
A Asymptotic normality of regression parameter es-

timates

Please recall the notation introduced in Section 2 and 3. In this appendix we derive asymp-
totic normality of the estimate of the interest parameter β1:p when the mother intensity
tends to infinity, i.e. we consider an increasing sequence (κn)n≥1 of κ values where κn = nκ̃
for some κ̃ > 0 and n → ∞. The constant κ̃ is introduced to allow for non-integer values
of κ.

Let β̃0 = log(α) and let un(β̃0, β1:p) = u(log(κn)+β̃0, β1:p) be the estimating function for

(β̃0, β1:p) when κ is known and given by κn. Denote by (β̃n
0
, β̂n

1:p) the estimate obtained by

solving un(β̃0, β1:p) = 0. The following Theorem 1 is concerned with asymptotic normality

of
√

κn(β̃n
0
− β∗

0
, β̂n

1:p − β∗
1:p).

Theorem 1. Suppose J(β∗
1:p) is positive definite. Then

√
κn(β̃n

0
−β∗

0
, β̂n

1:p −β∗
1:p) is asymp-

totically zero mean normal with covariance matrix

(α∗J(β∗
1:p))

−1 + J−1(β∗
1:p)G(β∗

1:p, ω
∗)J−1(β∗

1:p). (A.1)

Proof. Below we show that un(β̃∗
0
, β∗

1:p)/
√

n is asymptotically normal. Asymptotic nor-

mality of
√

κn(β̃n
0
− β∗

0
, β̂n

1:p − β∗
1:p) then follows directly from Theorem 2.8 in Sørensen

(1999).
Identify C with ∪n

i=1
Ci where the Ci are independent Poisson processes on R

2 with in-
tensity κ̃ and let Zi =

∑

c∈Ci

∑

ξ∈Xc∩S z(ξ). By applying twice the Slivnyak-Mecke theorem
(see e.g. Theorem 3.1 in Møller and Waagepetersen, 2003),

EZi = κ̃α∗

∫

S

z(ξ) exp(z1:p(ξ)(β
∗
1:p)

T)dξ

and by the extended Slivnyak-Mecke theorem (see e.g. Theorem 3.2 in Møller and Waagepetersen,
2003),

V = VarZi = E
[

∑

c∈Ci

(

∑

ξ∈Xc∩S

z(ξ)
)2]

=κ̃α∗

∫

S

z(ξ)Tz(ξ) exp(z1:p(ξ)(β
∗
1:p)

T)dξ

+ κ̃(α∗)2

∫

R2

H(β∗
1:p, ω

∗, c)TH(β∗
1:p, ω

∗, c)dc.

By the multivariate central limit theorem,

un(β̃∗
0
, β∗

1:p)/
√

n =
1
√

n

∑

c∈C

∑

ξ∈Xc∩S

z(ξ) −
√

nEZi =
1
√

n

n
∑

i=1

(Zi − EZi)

converges to a multivariate normal distribution with mean zero and covariance matrix V .
It follows from Theorem 2.8 in Sørensen (1999) (under condition 2.1 and 2.4 with

Gn(θ̄) = un(β̃∗
0
, β∗

1:p) and W (θ̄) = κ̃α∗J(β∗
1:p)) that

√
κ̃n(β̃n

0
− β∗

1:p, β̂
n
1:p − β∗

1:p) is asymptot-
ically zero mean normal with covariance matrix (A.1).
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For completeness we also include a result on asymptotic normality for the maximum
likelihood estimate of β̂1:p assuming that X is a Poisson process with intensity function of
the form κnα exp(z1:p(·)βT

1:p). The increasing intensity asymptotics considered here is math-
ematically more simple than the increasing domain asymptotics in Rathbun and Cressie
(1994).

Theorem 2. Let (β̃n
0
, β̂n

1:p) denote the maximum likelihood estimate obtained by solving

u(log(κn) + log(α), β1:p) = 0 assuming that X is a Poisson process with intensity function

κnα∗ exp(z1:p(·)(β∗
1:p)

T). Suppose J(β∗
1:p) is positive definite. Then

√
κn(β̃n

0
−β∗

0
, β̂n

1:p−β∗
1:p)

is asymptotically zero mean normal with covariance matrix given by the first term in (A.1).

Proof. Identify X ∩ S with ∪n
i=1

Xi where the Xi are independent Poisson processes on S
with intensity function κ̃α∗ exp(z1:p(ξ)(β

∗
1:p)

T), ξ ∈ S. Then un(β̃∗
0
, β∗

1:p)/
√

n is distributed
as

n
∑

i=1

(

∑

ξ∈Xi

z(ξ) − κ̃α∗

∫

S

z(ξ) exp(z1:p(ξ)(β
∗
1:p)

T)dξ

)

/
√

n

which is asymptotically zero mean normal with covariance matrix κ̃α∗J(β∗
1:p). Asymptotic

normality of
√

κn(β̃n
0
−β∗

0
, β̂n

1:p −β∗
1:p) with covariance matrix

(

α∗J(β∗
1:p)
)−1

now follows by
the same arguments as in the proof of Theorem 1.
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