Recap		Two sample tests	χ^{2} test	Other goodness-of-fit checks
	Dataanal	yse - Hypotesete	est - Kursı	isgang 3

Ege Rubak - rubak@math.aau.dk http://www.math.aau.dk/~rubak/teaching/2010/nano4

19. februar 2010

Recap *p*-value Two sample tests χ^2 test Other goodness-of-fit checks

Confidence interval for μ with known σ

Sample with (X_1, \ldots, X_n) independent, $X_i \sim N(\mu, \sigma^2)$.

• We have: $\overline{X} \sim N(\mu, \sigma^2/n)$ and

$$Z = \frac{\overline{X} - \mu}{\sqrt{\sigma^2/n}} \sim N(0, 1).$$

Therefore:

$$P(z_{\alpha/2} \le Z \le z_{1-\alpha/2}) = 1 - \alpha,$$

where $z_{\alpha/2}$ is the $\alpha/2$ quantile in N(0, 1). I.e. if α is 0.05 as usual we look up the 2.5% quantile $z_{0.025} = -1.96$ and the 97.5% quantile $z_{0.975} = 1.96$ in the standard normal distribution N(0, 1). I.e. the confidence interval is:

$$[\overline{x} + z_{\alpha/2} \frac{\sigma}{\sqrt{n}}; \overline{x} + z_{1-\alpha/2} \frac{\sigma}{\sqrt{n}}]$$

Recap *p*-value Two sample tests χ^2 test Other goodness-of-fit checks

Confidence interval for μ with known σ

Sample with (X_1, \ldots, X_n) independent, $X_i \sim N(\mu, \sigma^2)$.

• We have: $\overline{X} \sim N(\mu, \sigma^2/n)$ and

$$Z = \frac{\overline{X} - \mu}{\sqrt{\sigma^2/n}} \sim N(0, 1).$$

Therefore:

$$P(z_{\alpha/2} \leq Z \leq z_{1-\alpha/2}) = 1 - \alpha,$$

where $z_{\alpha/2}$ is the $\alpha/2$ quantile in N(0, 1). I.e. if α is 0.05 as usual we look up the 2.5% quantile $z_{0.025} = -1.96$ and the 97.5% quantile $z_{0.975} = 1.96$ in the standard normal distribution N(0, 1). I.e. the confidence interval is:

$$[\overline{x} + z_{\alpha/2} \frac{\sigma}{\sqrt{n}}; \overline{x} + z_{1-\alpha/2} \frac{\sigma}{\sqrt{n}}]$$

Recap *p*-value Two sample tests χ^2 test Other goodness-of-fit checks

Confidence interval for μ with known σ

Sample with (X_1, \ldots, X_n) independent, $X_i \sim N(\mu, \sigma^2)$.

• We have: $\overline{X} \sim N(\mu, \sigma^2/n)$ and

$$Z = \frac{\overline{X} - \mu}{\sqrt{\sigma^2/n}} \sim N(0, 1).$$

Therefore:

$$P(z_{\alpha/2} \leq Z \leq z_{1-\alpha/2}) = 1 - \alpha,$$

where $z_{\alpha/2}$ is the $\alpha/2$ quantile in N(0, 1). I.e. if α is 0.05 as usual we look up the 2.5% quantile $z_{0.025} = -1.96$ and the 97.5% quantile $z_{0.975} = 1.96$ in the standard normal distribution N(0, 1).

$$[\overline{x} + z_{\alpha/2} \frac{\sigma}{\sqrt{n}}; \overline{x} + z_{1-\alpha/2} \frac{\sigma}{\sqrt{n}}]$$

■ Suppose we have a hypothesis *H*₀: *µ* = *µ*₀ (*µ*₀ is a known number). Assuming *H*₀ is true we can calculate

$$Z = \frac{\overline{X} - \mu_0}{\sqrt{\sigma^2/n}} \sim N(0, 1)$$

for a given data set. This is called the Z-statistic, and if $Z \notin [z_{\alpha/2}, z_{1-\alpha/2}]$ we reject H_0 .

I This is the same as checking μ_0 is in the confidence interval

$$[\overline{x} + z_{\alpha/2} \frac{\sigma}{\sqrt{n}}; \overline{x} + z_{1-\alpha/2} \frac{\sigma}{\sqrt{n}}]$$

Sometimes called a z-test (e.g. in MATLAB).

■ Suppose we have a hypothesis *H*₀: *µ* = *µ*₀ (*µ*₀ is a known number). Assuming *H*₀ is true we can calculate

$$Z = \frac{\overline{X} - \mu_0}{\sqrt{\sigma^2/n}} \sim N(0, 1)$$

for a given data set. This is called the Z-statistic, and if $Z \notin [z_{\alpha/2}, z_{1-\alpha/2}]$ we reject H_0 .

This is the same as checking μ_0 is in the confidence interval

$$[\overline{x} + z_{\alpha/2} \frac{\sigma}{\sqrt{n}}; \overline{x} + z_{1-\alpha/2} \frac{\sigma}{\sqrt{n}}]$$

Sometimes called a z-test (e.g. in MATLAB).

■ Suppose we have a hypothesis *H*₀: *µ* = *µ*₀ (*µ*₀ is a known number). Assuming *H*₀ is true we can calculate

$$Z = \frac{\overline{X} - \mu_0}{\sqrt{\sigma^2/n}} \sim N(0, 1)$$

for a given data set. This is called the Z-statistic, and if $Z \notin [z_{\alpha/2}, z_{1-\alpha/2}]$ we reject H_0 .

This is the same as checking μ_0 is in the confidence interval

$$[\overline{x} + z_{\alpha/2} \frac{\sigma}{\sqrt{n}}; \overline{x} + z_{1-\alpha/2} \frac{\sigma}{\sqrt{n}}]$$

■ Sometimes called a *z*-test (e.g. in MATLAB).

Recap		Two sample tests	χ^2 test	Other goodness-of-fit checks
When a	is unkno	own		

Same same, but different!

Since σ^2 is unknown we use the estimator, $S^2 \sim \frac{\sigma^2}{n-1} \chi^2(n-1)$, and we know

$$T = \frac{X - \mu}{\sqrt{S^2/n}} \sim t(n-1). \tag{1}$$

The confidence interval is:

$$\left[\overline{x} + t_{\alpha/2} \frac{s}{\sqrt{n}}; \overline{x} + t_{1-\alpha/2} \frac{s}{\sqrt{n}}\right]$$
(2)

- To test a hypothesis H_0 : $\mu = \mu_0$ we insert μ_0 in (1) and reject H_0 if the *T*-statistic is outside the interval $[t_{\alpha/2}, t_{1-\alpha/2}]$. This is the same as checking μ_0 is in the confidence interval (2).
- Sometimes called a t-test.

- Same same, but different!
- Since σ^2 is unknown we use the estimator, $S^2 \sim \frac{\sigma^2}{n-1} \chi^2(n-1)$, and we know

$$T = \frac{\chi - \mu}{\sqrt{S^2/n}} \sim t(n-1). \tag{1}$$

$$\left[\overline{x} + t_{\alpha/2} \frac{s}{\sqrt{n}}; \overline{x} + t_{1-\alpha/2} \frac{s}{\sqrt{n}}\right]$$
(2)

- To test a hypothesis H_0 : $\mu = \mu_0$ we insert μ_0 in (1) and reject H_0 if the *T*-statistic is outside the interval $[t_{\alpha/2}, t_{1-\alpha/2}]$. This is the same as checking μ_0 is in the confidence interval (2).
- Sometimes called a t-test.

- Same same, but different!
- Since σ^2 is unknown we use the estimator, $S^2 \sim \frac{\sigma^2}{n-1} \chi^2(n-1)$, and we know

$$T = \frac{\overline{X} - \mu}{\sqrt{S^2/n}} \sim t(n-1). \tag{1}$$

$$\left[\overline{x} + t_{\alpha/2} \frac{s}{\sqrt{n}}; \overline{x} + t_{1-\alpha/2} \frac{s}{\sqrt{n}}\right]$$
(2)

- To test a hypothesis H_0 : $\mu = \mu_0$ we insert μ_0 in (1) and reject H_0 if the *T*-statistic is outside the interval $[t_{\alpha/2}, t_{1-\alpha/2}]$. This is the same as checking μ_0 is in the confidence interval (2).
- Sometimes called a t-test.

- Same same, but different!
- Since σ^2 is unknown we use the estimator, $S^2 \sim \frac{\sigma^2}{n-1}\chi^2(n-1)$, and we know

$$T = \frac{\overline{X} - \mu}{\sqrt{S^2/n}} \sim t(n-1). \tag{1}$$

$$\left[\overline{x} + t_{\alpha/2} \frac{s}{\sqrt{n}}; \overline{x} + t_{1-\alpha/2} \frac{s}{\sqrt{n}}\right]$$
(2)

where $t_{\alpha/2}$ is the $\alpha/2$ quantile in t(n-1).

To test a hypothesis H_0 : $\mu = \mu_0$ we insert μ_0 in (1) and reject H_0 if the *T*-statistic is outside the interval $[t_{\alpha/2}, t_{1-\alpha/2}]$. This is the same as checking μ_0 is in the confidence interval (2).

Sometimes called a t-test.

- Same same, but different!
- Since σ^2 is unknown we use the estimator, $S^2 \sim \frac{\sigma^2}{n-1}\chi^2(n-1)$, and we know

$$T = \frac{\overline{X} - \mu}{\sqrt{S^2/n}} \sim t(n-1). \tag{1}$$

$$\left[\overline{x} + t_{\alpha/2} \frac{s}{\sqrt{n}}; \overline{x} + t_{1-\alpha/2} \frac{s}{\sqrt{n}}\right]$$
(2)

- To test a hypothesis H_0 : $\mu = \mu_0$ we insert μ_0 in (1) and reject H_0 if the *T*-statistic is outside the interval $[t_{\alpha/2}, t_{1-\alpha/2}]$. This is the same as checking μ_0 is in the confidence interval (2).
- Sometimes called a t-test.

Recap	<i>p</i> -value	Two sample tests	χ^2 test	Other goodness-of-fit checks
Example	e of hypo	thesis test		

<i>x</i> ₁	<i>x</i> ₂	•••	<i>x</i> ₁₀₀
178 cm	183 cm	• • •	175 cm

and calculate the estimate of the mean $\overline{x} = 178$ and the estimate of the variance $s^2 = 64$ (i.e. s = 8).

• We want to test H_0 : $\mu = 180$ cm at level of significance $\alpha = 0.05$.

Since

$$t = \frac{178 - 180}{8/10} = -2.5, \quad t_{0.025} = -1.98, \quad t_{0.975} = 1.98$$

we reject H_0 .

• What about with level of significance $\alpha = 0.01$? In this case

$$t_{0.005} = -2.63, \quad t_{0.995} = 2.63,$$

Recap	<i>p</i> -value	Two sample tests	χ^2 test	Other goodness-of-fit checks
Example	of hypoth	nesis test		

<i>x</i> ₁	<i>x</i> ₂	•••	<i>x</i> ₁₀₀
178 cm	183 cm	• • •	175 cm

and calculate the estimate of the mean $\overline{x} = 178$ and the estimate of the variance $s^2 = 64$ (i.e. s = 8).

We want to test $H_0: \mu = 180$ cm at level of significance $\alpha = 0.05$.

Since

$$t = \frac{178 - 180}{8/10} = -2.5, \quad t_{0.025} = -1.98, \quad t_{0.975} = 1.98$$

we reject H_0 .

• What about with level of significance $\alpha = 0.01$? In this case

$$t_{0.005} = -2.63, \quad t_{0.995} = 2.63,$$

Recap	<i>p</i> -value	Two sample tests	χ^2 test	Other goodness-of-fit checks
Example	of hypoth	nesis test		

<i>x</i> ₁	<i>x</i> ₂	•••	<i>x</i> ₁₀₀
178 cm	183 cm	• • •	175 cm

and calculate the estimate of the mean $\overline{x} = 178$ and the estimate of the variance $s^2 = 64$ (i.e. s = 8).

- We want to test H_0 : $\mu = 180$ cm at level of significance $\alpha = 0.05$.
- Since

$$t = \frac{178 - 180}{8/10} = -2.5, \quad t_{0.025} = -1.98, \quad t_{0.975} = 1.98$$

we reject H_0 .

• What about with level of significance $\alpha = 0.01$? In this case

$$t_{0.005} = -2.63, \quad t_{0.995} = 2.63,$$

Recap	<i>p</i> -value	Two sample tests	χ^{2} test	Other goodness-of-fit checks
Example	of hypot	thesis test		

<i>x</i> ₁	<i>x</i> ₂	•••	<i>x</i> ₁₀₀
178 cm	183 cm	• • •	175 cm

and calculate the estimate of the mean $\overline{x} = 178$ and the estimate of the variance $s^2 = 64$ (i.e. s = 8).

- We want to test $H_0: \mu = 180$ cm at level of significance $\alpha = 0.05$.
- Since

$$t = \frac{178 - 180}{8/10} = -2.5, \quad t_{0.025} = -1.98, \quad t_{0.975} = 1.98$$

we reject H_0 .

• What about with level of significance $\alpha = 0.01$? In this case

$$t_{0.005} = -2.63, \quad t_{0.995} = 2.63,$$

We want a number telling how much data confirms the hypothesis.

Define *p*-value:

 $p
-value = P(similar dataset supports H_0 less | H_0 is true)$ $= P \begin{pmatrix} estimates from similar data- \\ set are more extreme \\ \end{pmatrix} H_0 is true \end{pmatrix}$

- We want a number telling how much data confirms the hypothesis.
- Define p-value:

 $p\text{-value} = P(\text{similar dataset supports } H_0 \text{ less } | H_0 \text{ is true})$ $= P\left(\begin{array}{c} \text{estimates from similar data-} \\ \text{set are more extreme} \end{array} \middle| H_0 \text{ is true} \right)$

- We want a number telling how much data confirms the hypothesis.
- Define *p*-value:

 $p\text{-value} = P(\text{similar dataset supports } H_0 \text{ less } | H_0 \text{ is true})$ $= P\begin{pmatrix} \text{estimates from similar data-} \\ \text{set are more extreme} \end{pmatrix} H_0 \text{ is true}$ $P \begin{pmatrix} \text{estimates from similar dataset} \\ \text{are more extreme if we assume} \\ H_0 \text{ is true} \end{pmatrix}$

Recap	<i>p</i> -value	Two sample tests	χ^{2} test	Other goodness-of-fit checks
<i>p</i> -value				

If $H_0: \mu = 180$ is true:

$$T = \frac{\overline{X} - 180}{\sqrt{S^2/n}} \sim t(99)$$

• *p*-value for our observation $\overline{x} = 178$, $s^2 = 64$:

$$p$$
-value = $P\begin{pmatrix} \text{estimates from similar data-}\\ \text{set are more extreme} \end{pmatrix} H_0 \text{ is true}$

NOTE: "more extreme" depends on the hypothesis

Recap	<i>p</i> -value	Two sample tests	χ^{2} test	Other goodness-of-fit checks
<i>p</i> -value				

■ If $H_0: \mu = 180$ is true:

$$T = \frac{\overline{X} - 180}{\sqrt{S^2/n}} \sim t(99)$$

• *p*-value for our observation $\overline{x} = 178$, $s^2 = 64$:

NOTE: "more extreme" depends on the hypothesis

Recap	<i>p</i> -value	Two sample tests	χ^2 test	Other goodness-of-fit checks
<i>p</i> -value				

■ If $H_0: \mu = 180$ is true:

$$T = \frac{\overline{X} - 180}{\sqrt{S^2/n}} \sim t(99)$$

• *p*-value for our observation $\overline{x} = 178$, $s^2 = 64$:

NOTE: "more extreme" depends on the hypothesis

Recap	<i>p</i> -value	Two sample tests	χ^2 test	Other goodness-of-fit checks
<i>p</i> -value				

■ If $H_0: \mu = 180$ is true:

$$T = \frac{\overline{X} - 180}{\sqrt{S^2/n}} \sim t(99)$$

• *p*-value for our observation $\overline{x} = 178$, $s^2 = 64$:

$$p\text{-value} = P \begin{pmatrix} \text{estimates from similar data-} \\ \text{set are more extreme} \\ = P(|T| \ge 2.5) = 1.4\% \end{pmatrix}$$

NOTE: "more extreme" depends on the hypothesis

Recap	<i>p</i> -value	Two sample tests	χ^2 test	Other goodness-of-fit checks
<i>p</i> -value				

• If $H_0: \mu \ge 180$ is true:

$$T = \frac{\overline{X} - 180}{\sqrt{S^2/n}} \sim t(99)$$

• *p*-value for our observation $\overline{x} = 178$, $s^2 = 64$:

$$p$$
-value = $P\begin{pmatrix} estimates from similar data-\\set are more extreme \end{pmatrix}$ H_0 is true

$$= 1.4\% = P(T \le -2.5) = 0.7\%$$

■ NOTE: "more extreme" depends on the hypothesis.

Recap	<i>p</i> -value	Two sample tests	χ^{2} test	Other goodness-of-fit checks
Fatcs	about <i>p</i> -va	lue		

- Small *p*-value (≤ 0.05): We reject hypothesis.
- Large *p*-value: We cannot reject hypothesis.
- The larger the *p*-value, the more faith we have in our hypothesis.
- *p*-value (much) greater than $0.05 \Rightarrow$ estimate is (well) inside 95 % confidence interval.

Recap		Two sample tests	χ^{2} test	Other goodness-of-fit checks
Paired	samples			

Sample 1: $x_{1,1}$ $x_{1,2}$... $x_{1,n}$ Sample 2: $x_{2,1}$ $x_{2,2}$... $x_{2,n}$

- Assumptions:
 - Observations occur in pairs, $(x_{1,i}, x_{2,i})$.
 - ► Each sample consists of independent, normally distributed observations, X_{i,j} ~ N(μ_i, σ_i²).
- Note:
 - The two samples do not need to be independent.
 - Is often used in before-after experiments.

Hypothesis:

 $H_0: \mu_1 = \mu_2$ $H_1: \mu_1 \neq \mu_2$

Recap		Two sample tests	χ^{2} test	Other goodness-of-fit checks
Paired	samples			

Sample 1: $x_{1,1}$ $x_{1,2}$... $x_{1,n}$ Sample 2: $x_{2,1}$ $x_{2,2}$... $x_{2,n}$

- Assumptions:
 - Observations occur in pairs, $(x_{1,i}, x_{2,i})$.
 - ► Each sample consists of independent, normally distributed observations, X_{i,j} ~ N(μ_i, σ_i²).
- Note:
 - The two samples do not need to be independent.
 - Is often used in before-after experiments.
- Hypothesis:

$$H_0: \mu_1 = \mu_2$$

 $H_1: \mu_1 \neq \mu_2$

Recap		Two sample tests	χ^2 test	Other goodness-of-fit checks
Paired	samples			

Sample 1 :
$$x_{1,1}$$
 $x_{1,2}$... $x_{1,n}$
Sample 2 : $x_{2,1}$ $x_{2,2}$... $x_{2,n}$
Difference: d_1 d_2 ... d_n
 $d_i = x_{1,i} - x_{2,i}$
We have
 $d_i \sim N(\underbrace{\mu_1 - \mu_2}_{=\delta}, \sigma_*^2)$
don't worry about this one

$$\begin{array}{c} H_0: \mu_1 = \mu_2 \\ H_1: \mu_1 \neq \mu_2 \end{array} \Rightarrow \begin{cases} H_0: \mu_1 - \mu_2 = 0 \\ H_1: \mu_1 - \mu_2 \neq 0 \end{cases}$$

• Use usual *t*-test to test if $\delta = 0$.

Recap		Two sample tests	χ^2 test	Other goodness-of-fit checks
Paired	samples			

Sample 1 :
$$x_{1,1}$$
 $x_{1,2}$... $x_{1,n}$
Sample 2 : $x_{2,1}$ $x_{2,2}$... $x_{2,n}$
Difference: d_1 d_2 ... d_n
 $d_i = x_{1,i} - x_{2,i}$
We have
 $d_i \sim \sim N(\mu_1 - \mu_2, \sigma_*^2)$
 $= \delta$
don't worry
about this one

■ Hypothesis:

$$\begin{array}{c} H_0: \mu_1 = \mu_2 \\ H_1: \mu_1 \neq \mu_2 \end{array} \right\} \quad \Leftrightarrow \quad \begin{cases} H_0: \mu_1 - \mu_2 = 0 \\ H_1: \mu_1 - \mu_2 \neq 0 \end{cases}$$

• Use usual *t*-test to test if $\delta = 0$

Recap		Two sample tests	χ^2 test	Other goodness-of-fit checks
Paired	samples			

Sample 1 :
$$x_{1,1}$$
 $x_{1,2}$... $x_{1,n}$
Sample 2 : $x_{2,1}$ $x_{2,2}$... $x_{2,n}$
Difference: d_1 d_2 ... d_n
 $d_i = x_{1,i} - x_{2,i}$
We have
 $d_i \sim N(\underbrace{\mu_1 - \mu_2}_{=\delta}, \sigma_*^2)$
don't worry about this one

Hypothesis:

$$\begin{array}{l} H_0:\mu_1=\mu_2\\ H_1:\mu_1\neq\mu_2 \end{array} \qquad \Leftrightarrow \qquad \left\{ \begin{array}{l} H_0:\mu_1-\mu_2=0\\ H_1:\mu_1-\mu_2\neq 0 \end{array} \right\} \quad \Leftrightarrow \quad \left\{ \begin{array}{l} H_0:\delta=0\\ H_1:\delta\neq 0 \end{array} \right.$$

• Use usual *t*-test to test if $\delta = 0$.

Recap		Two sample tests	χ^2 test	Other goodness-of-fit checks
Paired	samples			

Sample 1 :
$$x_{1,1}$$
 $x_{1,2}$... $x_{1,n}$
Sample 2 : $x_{2,1}$ $x_{2,2}$... $x_{2,n}$
Difference: d_1 d_2 ... d_n
 $d_i = x_{1,i} - x_{2,i}$
We have
 $d_i \sim N(\mu_1 - \mu_2, \sigma_*^2)$
 $= \delta$
don't worry
about this one

Hypothesis:

$$\begin{array}{l} H_0:\mu_1=\mu_2\\ H_1:\mu_1\neq\mu_2 \end{array} \qquad \Leftrightarrow \qquad \left\{ \begin{array}{l} H_0:\mu_1-\mu_2=0\\ H_1:\mu_1-\mu_2\neq 0 \end{array} \right\} \quad \Leftrightarrow \quad \left\{ \begin{array}{l} H_0:\delta=0\\ H_1:\delta\neq 0 \end{array} \right.$$

• Use usual *t*-test to test if $\delta = 0$.

Recap		Two sample tests	χ^{2} test	Other goodness-of-fit checks
Unpaired	samples			

Sample 1:
$$x_{1,1}$$
 $x_{1,2}$... x_{1,n_1}
Sample 2: $x_{2,1}$ $x_{2,2}$... x_{2,n_2}

Assumptions:

- Each sample consists of independent normally distributed observations, X_{i,j} ~ N(μ_i, σ²_i).
- ▶ The two samples are independent.

Hypothesis:

$$\begin{array}{c} H_0: \mu_1 = \mu_2 \\ H_1: \mu_1 \neq \mu_2 \end{array} \Rightarrow \begin{array}{c} \{ H_0: \mu_1 - \mu_2 = 0 \\ H_1: \mu_1 - \mu_2 \neq 0 \end{array}$$

Recap		Two sample tests	χ^{2} test	Other goodness-of-fit checks
Unpaired	l samples			

Sample 1:
$$x_{1,1}$$
 $x_{1,2}$... x_{1,n_1}
Sample 2: $x_{2,1}$ $x_{2,2}$... x_{2,n_2}

Assumptions:

- Each sample consists of independent normally distributed observations, X_{i,j} ~ N(μ_i, σ²_i).
- ▶ The two samples are independent.

Hypothesis:

$$\begin{array}{c} H_0: \mu_1 = \mu_2 \\ H_1: \mu_1 \neq \mu_2 \end{array} \qquad \Leftrightarrow \qquad \begin{cases} H_0: \mu_1 - \mu_2 = 0 \\ H_1: \mu_1 - \mu_2 \neq 0 \end{cases}$$

Recap	Two sample tests	χ^2 test	Other goodness-of-fit checks

Procedure:

► Calculate

$$\overline{x}_{1,\cdot} = \frac{1}{n_1} \sum_{j=1}^{n_1} x_{1,j}$$
 og $\overline{x}_{2,\cdot} = \frac{1}{n_2} \sum_{j=1}^{n_2} x_{2,j}$

Is x
_{1,.} − x
_{2,.} close to 0 in appropriate distribution?
 Assumptions gives "appropriate distribution":

$$T = \frac{\overline{x}_{1,\cdot} - \overline{x}_{2,\cdot}}{\widehat{\sigma}_{\overline{x}_{1,\cdot} - \overline{x}_{2,\cdot}}} \sim t \text{-distributed}.$$

 $\widehat{\sigma}_{\overline{x}_{1,.}-\overline{x}_{2,.}}$ and degrees of freedom both depend on the variances!

Recap	Two sample tests	χ^2 test	Other goodness-of-fit checks

Procedure:

► Calculate

$$\overline{x}_{1,\cdot} = \frac{1}{n_1} \sum_{j=1}^{n_1} x_{1,j}$$
 og $\overline{x}_{2,\cdot} = \frac{1}{n_2} \sum_{j=1}^{n_2} x_{2,j}$

▶ Is x
_{1,.} - x
_{2,.} close to 0 in appropriate distribution?
 ▶ Assumptions gives "appropriate distribution":

$$T = \frac{\overline{x}_{1,\cdot} - \overline{x}_{2,\cdot}}{\widehat{\sigma}_{\overline{x}_{1,\cdot} - \overline{x}_{2,\cdot}}} \sim t \text{-distributed.}$$

 $\widehat{\sigma}_{\overline{x}_{1,.}-\overline{x}_{2,.}}$ and degrees of freedom both depend on the variances!

Recap	Two sample tests	χ^{2} test	Other goodness-of-fit checks

Procedure:

► Calculate

$$\overline{x}_{1,\cdot} = \frac{1}{n_1} \sum_{j=1}^{n_1} x_{1,j}$$
 og $\overline{x}_{2,\cdot} = \frac{1}{n_2} \sum_{j=1}^{n_2} x_{2,j}$

Is x
_{1,.} − x
_{2,.} close to 0 in appropriate distribution?
 Assumptions gives "appropriate distribution":

$$T = \frac{\overline{\mathbf{x}}_{1,\cdot} - \overline{\mathbf{x}}_{2,\cdot}}{\widehat{\sigma}_{\overline{\mathbf{x}}_{1,\cdot} - \overline{\mathbf{x}}_{2,\cdot}}} \sim t \text{-distributed.}$$

■ $\hat{\sigma}_{\overline{x}_{1,\cdot}-\overline{x}_{2,\cdot}}$ and degrees of freedom both depend on the variances!

Recap		Two sample tests	χ^{2} test	Other goodness-of-fit checks
Pair	ed vs indene	ndent test		

- We must know from experiment, if samples are paired.
 - Same number of observations, doesn't necessarily mean we can use paired test!
 - If possible, we prefer paired test.

Recap		Two sample	tests		χ^2 to	est	Other g	oodness-of-fit c	hecks
χ^2 test	for good	dness-of-fit							
Date	ta:						Total		
	(Class	1	2		k			
	(Observation	o_1	<i>o</i> ₂		o_k	п		
	[Expected observation	e_1	<i>e</i> ₂		e_k	п		
Hy	oothesis:								
		H ₀ : Data follo H ₁ : Data doe	ows c sn't f	ertai follow	n dist / this	ributi distri	ion ibution		
Une Tes	der <i>H</i> ₀ : <i>o</i> 's st statistic:	${\sf s}pprox {\sf e's}.$							

$$\chi^{2} = \sum_{i=1}^{k} \frac{(o_{i} - e_{i})^{2}}{e_{i}} \sim \chi^{2}(k - m - 1)$$

• Large values of
$$\chi^2$$
 are critical for H_0 .

Recap	<i>p</i> -value	Two sample	e tests		$\chi^2 t$	est	Other g	goodness-of-fi	t checks
χ^2 test	for goo	dness-of-fit							
Date	ta:						Total		
		Class	1	2		k			
		Observation	o_1	<i>o</i> ₂		o _k	п		
		Expected observation	e_1	<i>e</i> ₂		e_k	п		
■ Hy	pothesis:								
		H ₀ : Data follo H ₁ : Data doe	ows c sn't f	ertai follov	n dist / this	ributi distr	ion ibution		
Une Tes	der <i>H</i> ₀ : <i>o</i> st statistic	's $pprox$ e's.							

$$\chi^{2} = \sum_{i=1}^{k} \frac{(o_{i} - e_{i})^{2}}{e_{i}} \sim \chi^{2}(k - m - 1)$$

$$\chi^{2} = \sum_{i=1}^{k} \frac{(o_{i} - e_{i})^{2}}{e_{i}} \sim \chi^{2}(k - m - 1)$$

• Large values of
$$\chi^2$$
 are critical for H_0 .

Recap		Two sample tests	χ^2 test	Other goodness-of-fit checks
χ^2 tes	t example			

1	2	3	4	5	6
119	117	98	89	96	81

Hypothesis:

 H_0 : The die is fair

 H_1 : The die is not fair

Under H₀ the expected table is:

1	2	3	4	5	6
100	100	100	100	100	100

• Calculate test statistic:

$$\chi^2 = \frac{(119 - 100)^2}{100} + \frac{(117 - 100)^2}{100} + \dots + \frac{(81 - 100)^2}{100} \approx 11.5$$

• Calculate *p*-value in $\chi^2(5)$ distribution = 4.2%

Recap		Two sample tests	χ^2 test	Other goodness-of-fit checks
χ^2 tes	t example			

1	2	3	4	5	6
119	117	98	89	96	81

Hypothesis:

 H_0 : The die is fair

 H_1 : The die is not fair

• Under H_0 the expected table is:

1	2	3	4	5	6
100	100	100	100	100	100

Calculate test statistic:

$$\chi^2 = \frac{(119 - 100)^2}{100} + \frac{(117 - 100)^2}{100} + \dots + \frac{(81 - 100)^2}{100} \approx 11.5$$

• Calculate *p*-value in $\chi^2(5)$ distribution = 4.2%

Recap		Two sample tests	χ^2 test	Other goodness-of-fit checks
χ^2 tes	t example			

1	2	3	4	5	6
119	117	98	89	96	81

Hypothesis:

 H_0 : The die is fair

 H_1 : The die is not fair

• Under H_0 the expected table is:

1	2	3	4	5	6
100	100	100	100	100	100

Calculate test statistic:

$$\chi^2 = \frac{(119 - 100)^2}{100} + \frac{(117 - 100)^2}{100} + \dots + \frac{(81 - 100)^2}{100} \approx 11.5$$

■ Calculate *p*-value in *χ*²(5) distribution = 4.2%

Recap		Two sample tests	χ^2 test	Other goodness-of-fit checks
χ^2 tes	t example			

1	2	3	4	5	6
119	117	98	89	96	81

Hypothesis:

 H_0 : The die is fair

 H_1 : The die is not fair

• Under H_0 the expected table is:

1	2	3	4	5	6
100	100	100	100	100	100

Calculate test statistic:

$$\chi^2 = \frac{(119 - 100)^2}{100} + \frac{(117 - 100)^2}{100} + \dots + \frac{(81 - 100)^2}{100} \approx 11.5$$

Calculate *p*-value in $\chi^2(5)$ distribution = 4.2%

- NOTE: The χ^2 is an approximate distribution for the test statistic and the approximation is typically not good if any expected count is less than 5.
- " χ^2 test" cover several tests:
 - Test distribution.
 - Test for independence between observations in table.
 - Test for homogenity in table.
- Common features:
 - Data is in table.
 - Test statistic:

$$\sum \frac{(\text{observed} - \text{expected})^2}{\text{expected}}$$

• Test statistic is χ^2 distributed.

- NOTE: The χ^2 is an approximate distribution for the test statistic and the approximation is typically not good if any expected count is less than 5.
- " χ^2 test" cover several tests:
 - Test distribution.
 - Test for independence between observations in table.
 - Test for homogenity in table.
- Common features:
 - Data is in table.
 - Test statistic:

$$\sum \frac{(\mathsf{observed} - \mathsf{expected})^2}{\mathsf{expected}}.$$

• Test statistic is χ^2 distributed.

- We observe *n* values x_1, x_2, \ldots, x_n .
- Histogram of data:
 - Divide the x axis into equally sized intervals.
 - Make a bar in each interval that represents the number of observations in the interval.

Observations: -2.9, -2.9, -2.5, -2.1, -1.5, -0.75, -0.5, -0.25, 0.5, 0.5, 2, 2.5, 2.6

- With few observations it can be hard to recognize the distribution
- The intervals should be chosen apropriately (rarely a serious problem)

- \blacksquare With few observations it can be hard to recognize the distribution
- The intervals should be chosen apropriately (rarely a serious problem)

- With few observations it can be hard to recognize the distribution
- The intervals should be chosen apropriately (rarely a serious problem)

- With few observations it can be hard to recognize the distribution
- The intervals should be chosen apropriately (rarely a serious problem)

Recap	Two sample tests	χ^{2} test	Other goodness-of-fit checks
QQ-plot			

- QQ-plot: 2. method to explore distribution of data.
- Idea: Compare empirical distribution function with a theoretical distribution function.

- Problem: It is difficult to compare graphs, that are not straight lines.
- New idea: Compare empirical quantiles with theoretical quantiles.

Recap	Two sample tests	χ^{2} test	Other goodness-of-fit checks
QQ-plot			

- QQ-plot: 2. method to explore distribution of data.
- Idea: Compare empirical distribution function with a theoretical distribution function.

- Problem: It is difficult to compare graphs, that are not straight lines.
- New idea: Compare empirical quantiles with theoretical quantiles.

Recap	Two sample tests	χ^{2} test	Other goodness-of-fit checks
QQ-plot			

- QQ-plot: 2. method to explore distribution of data.
- Idea: Compare empirical distribution function with a theoretical distribution function.

 Problem: It is difficult to compare graphs, that are not straight lines.

New idea: Compare empirical quantiles with theoretical quantiles.

Recap	Two sample tests	χ^{2} test	Other goodness-of-fit checks
QQ-plot			

- QQ-plot: 2. method to explore distribution of data.
- Idea: Compare empirical distribution function with a theoretical distribution function.

- Problem: It is difficult to compare graphs, that are not straight lines.
- New idea: Compare empirical quantiles with theoretical quantiles.

- Facts about QQ-plots
 - If the proposed distribution is good, we get a linear pattern.
 - ▶ As the number of observations increase, the variability decreases.
 - The points are dependent, so they have a tendency to twist around the line.
- Examples of QQ-plots

Normal distributed data

Uniformly distributed data

Lognormal distributed data