrt{n}}; \overline{x} + 1.96\frac{\sigma}{\sqrt{n}}]$ contains μ , is 0.95.
 - This interval is called a 95% confidence interval for μ .
- The interval is stocastic.
- Generally: $100(1 \alpha)\%$ confidence interval for μ :

$$[\overline{x} - |z_{\alpha/2}| \frac{\sigma}{\sqrt{n}}; \overline{x} + |z_{\alpha/2}| \frac{\sigma}{\sqrt{n}}].$$

 $z_{\alpha/2}$ is the $\alpha/2$ fractile for standard normal distribution.

Sampling Norn	nal distributed data 🛛 🤇	Confidence interval	Hypothesis test	Test in practice
Interpretatio	on			

An experiment with sample size *n* is repeated *k* times:

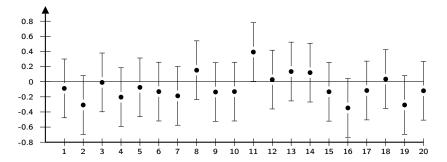
 $1: x_{1,1}, x_{1,2}, \dots, x_{1,n} \rightarrow \overline{x}_1$ $2: x_{2,1}, x_{2,2}, \dots, x_{2,n} \rightarrow \overline{x}_2$ \vdots $k: x_{k,1}, x_{k,2}, \dots, x_{k,n} \rightarrow \overline{x}_k$

- Evaluate 95% confidence interval for each of $\overline{x}_1, \overline{x}_2, \dots, \overline{x}_k$.
- We expect that 95% of confidence intervals contains μ .

20 samples with 100 observations:

$$(x_{1,1}, \dots, x_{1,100}), \dots, (x_{20,1}, \dots, x_{20,100}), \quad X_{i,j} \sim N(0,2)$$

 $\overline{x}_{i,\cdot} = \frac{1}{100} \sum_{j=1}^{100} X_{i,j} \sim N(0, \frac{2}{10})$



Facts about confidence intervals

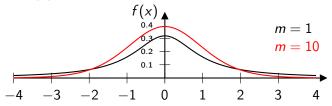
- The smaller the better.
- More observations give smaller confidence intervals.
- Larger % gives larger confidence interval (95% CI is contained in 99% CI).

Sampling	Normal distributed data	Confidence interval	Hypothesis test	Test in practice
t distril	bution			

- \blacksquare $U \sim N(0,1)$
- $W \sim \chi^2(k)$
- U and W are independent.
- Then

$$T = \frac{U}{\sqrt{W/k}}$$

is t distributed with k degrees of freedom (notation: $T \sim t(k)$). Density for t(k):

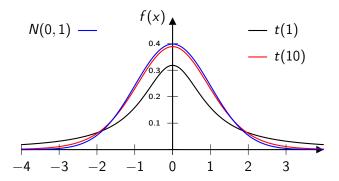


Sampling	Normal distributed data	Confidence interval	Hypothesis test	Test in practice
t distri	bution			

For
$$T \sim t(k)$$
 we have

$$E(T) = 0$$
 og $Var(T) = \frac{k}{k-2}$, for $k > 2$.

• The larger k, the more t(k) looks like N(0,1).



Confidence interval for μ with unknown σ

Sample with (X_1, \ldots, X_n) independent, $X_i \sim N(\mu, \sigma^2)$.

- We have: $\overline{X} \sim N(\mu, \sigma^2/n)$ and $S^2 \sim \frac{\sigma^2}{n-1}\chi^2(n-1)$.
- Remember from before:

$$\frac{\overline{X} - \mu}{\sqrt{S^2/n}} \sim t(n-1)$$

Like when *σ* is known:

 $t_{\alpha/2}$ is $\alpha/2$ -fractile in t(n-1) distribution.

Confidence interval for μ with unknown σ

Sample with (X_1, \ldots, X_n) independent, $X_i \sim N(\mu, \sigma^2)$.

- We have: $\overline{X} \sim N(\mu, \sigma^2/n)$ and $S^2 \sim \frac{\sigma^2}{n-1}\chi^2(n-1)$.
- Remember from before:

$$\frac{\overline{X}-\mu}{\sqrt{S^2/n}} \sim t(n-1)$$

Like when σ is known:

 $t_{\alpha/2}$ is $\alpha/2$ -fractile in t(n-1) distribution.

■ 100 $(1 - \alpha)$ %-confidence interval for μ when σ is unknown:

$$[\overline{x} - |t_{\alpha/2}| \frac{s}{\sqrt{n}}; \overline{x} + |t_{\alpha/2}| \frac{s}{\sqrt{n}}]$$

Note:

- ▶ $|t_{\alpha}| > |z_{\alpha}|$ regardless of the degree of freedom.
 - \blacktriangleright The confidence interval is greater than when we know σ
 - Natural to introduce more uncertainty when two parameters are unknown.
- When the number of degrees of freedom grows, $t_{\alpha} \rightarrow z_{\alpha}$.
 - With many observations, it doesn't matter if σ is known or unknown.

- A hypothesis is a statement that is either true or false
 - The average income in Aalborg is at least 100.000 kr.
 - The average height of males is the same in Sweden and Denmark. ►
 - The proportion of female students is the same on computer ▶. science and sociologi.

- We start with quantitative hypothesis:
 - We are interested in a parameter θ .
 - θ_0 is a number.
- 3 kinds of hypothesis:

 $\begin{array}{ll} H_0: \theta = \theta_0 & H_0: \theta \geq \theta_0 & H_0: \theta \leq \theta_0 \\ H_1: \theta \neq \theta_0 & H_1: \theta < \theta_0 & H_1: \theta > \theta_0 \end{array}$

• H_0 is called the null hypothesis.

 H_1 (sometimes noted H_A) is called the alternative hypothesis.

■ The sign by *H*₁ determines if the test is 1- og 2-sided:

• " \neq ": 2-sided test – we have 2 directions if H_0 is rejected.

• " \geq ", " \leq ": 1-sidet test – we have 1 direction if H_0 is rejected.

- We start with quantitative hypothesis:
 - We are interested in a parameter θ .
 - θ_0 is a number.
- 3 kinds of hypothesis:

$H_0: \theta = \theta_0$	$H_0: \theta \geq \theta_0$	$H_0: \theta \leq \theta_0$
$H_1: \theta \neq \theta_0$	$H_1: heta < heta_0$	$H_1: \theta > \theta_0$

 H₀ is called the null hypothesis. H₁ (sometimes noted H_A) is called the alternative hypothesis.
 The sign by H₁ determines if the test is 1- og 2-sided:

 "≠": 2-sided test - we have 2 directions if H₀ is rejected.
 ">" "≤": 1 sidet test - we have 1 direction if H₀ is rejected.

- We start with quantitative hypothesis:
 - We are interested in a parameter θ .
 - θ_0 is a number.
- 3 kinds of hypothesis:

 $\begin{array}{ll} H_0: \theta = \theta_0 & H_0: \theta \geq \theta_0 & H_0: \theta \leq \theta_0 \\ H_1: \theta \neq \theta_0 & H_1: \theta < \theta_0 & H_1: \theta > \theta_0 \end{array}$

• H_0 is called the null hypothesis.

 H_1 (sometimes noted H_A) is called the alternative hypothesis.

- The sign by H_1 determines if the test is 1- og 2-sided:
 - ▶ " \neq ": 2-sided test we have 2 directions if H_0 is rejected.
 - ▶ "≥", "≤": 1-sidet test we have 1 direction if H_0 is rejected.

Examples from before:

The average income in Aalborg is at least 100.000 kr.

 $\begin{array}{l} H_0: \mu_{\text{income}} \geq 100.000 \\ H_1: \mu_{\text{income}} < 100.000 \end{array}$

The average height of males is the same in Sweden and Denmark.

 $H_0: \mu_S = \mu_D$ $H_1: \mu_S \neq \mu_D$

The proportion of female students is the same on computer science and sociologi.

$$H_0: p_{cs} = p_s$$
$$H_1: p_{cs} \neq p_s$$

We can make two types of errors:

- ► Type I error: Reject a true hypothesis.
- ► Type II error: Accept a false hypothesis.

Choice	<i>H</i> ₀ is true	H_0 is false
Reject H_0	Type I error	No error
Accept H_0	No error	Type II error

- Type I is the worst error: "We would rather let a criminal go free than put an innocent in prison".
- Ideally we want a test where it is difficult to make errors.

- We can make two types of errors:
 - ► Type I error: Reject a true hypothesis.
 - ► Type II error: Accept a false hypothesis.

Choice	<i>H</i> ₀ is true	H_0 is false
	Type I error	No error
Accept H ₀	No error	Type II error

- Type I is the worst error: "We would rather let a criminal go free than put an innocent in prison".
- Ideally we want a test where it is difficult to make errors.

- We can make two types of errors:
 - ► Type I error: Reject a true hypothesis.
 - ► Type II error: Accept a false hypothesis.

	<i>H</i> ₀ is true	
Reject H_0	Type I error No error	No error
Accept H ₀	No error	Type II error

- Type I is the worst error: "We would rather let a criminal go free than put an innocent in prison".
- Ideally we want a test where it is difficult to make errors.

Sampling	Normal distributed data	Confidence interval	Hypothesis test	Test in practice
Errors				
LITUIS				

- Tests without errors do not exist!
- Furthermore:
 - If a test rarely makes Type I errors, it (more) often makes Type II errors.
 - If a test rarely makes Type II errors, it (more) often makes Type I errors.
- The chance of making errors decrease when the sample size increase.

Sampling	Normal distributed data	Confidence interval	Hypothesis test	Test in practice
F				
Errors				

- Tests without errors do not exist!
- Furthermore:
 - If a test rarely makes Type I errors, it (more) often makes Type II errors.
 - If a test rarely makes Type II errors, it (more) often makes Type I errors.
- The chance of making errors decrease when the sample size increase.

Level of significance:

$$\alpha = P(\text{Type I error}) = P(\text{reject } H_0 \mid H_0 \text{ is true})$$
$$= P(\text{reject } H_0 \text{ when } H_0 \text{ is true}).$$

α is chosen before we test.

- Commonly: $\alpha = 5\%$.
- Generally: Adapt α to the situation.

We don't control

 $\beta = P(\text{Type II error}) = P(\text{accept } H_0 \text{ when } H_0 \text{ is false}).$

Level of significance:

$$\alpha = P(\text{Type I error}) = P(\text{reject } H_0 \mid H_0 \text{ is true})$$
$$= P(\text{reject } H_0 \text{ when } H_0 \text{ is true}).$$

• α is chosen before we test.

- Commonly: $\alpha = 5\%$.
- Generally: Adapt α to the situation.

We don't control

 $\beta = P(\mathsf{Type II error}) = P(\mathsf{accept } H_0 \mathsf{ when } H_0 \mathsf{ is false}).$

Level of significance:

$$\alpha = P(\text{Type I error}) = P(\text{reject } H_0 \mid H_0 \text{ is true})$$
$$= P(\text{reject } H_0 \text{ when } H_0 \text{ is true}).$$

- α is chosen before we test.
 - Commonly: $\alpha = 5\%$.
 - Generally: Adapt α to the situation.
- We don't control

 $\beta = P(\text{Type II error}) = P(\text{accept } H_0 \text{ when } H_0 \text{ is false}).$

Consequences of controlling

 $\alpha = P(\text{Type I error})$

and not

$$\beta = P(\text{Type II error})$$

- We have faith in our decision if we reject H_0
- If H_0 is <u>not</u> rejected, we cannot conclude that H_0 is true.

Terminology if H₀ can't be rejected:

Data does not allow us to reject the hypothesis H_0 .

We don't say:

Data confirms the hypothesis H₀.

Consequences of controlling

 $\alpha = P(\text{Type I error})$

and not

$$\beta = P(\text{Type II error})$$

- We have faith in our decision if we reject H_0
- If H_0 is <u>not</u> rejected, we cannot conclude that H_0 is true.
- Terminology if *H*⁰ can't be rejected:

Data does not allow us to reject the hypothesis H_0 .

We don't say:

Data confirms the hypothesis H_0 .

Decision rule

A decision rule is a rule, that tell us when to reject H_0 .

- **Test statistic:** Function that tells us if data supports H_0 .
- Critical values: Where the test statistic rejects H_0 .

Hypothesis: ''Is the average height (μ_h) in Denmark 180 cm?''

 $H_0: \mu_h = 180$ $H_1: \mu_h \neq 180$

Procedure:

• We have observations from 100 people, (x_1, \ldots, x_{100}) :

	x_1	<i>x</i> ₂		<i>x</i> ₁₀₀
	178 cm	183 cm		175 cm
if the	average T	tia alasa t	. 100	

Idea: See if the average \overline{x} is close to 18

But what is "close"?

Decision rule

A decision rule is a rule, that tell us when to reject H_0 .

- **Test statistic:** Function that tells us if data supports H_0 .
- Critical values: Where the test statistic rejects H_0 .

Hypothesis: "Is the average height (μ_h) in Denmark 180 cm?"

 $H_0: \mu_h = 180$ $H_1: \mu_h \neq 180$

Procedure:

• We have observations from 100 people, (x_1, \ldots, x_{100}) :

x_1	<i>X</i> ₂	<i>x</i> ₁₀₀
178 cm	183 cm	175 cm

■ Idea: See if the average x is close to 180.

But what is "close"?

Decision rule

A decision rule is a rule, that tell us when to reject H_0 .

- **Test statistic:** Function that tells us if data supports H_0 .
- Critical values: Where the test statistic rejects H_0 .

Hypothesis: "Is the average height (μ_h) in Denmark 180 cm?"

 $H_0: \mu_h = 180$ $H_1: \mu_h \neq 180$

Procedure:

• We have observations from 100 people, (x_1, \ldots, x_{100}) :

<i>x</i> ₁	<i>x</i> ₂	• • •	<i>x</i> ₁₀₀
178 cm	183 cm	•••	175 cm

Idea: See if the average \overline{x} is close to 180.

But what is "close"?

- We have observations (x₁, x₂,..., x₁₀₀), X_i ~ N(μ_h, σ²). Assume that we know σ² = 25.
- Estimate:

$$\overline{x} = \frac{1}{100}(178 + 183 + \dots + 175) = 178.$$

Remember:

$$Z = \frac{\overline{X} - \mu_h}{\sigma/\sqrt{n}} = \frac{\overline{X} - 180}{1/2} \sim N(0, 1)$$

We assume H_0 is true.

■ Therefore:

$$P(180 - |z_{0.025}| \frac{1}{2} \le \overline{X} \le 180 + |z_{0.025}| \frac{1}{2}) \approx P(179 \le \overline{X} \le 181) = 0.95.$$

- We have observations (x₁, x₂,..., x₁₀₀), X_i ~ N(μ_h, σ²). Assume that we know σ² = 25.
- Estimate:

$$\overline{x} = \frac{1}{100}(178 + 183 + \dots + 175) = 178.$$

Remember:

$$Z = \frac{\overline{X} - \mu_h}{\sigma/\sqrt{n}} \equiv \frac{\overline{X} - 180}{1/2} \sim N(0, 1)$$
H₀ is true.

Therefore:

We assume

$$P(180 - |z_{0.025}| \frac{1}{2} \le \overline{X} \le 180 + |z_{0.025}| \frac{1}{2}) \approx P(179 \le \overline{X} \le 181) = 0.95.$$

We have observations (x₁, x₂,..., x₁₀₀), X_i ~ N(μ_h, σ²). Assume that we know σ² = 25.

Estimate:

$$\overline{x} = \frac{1}{100}(178 + 183 + \dots + 175) = 178.$$

Remember:

$$Z = \frac{\overline{X} - \mu_h}{\sigma/\sqrt{n}} = \frac{\overline{X} - 180}{1/2} \sim N(0, 1)$$

We assume H_0 is true.

Therefore:

$$P(180 - |z_{0.025}| \frac{1}{2} \le \overline{X} \le 180 + |z_{0.025}| \frac{1}{2}) \approx P(179 \le \overline{X} \le 181) = 0.95.$$

Sampling	Normal distributed data	Confidence interval	Hypothesis test	Test in practice
Conclu	sion			

Putting the pieces together:

Our hypothesis:

 $H_0: \mu_h = 180$ $H_1: \mu_h \neq 180$

 If H₀ is true, 95% of all samples with 100 persons has an average between 179 and 181 cm.

In our experiment:

- 1. The average is 178 cm.
- 2. This is an event that occurs in at most 5% of the samples
- Conclusion: Our observation is very unlikely! We reject H₀.
- The level of significance is

Sampling	Normal distributed data	Confidence interval	Hypothesis test	Test in practice
Conclu	sion			

Putting the pieces together:

Our hypothesis:

 $H_0: \mu_h = 180$ $H_1: \mu_h \neq 180$

- If *H*₀ is true, 95% of all samples with 100 persons has an average between 179 and 181 cm.
- In our experiment:
 - 1. The average is 178 cm.
 - 2. This is an event that occurs in at most 5% of the samples
 - Conclusion: Our observation is very unlikely! We reject H₀.
- The level of significance is

Sampling	Normal distributed data	Confidence interval	Hypothesis test	Test in practice
Conclus	sion			

Putting the pieces together:

Our hypothesis:

 $H_0: \mu_h = 180$ $H_1: \mu_h \neq 180$

- If H₀ is true, 95% of all samples with 100 persons has an average between 179 and 181 cm.
- In our experiment:
 - $1. \ \mbox{The average is } 178 \ \mbox{cm}.$
 - 2. This is an event that occurs in at most 5% of the samples
 - Conclusion: Our observation is very unlikely! We reject H₀.

■ The level of significance is (5%)

- We have observations $(x_1, x_2, ..., x_n)$, $X_i \sim N(\mu, \sigma^2)$. σ^2 is unknown
- Estimates:

$$\overline{\mathbf{x}} = \frac{1}{100} (178 + 183 + \dots + 175) = 178$$
$$s^2 = \frac{1}{99} ((178 - 178)^2 + \dots + (175 - 178)^2) = 25.$$

Assume *H*₀ is true. Remember:

$$T = \frac{\overline{x} - \mu}{s/\sqrt{n}} = \frac{178 - \mu}{1/2} \sim t(99).$$

Hence:

$$P(180 - |t_{0.025}| \frac{1}{2} \le \overline{X} \le 180 + |t_{0.025}| \frac{1}{2}) \approx P(179 \le \overline{X} \le 181) = 0.95.$$

- We have observations $(x_1, x_2, ..., x_n)$, $X_i \sim N(\mu, \sigma^2)$. σ^2 is unknown
- Estimates:

$$\overline{\mathbf{x}} = \frac{1}{100} (178 + 183 + \dots + 175) = 178$$
$$s^2 = \frac{1}{99} ((178 - 178)^2 + \dots + (175 - 178)^2) = 25.$$

• Assume H_0 is true. Remember:

$$T = rac{\overline{x} - \mu}{s/\sqrt{n}} = rac{178 - \mu}{1/2} \sim t$$
(99).

Hence:

$$P(180 - |t_{0.025}| \frac{1}{2} \le \overline{X} \le 180 + |t_{0.025}| \frac{1}{2}) \approx P(179 \le \overline{X} \le 181) = 0.95.$$

Test with unknown variance

- We have observations $(x_1, x_2, ..., x_n)$, $X_i \sim N(\mu, \sigma^2)$. σ^2 is unknown
- Estimates:

$$\overline{x} = \frac{1}{100} (178 + 183 + \dots + 175) = 178$$
$$s^2 = \frac{1}{99} ((178 - 178)^2 + \dots + (175 - 178)^2) = 25.$$

Assume H_0 is true. Remember:

$$T = \frac{\overline{x} - \mu}{s/\sqrt{n}} = \frac{178 - \mu}{1/2} \sim t(99).$$

Hence:

$$P(180 - |t_{0.025}| \frac{1}{2} \le \overline{X} \le 180 + |t_{0.025}| \frac{1}{2}) \approx P(179 \le \overline{X} \le 181) = 0.95.$$

$$2.5\% \text{ fractile}$$
in t(99)

Dataanalyse - Kursusgang 1

General decision rule for normal distributed data

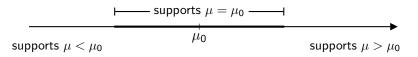
Hypothesis:

$$H_0: \mu = \mu_0$$
$$H_1: \mu \neq \mu_0$$

Procedure for sample (x_1, \ldots, x_n) with known variance σ^2 .

- Choose level of significance α .
- Calculate sample mean \overline{x} .
- Check if

$$\mu_0 - |z_{\alpha/2}| \frac{\sigma}{\sqrt{n}} \le \overline{x} \le \mu_0 + |z_{\alpha/2}| \frac{\sigma}{\sqrt{n}}$$



General decision rule for normal distributed data

Hypothesis:

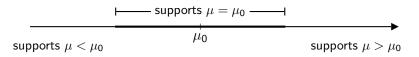
$$H_0: \mu = \mu_0$$
$$H_1: \mu \neq \mu_0$$

Procedure for sample (x_1, \ldots, x_n) with unknown variance.

- Choose level of significance α .
- Calculate sample mean \overline{x} and standard deviation s.

Check if

$$\mu_0 - |t_{\alpha/2}| \frac{s}{\sqrt{n}} \le \overline{s} \le \mu_0 + |t_{\alpha/2}| \frac{s}{\sqrt{n}}$$



Decision rule with confidence interval

Hypothesis:

$$H_0: \mu = \mu_0$$
$$H_1: \mu \neq \mu_0$$

Procedure for sample (x_1, \ldots, x_n) with known variance σ^2 and level of significance α :

- Calculate sample mean \overline{x} .
- Calculate confidence interval for μ :

$$[\overline{\mathbf{x}} - |z_{\alpha/2}| \frac{\sigma}{\sqrt{n}}; \overline{\mathbf{x}} + |z_{\alpha/2}| \frac{\sigma}{\sqrt{n}}]$$

• Is μ_0 in the confidence interval?

Decision rule with confidence interval

Hypothesis:

$$H_0: \mu = \mu_0$$
$$H_1: \mu \neq \mu_0$$

Procedure for sample (x_1, \ldots, x_n) with unknown and level of significance α :

- Calculate sample mean \overline{x} and standard deviation s.
- Calculate confidence interval for μ :

$$[\overline{x} - |t_{\alpha/2}| \frac{s}{\sqrt{n}}; \overline{x} + |t_{\alpha/2}| \frac{s}{\sqrt{n}}]$$

• Is μ_0 in the confidence interval?