Dataanalyse - Repetition - Kursusgang 5

Ege Rubak - rubak@math.aau.dk http://www.math.aau.dk/~rubak/teaching/2010/nano4

5. marts 2010

- X is discrete if it only takes countably many values.
- X is continuous if it takes uncountably many values.
- Examples:

Experiment	Stocastic variable	Туре
Throw a die	# eyes	discrete
Throw two dice	\sum eyes	discrete
Weigh a person	Weight	continuous
Measure men in DK	height	continuous

Stocastic variables	Distributions	χ^2 test	Tests for the mean	Simple linear regression
Discrete stor	chastic vari	ables		

• Probability function, f(x):

$$f(x) = P(X = x)$$

Mean value/Expected value:

$$E(X) = \sum_{\text{outcome}} xf(x)$$

■ Variance – the expected deviation from the mean value:

$$Var(X) = E((X - E(X))^{2}) = E(X^{2}) - E(X)^{2}$$
$$= \sum_{\text{outcome}} (x - E(X))^{2} f(x)$$

$$= \sum_{x \in X} x^2 f(x) - E(X)^2$$

outcome

Stocastic variables Distributions χ^2 test Tests for the mean Simple linear regression Continous stochastic variables

Density function, f(x):

$$P(a \le X \le b) = \int_a^b f(x) \, \mathrm{d}x$$

Mean value/Expected value:

$$E(X) = \int_{\text{outcome}} x f(x) \, \mathrm{d}x$$

■ Variance – the expected deviation from the mean value:

$$Var(X) = E((X - E(X))^2) = E(X^2) - E(X)^2$$
$$= \int_{outcome} (x - E(X))^2 f(x) dx$$
$$= \int_{outcome} x^2 f(x) dx - E(X)^2$$

X is a discrete stocastic variable with probability function f(x)
 The cumulative distribution function for X:

Distribution function

• X is a continuous stocastic variable with density function f(x)The cumulative distribution function for X:

$$F_X(x) = P(X \le x) = \int_{-\infty}^x f(t) dt$$

For $0 the p quantile is the number(s) <math>x_p$ where

$$F(x_p) = P(X \leq x_p) = p.$$

The quantiles can be found in tables. E.g. for the standard normal distribution N(0, 1):

р	0.005	0.01	0.025	0.05	0.10	0.25	0.50
х _р	-2.58	-2.33	-1.96	-1.64	-1.28	-0.67	0.00
р	0.75	0.90	0.95	0.975	0.99	0.995	
х _р	0.67	1.28	1.64	1.96	2.33	2.58	

Stocastic variables	Distributions	χ^2 test	Tests for the mean	Simple linear regression
Distributions				

- Uniform-distribution
- Binomial-distribution
- Normal-distribution
- χ^2 -distribution
- t-distribution

- X ~ B(n, p) if it is a sum of n independent "success/failure" experiments with succes probablility 0 ≤ p ≤ 1.
- Probability function:

$$P(X = k) = \binom{n}{k} p^k (1-p)^{n-k}.$$

Mean and variance:

$$E(X) = n \cdot p$$
 and $Var(X) = n \cdot p \cdot (1 - p)$

- $X \sim B(n, p)$ if it is a sum of *n* independent "success/failure" experiments with succes probablility $0 \le p \le 1$.
- Probability function:

 number of ways

 to choose k of n

$$P(X = k) = \binom{n}{k} p^k (1-p)^{n-k}.$$

Mean and variance:

$$E(X) = n \cdot p$$
 and $Var(X) = n \cdot p \cdot (1 - p)$

• $X \sim N(\mu, \sigma^2)$, μ is the mean and σ^2 is the variance.

• N(0,1) is the standard normal distribution.

If $X \sim N(\mu, \sigma^2)$, then $\frac{X-\mu}{\sigma} \sim N(0, 1)$.

is χ^2 distributed with *n* degrees of freedom (notation: $X \sim \chi^2(n)$). Remember X is positive and E(X) = n. f(x)n = 40.2 n = 6n = 80.1 0 2 12

10

14

16

18

8

4

6

0

Stocastic variables	Distributions	χ^2 test	Tests for the mean	Simple linear regression
t distribution				

For $X \sim t(n)$ we have

$$E(X) = 0$$
 and $Var(X) = \frac{n}{n-2}$, for $n > 2$.

The larger *n*, the more t(n) looks like N(0, 1).

Stocastic variables	Distributions	χ^2 test		Tests fo	or the m		Simple linear regression
χ^2 test for	goodness-of-fi	t					
Data:	Class	1	2		k	Total	
	Observation	01	2 02		o _k	п	
	Expected observation	e_1	<i>e</i> ₂		e_k	п	

Hypothesis:

 H_0 : Data follows certain distribution

 H_1 : Data doesn't follow this distribution

• Under H_0 : o's $\approx e$'s.

Test statistic:

$$\chi^{2} = \sum_{i=1}^{k} \frac{(o_{i} - e_{i})^{2}}{e_{i}} \sim \chi^{2}(k - m - 1)$$

• Large values of
$$\chi^2$$
 are critical for H_0 .

Dataanalyse - Kursusgang 5

Stocastic variables	Distributions 2	c^2 test		Tests fo	or the m	iean	Simple linear regression
χ^2 test for go	odness-of-fit						
Data:						Total	
	Class	1	2		k		
	Observation Expected	<i>o</i> ₁	<i>o</i> ₂		0 _k	п	
	observation	e_1	<i>e</i> ₂		e_k	п	
Hypothesis:							

- H_0 : Data follows certain distribution
- H_1 : Data doesn't follow this distribution
- Under H_0 : o's $\approx e$'s.

$$\chi^{2} = \sum_{i=1}^{k} \frac{(o_{i} - e_{i})^{2}}{e_{i}} \sim \chi^{2}(k - m - 1)$$

• Large values of
$$\chi^2$$
 are critical for H_0 .

Stocastic variables	Distributions	χ^{2} test		Tests fo	or the m		Simple linear regression
χ^2 test for go	odness-of-f	it					
Data:						Total	
	Class	1	2		k		
	Observation	o_1	<i>o</i> ₂		<i>o</i> _k	n	
	Expected observation	e_1	e₂ ▼		e _k ▲	п	
Hypothesis:	:			\mathbf{i}			
	<i>H</i> ₀ : Data fo	lows c	ertai	n dist	ributi	ion	
	H_1 : Data do	esn't f	ollov	v this	distri	ibution	
■ Under <i>H</i> ₀ :	o's $pprox$ e's.						
Test statist							
	k (o o.					

$$\chi^{2} = \sum_{i=1}^{\kappa} \frac{(o_{i} - e_{i})^{2}}{e_{i}} \sim \chi^{2}(k - m - 1)$$

• Large values of
$$\chi^2$$
 are critical for H_0 .

Dataanalyse - Kursusgang 5

• Large values of χ^2 are critical for H_0 .

Dataanalyse - Kursusgang 5

A hospital performs a certain surgery on 5 new patients every day. The table below summarises for one year (365 days) the number of patients that survived the surgery each day:

- Assignment: Test at a 5% significance level the hypothesis that data come from a binomial distribution with n = 5 and p = 0.72.
- Under H_0 the expected table is calculated as $e_i = 365 \cdot p(i)$, where $p(i) = {n \choose i} p^i (1-p)^{n-i}$:

	1	2	3	4	5
0.6	8.1	41.5	106.8	137.3	70.6

Since the expected value is less than 5 in the first group, we collapse the two first groups and get:

A hospital performs a certain surgery on 5 new patients every day. The table below summarises for one year (365 days) the number of patients that survived the surgery each day:

0	1	2	3	4	5
1	10	56	117	131	50

- Assignment: Test at a 5% significance level the hypothesis that data come from a binomial distribution with n = 5 and p = 0.72.
- Under H_0 the expected table is calculated as $e_i = 365 \cdot p(i)$, where $p(i) = {n \choose i} p^i (1-p)^{n-i}$:

0	1	2	3	4	5
0.6	8.1	41.5	106.8	137.3	70.6

Since the expected value is less than 5 in the first group, we collapse the two first groups and get:

A hospital performs a certain surgery on 5 new patients every day. The table below summarises for one year (365 days) the number of patients that survived the surgery each day:

0	1	2	3	4	5
1	10	56	117	131	50

- Assignment: Test at a 5% significance level the hypothesis that data come from a binomial distribution with n = 5 and p = 0.72.
- Under H_0 the expected table is calculated as $e_i = 365 \cdot p(i)$, where $p(i) = {n \choose i} p^i (1-p)^{n-i}$:

0	1	2	3	4	5
0.6	8.1	41.5	106.8	137.3	70.6

Since the expected value is less than 5 in the first group, we collapse the two first groups and get:

Stocastic variables Distributions χ^2 test Tests for the mean Simple linear regression χ^2 test example (cont'd)

Calculate test statistic (Remeber to add the two first observations):

$$\chi^2 = \frac{(11 - 8.7)^2}{8.7} + \frac{(56 - 41.5)^2}{41.5} + \dots + \frac{(50 - 70.6)^2}{70.6} \approx 12.9$$

- Find critical value c such that $P(\chi^2 \ge c) = 0.05$. This is equivalent to $P(\chi^2 \le c) = 0.95$. From the table we see that we reject H_0 if χ^2 is bigger than c = 9.49. (I.e. in this case we reject.)
- To approximate the *p*-value we use the table the other way. Since 12.9 is between 11.14 and 13.28 the *p*-value must be between 1 0.975 = 2.5% and 1 0.99 = 1% (the exact *p*-value from Matlab is 1.2%).

Stocastic variables Distributions χ^2 test Tests for the mean Simple linear regression χ^2 test example (cont'd)

Calculate test statistic (Remeber to add the two first observations):

$$\chi^2 = \frac{(11 - 8.7)^2}{8.7} + \frac{(56 - 41.5)^2}{41.5} + \dots + \frac{(50 - 70.6)^2}{70.6} \approx 12.9$$

Find critical value c such that $P(\chi^2 \ge c) = 0.05$. This is equivalent to $P(\chi^2 \le c) = 0.95$. From the table we see that we reject H_0 if χ^2 is bigger than c = 9.49. (I.e. in this case we reject.)

To approximate the *p*-value we use the table the other way. Since 12.9 is between 11.14 and 13.28 the *p*-value must be between 1 - 0.975 = 2.5% and 1 - 0.99 = 1% (the exact *p*-value from Matlab is 1.2%).

Stocastic variables Distributions χ^2 test Tests for the mean Simple linear regression χ^2 test example (cont'd)

 Calculate test statistic (Remeber to add the two first observations):

$$\chi^2 = \frac{(11 - 8.7)^2}{8.7} + \frac{(56 - 41.5)^2}{41.5} + \dots + \frac{(50 - 70.6)^2}{70.6} \approx 12.9$$

 $\begin{array}{|c|c|c|c|c|c|c|c|} \hline \textbf{Degrees of freedom: } k-1=5-1=4. & \textbf{Below is a } \chi^2(4) \ \textbf{table:} \\ \hline p & 0.10 & 0.25 & 0.5 & 0.75 & 0.90 & 0.95 & 0.975 & 0.99 & 0.995 \\ \hline x_p & 1.06 & 1.92 & 3.36 & 5.39 & 7.78 & 9.49 & 11.14 & 13.28 & 14.86 \\ \hline \end{array}$

Find critical value c such that $P(\chi^2 \ge c) = 0.05$. This is equivalent to $P(\chi^2 \le c) = 0.95$. From the table we see that we reject H_0 if χ^2 is bigger than c = 9.49. (I.e. in this case we reject.)

To approximate the *p*-value we use the table the other way. Since 12.9 is between 11.14 and 13.28 the *p*-value must be between 1 - 0.975 = 2.5% and 1 - 0.99 = 1% (the exact *p*-value from Matlab is 1.2%).

 χ^2 test Stocastic variables Distributions Tests for the mean Simple linear regression

- - Calculate test statistic (Remeber to add the two first) observations):

$$\chi^2 = \frac{(11 - 8.7)^2}{8.7} + \frac{(56 - 41.5)^2}{41.5} + \dots + \frac{(50 - 70.6)^2}{70.6} \approx 12.9$$

Degrees of freedom: k - 1 = 5 - 1 = 4. Below is a $\chi^2(4)$ table: 0.10 0.25 0.5 0.75 0.90 0.95 0.975 0.99 1.06 1.92 3.36 5.39 7.78 9.49 11.14 13.28 0.995 13.28 14.86 Xn

- Find critical value c such that $P(\chi^2 \ge c) = 0.05$. This is equivalent to $P(\chi^2 \le c) = 0.95$. From the table we see that we reject H_0 if χ^2 is bigger than c = 9.49. (I.e. in this case we reject.)
- To approximate the *p*-value we use the table the other way. Since 12.9 is between 11.14 and 13.28 the p-value must be between 1 - 0.975 = 2.5% and 1 - 0.99 = 1% (the exact *p*-value from Matlab is 1.2%).

- What if the assignment is: Test at a 5% significance level the hypothesis that data come from a binomial distribution with *n* = 5?
- Now the probability of success has to be estimated:

$$\hat{p} = \frac{\text{succeses}}{\text{trials}} = \frac{10 \cdot 1 + 56 \cdot 2 + 117 \cdot 3 + 131 \cdot 4 + 50 \cdot 5}{365 \cdot 5} = 0.68$$

Then we recalculate expected counts with p = 0.68. The new test statistic is $\chi^2 = 1.2$. Now we have to compare with a $\chi^2(3)$ distribution since we have estimated a parameter. In this distribution the critical value is c = 7.81, and we therefore cannot reject H_0 .

- What if the assignment is: Test at a 5% significance level the hypothesis that data come from a binomial distribution with *n* = 5?
- Now the probability of success has to be estimated:

$$\hat{p} = \frac{\text{successs}}{\text{trials}} = \frac{10 \cdot 1 + 56 \cdot 2 + 117 \cdot 3 + 131 \cdot 4 + 50 \cdot 5}{365 \cdot 5} = 0.68$$

Then we recalculate expected counts with p = 0.68. The new test statistic is $\chi^2 = 1.2$. Now we have to compare with a $\chi^2(3)$ distribution since we have estimated a parameter. In this distribution the critical value is c = 7.81, and we therefore cannot reject H_0 .

- What if the assignment is: Test at a 5% significance level the hypothesis that data come from a binomial distribution with *n* = 5?
- Now the probability of success has to be estimated:

$$\hat{\rho} = \frac{\text{successs}}{\text{trials}} = \frac{10 \cdot 1 + 56 \cdot 2 + 117 \cdot 3 + 131 \cdot 4 + 50 \cdot 5}{365 \cdot 5} = 0.68$$

Then we recalculate expected counts with p = 0.68. The new test statistic is $\chi^2 = 1.2$. Now we have to compare with a $\chi^2(3)$ distribution since we have estimated a parameter. In this distribution the critical value is c = 7.81, and we therefore cannot reject H_0 .

$$\overline{X} = \frac{1}{n} \sum_{i=1}^{n} X_i = \frac{1}{n} (X_1 + X_2 + \dots + X_n)$$
$$S^2 = \frac{1}{n-1} \sum_{i=1}^{n} (X_i - \overline{X})^2 = \frac{1}{n-1} \left(\sum_{i=1}^{n} X_i^2 - n \overline{X}^2 \right)$$

X̄ and S² are stocastic variables with E(X̄) = μ and E(S²) = σ².
 If the variance σ² is known:

$$Z = \frac{\overline{X} - \mu}{\sqrt{\sigma^2/n}} \sim N(0, 1)$$

If the variance σ² is unknown:

$$T = \frac{\overline{X} - \mu}{\sqrt{S^2/n}} \sim t(n-1)$$

$$\overline{X} = \frac{1}{n} \sum_{i=1}^{n} X_i = \frac{1}{n} (X_1 + X_2 + \dots + X_n)$$
$$S^2 = \frac{1}{n-1} \sum_{i=1}^{n} (X_i - \overline{X})^2 = \frac{1}{n-1} \left(\sum_{i=1}^{n} X_i^2 - n\overline{X}^2 \right)$$

X̄ and S² are stocastic variables with E(X̄) = μ and E(S²) = σ².
 If the variance σ² is known:

$$Z = \frac{\overline{X} - \mu}{\sqrt{\sigma^2/n}} \sim N(0, 1)$$

If the variance σ² is unknown:

$$T = \frac{\overline{X} - \mu}{\sqrt{S^2/n}} \sim t(n-1)$$

$$\overline{X} = \frac{1}{n} \sum_{i=1}^{n} X_i = \frac{1}{n} (X_1 + X_2 + \dots + X_n)$$
$$S^2 = \frac{1}{n-1} \sum_{i=1}^{n} (X_i - \overline{X})^2 = \frac{1}{n-1} \left(\sum_{i=1}^{n} X_i^2 - n\overline{X}^2 \right)$$

X̄ and S² are stocastic variables with E(X̄) = μ and E(S²) = σ².
 If the variance σ² is known:

$$Z = \frac{\overline{X} - \mu}{\sqrt{\sigma^2/n}} \sim N(0, 1)$$

If the variance σ² is unknown:

$$T = \frac{\overline{X} - \mu}{\sqrt{S^2/n}} \sim t(n-1)$$

$$\overline{X} = \frac{1}{n} \sum_{i=1}^{n} X_i = \frac{1}{n} (X_1 + X_2 + \dots + X_n)$$
$$S^2 = \frac{1}{n-1} \sum_{i=1}^{n} (X_i - \overline{X})^2 = \frac{1}{n-1} \left(\sum_{i=1}^{n} X_i^2 - n\overline{X}^2 \right)$$

X̄ and S² are stocastic variables with E(X̄) = μ and E(S²) = σ².
 If the variance σ² is known:

$$Z = rac{\overline{X} - \mu}{\sqrt{\sigma^2/n}} \sim N(0, 1)$$

If the variance σ^2 is unknown:

$$T = \frac{\overline{X} - \mu}{\sqrt{S^2/n}} \sim t(n-1)$$

Stocastic variables	Distributions	χ^2 test	Tests for the mean	Simple linear regression
Example <i>z</i> -tes	st			

- H_0 : Mean height is 180.
- We have observations from n = 100 people, (x_1, \ldots, x_{100}) , and calculate $\overline{x} = 178$. Assume we know $\sigma^2 = 25$.
- Critical value (at 5% sig. level): 1.96 (found by looking up the 97.5% quantile in N(0, 1) table).
- Test statistic:

$$z = \frac{178 - 180}{\sqrt{25/100}} = -4$$

Since |z| = 4 > 1.96 we reject H_0 .

- Approximation of *p*-value: From the table we only know $P(Z \le -2.58) = 0.005$ and $P(Z \le 2.58) = 0.995$. Therefore $P(|Z| \ge 2.58) = 0.01$. I.e. we can only say the *p*-value is less than 1%.
- 95% confidence interval: $\overline{x} \pm z_{0.975} \cdot \sqrt{\sigma^2/n} = 178 \pm 0.98$.

- Assume σ^2 is unknown and $s^2 = 64$.
- Critical value (at 5% sig. level): 1.98 (found by looking up the 97.5% quantile in t(99) table).
- Test statistic:

$$t = \frac{178 - 180}{\sqrt{64/100}} = -2.5$$

- Since |z| = 2.5 > 1.98 we reject H_0 .
- Approximation of *p*-value: From a table we know $P(T \le -2.63) = 0.005$ and $P(T \le 2.63) = 0.995$. Therefore $P(|T| \ge 2.63) = 0.01$. I.e. the *p*-value is between 1% and 5%.
- 95% confidence interval: $\overline{x} \pm t_{0.975} \cdot \sqrt{s^2/n} = 178 \pm 1.59$.

Stocastic variables	Distributions	χ^{2} test	Tests for the mean	Simple linear regression
Paired <i>t</i> -test				

Data:

Sample 1: $x_{1,1}$ $x_{1,2}$... $x_{1,n}$ Sample 2: $x_{2,1}$ $x_{2,2}$... $x_{2,n}$

- Assumptions:
 - Observations occur in pairs, $(x_{1,i}, x_{2,i})$.
 - ► Each sample consists of independent, normally distributed observations, X_{i,j} ~ N(μ_i, σ²_i).
- Note:
 - The two samples do not need to be independent.
 - ▶ Is often used in before-after experiments.

Hypothesis:

$$H_0: \mu_1 = \mu_2$$
$$H_1: \mu_1 \neq \mu_2$$

Stocastic variables	Distributions	χ^{2} test	Tests for the mean	Simple linear regression
Paired <i>t</i> -test				

Data:

Sample 1 :
$$x_{1,1}$$
 $x_{1,2}$
 ...
 $x_{1,n}$

 Sample 2 : $x_{2,1}$
 $x_{2,2}$
 ...
 $x_{2,n}$

 Difference: d_1
 d_2
 ...
 d_n

 $d_i = x_{1,i} - x_{2,i}$

We have a new data set of differences d_1, \ldots, d_n which are normally distributed with unknown mean δ and unknow variance σ^2 .

Hypothesis:

$$H_0 : \delta = 0$$
$$H_1 : \delta \neq 0$$

• Use usual *t*-test to test if $\delta = 0$.

We assume a model where the stochastic variable Y depends linearly on the ordinary variable x:

$$Y = \beta_0 + \beta_1 x + U.$$

U is an error term with $U \sim N(0, \sigma^2)$.

Stocastic variables	Distributions	χ^- test	lests for the mean	Simple linear regression
Estimates an	d estimated	regres	sion line	
The "least	: squares''-estim	ates are:		

$$\hat{eta}_0 = ar{y} - \hat{eta}_1 ar{x}$$
 and $\hat{eta}_1 = rac{s_{XY}}{s_x^2}.$

• The regression line is estimated by $\hat{y} = \hat{\beta}_0 + \beta_1 x$.

- **Predicted value:** $\hat{y}_i = \hat{\beta}_0 + \hat{\beta}_1 x_i$ is the predicted value for y_i .
- **Residual:** $\hat{u}_i = y_i \hat{y}_i = y_i \hat{\beta}_0 \hat{\beta}_1 x_i$.

Stocastic variables Distributions χ^2 test Tests for the mean Simple linear regression Coefficient of determination

The proportion of the total variation that is explained is called *the coefficient of determination*. The easiest formula to calculate it is

$$R^2 = \frac{s_{xy}^2}{s_x^2 s_y^2}.$$

Remember:

$$s_{xy} = \frac{1}{n-1} \sum_{i=1}^{n} (x_i - \bar{x})(y_i - \bar{y}),$$

$$s_x^2 = \frac{1}{n-1} \sum_{i=1}^n (x_i - \bar{x})^2$$
 and $s_y^2 = \frac{1}{n-1} \sum_{i=1}^n (y_i - \bar{y})^2$.

Interpretation: If for example $R^2 = 0.7$ we have that the model explains 70% of the variation of the y_i 's. The remaining 30% correspond to random unexplained variation.

Stocastic variables	Distributions	χ^2 test	Tests for the mean	Simple linear regression
Test statisti	rs			

• The test statistics are:

$$T_0=\frac{\hat{\beta}_0-\beta_0}{\hat{\sigma}_0}\sim t(n-2),$$

where

$$\hat{\sigma}_0^2 = \frac{((n-1)s_x^2 + n\overline{x}^2)(s_y^2 - \hat{\beta}_1^2 s_x^2)}{n(n-2)s_x^2}.$$

and

$$T_1=\frac{\hat{\beta}_1-\beta_1}{\hat{\sigma}_1}\sim t(n-2),$$

where

$$\hat{\sigma}_1^2 = rac{s_y^2 - \hat{\beta}_1^2 s_x^2}{(n-2)s_x^2}.$$

Stocastic variables Distributions χ^2 test Tests for the mean Simple linear regression Hypothesis test and confidence interval

- We want to test the hypothesis
 - $H_0: \beta_1 = K$
 - $H_1: \beta_1 \neq K$

Often we test with K = 0. This corresponds to x not having any influence on Y.

■ Under *H*₀:

$$T_1=\frac{\hat{\beta}_1-K}{\hat{\sigma}_1}\sim t(n-2).$$

- Now we do exactly as before: Find a critical value c from the t(n-2) table, and reject H_0 if $|T_1| > c$. The *p*-value is approximated as before by using the table in the reverse direction.
- A 95% confidence interval for β_1 is given by

$$\hat{\beta}_1 \pm t_{0.975} \hat{\sigma}_1,$$

where $t_{0.975}$ is the 97.5% quantile found using the t(n-2) table.