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Abstract

Spatial Cox point processes is a natural framework for quantifying the

various sources of variation governing the spatial distribution of rain forest

trees. We introduce a general criterion for variance decomposition for spatial

Cox processes and apply it to specific Cox process models with additive or log

linear random intensity functions. We moreover consider a new and flexible

class of pair correlation function models given in terms of normal variance

mixture covariance functions. The proposed methodology is applied to point

pattern data sets of locations of tropical rain forest trees.
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1 Introduction

The spatial distributions of tropical rain forest trees are influenced by many factors

including e.g. spatially varying environmental conditions, seed dispersal, infectious

diseases, and gap creation by hurricanes. One natural question is, loosely speaking,

‘how much of the variation’ in the spatial distribution of a tropical rain forest tree

species can be attributed to each of these factors? In this paper we study meth-

ods for addressing this question with a particular focus on the contribution of the

environment.

The most fundamental summaries of variation are the variances of counts of

trees in bounded regions. A generalized linear mixed model (GLMM) for such

counts, with a variance component for each of the sources of variation, might be a

starting point for decomposing the variance. However, with this approach one loses

the fine-scale information contained in extensive tropical rain forest data sets which

include locations of individual trees and not just numbers of trees in certain regions

(e.g. Condit, 1998). Moreover, conclusions obtained from a fitted GLMM may in

general be strongly dependent on the sizes and shapes of the regions used to create

the count data.

A more natural and flexible approach is to model the individual tree locations as

a spatial point process (e.g. Møller and Waagepetersen, 2004) and then derive sum-

maries of variation from a fitted spatial point process model. With this approach

one can compute variances and covariances of counts in arbitrary regions and there-

fore recover all summaries that would be obtained from a GLMM approach. In

particular, Cox processes (e.g. Møller and Waagepetersen, 2004) provide a useful

framework for integrating different sources of variation.

This paper introduces a general criterion for decomposition of variance for Cox

processes. The criterion is applied to specific Cox process models with either additive

or log linear random intensity functions. The additive model is appealing in the

context of variance decomposition but has not been well studied in the point process

literature. For either model, the resulting variance decomposition depends on the

assumed pair correlation function which characterizes the spatial correlation in the

Cox process. It is therefore important to have a wide class of pair correlation
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functions to choose from. To this end we consider a new class of shot-noise Cox

processes with normal variance mixture pair correlation functions. These functions

are closely related to widely used counterparts in geostatistics and hence serve as a

bridge to further connect the theories of geostatistics and point processes.

1.1 A tropical rain forest data example

Waagepetersen and Guan (2009) fitted so-called inhomogeneous Thomas processes

to locations of three tree species, namely Acalypha diversifolia (528 trees), Lon-

chocarpus heptaphyllus (836 trees), and Capparis frondosa (3299 trees) that were

alive in 1995 in the 1000 m by 500 m Barro Colorado Island plot (Condit et al.,

1996; Condit, 1998; Hubbell and Foster, 1983). The significant covariates in the

fitted Thomas models were elevation and potassium for Acalypha and Capparis and

nitrogen and phosphorous for Lonchocarpus. The point patterns of tree locations

and the covariate potassium are shown in Figure 1.

[Figure 1 about here.]

In Section 7 we study decomposition of variance for these data sets. We moreover

employ a much broader class of Cox processes than the inhomogeneous Thomas

processes used in Waagepetersen and Guan (2009).

2 Background on spatial point processes

Let X be a point process on R2 and let N(B), for any bounded B ⊆ R2, denote the

number of points in X∩B. The first- and second-order moments of the counts N(B)

are determined by the intensity function ρ and the second-order product density ρ(2)

of X which are functions defined on R2 and R2 × R2, respectively (see Møller and

Waagepetersen, 2004). More precisely,

EN(B) =

∫

B

ρ(u)du

and

EN(A)N(B) =

∫

A∩B

ρ(u)du+

∫

A

∫

B

ρ(2)(u, v)dudv
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for bounded A,B ⊆ R2. The pair correlation function g is given by g(u, v) =

ρ(2)(u, v)/[ρ(u)ρ(v)].

For a Poisson process, the counts in disjoint regions are independent and Poisson

distributed. A Cox process is driven by a random intensity function Λ =
{
Λ(u) :

u ∈ R2
}
. Conditional on Λ = λ, the Cox process becomes a Poisson process with

intensity function λ. For a Cox process, ρ(u) = EΛ(u) and ρ(2)(u, v) = E[Λ(u)Λ(v)].

3 Decomposition of variance

To quantify the various sources of variation in a spatial point pattern we consider

the contribution of each source to the total variation of a count N(B) for a region

B. According to the previous section,

VarN(B) =

∫

B

ρ(u)du+

∫

B

∫

B

ρ(u)ρ(v)[g(u, v)− 1]dudv. (1)

The first term on the right-hand side of (1) is the variance of N(B) for a Poisson

process with intensity function ρ(·). The second term is the increase (or decrease)

in variance due to possible attraction (or repulsion) between points corresponding

to g > 1 (or g < 1).

For a Cox process X driven by a random intensity function Λ, we can decompose

a count N(B) as N(B) = I|Λ(B) + N̂|Λ(B) where

N̂|Λ(B) = E[N(B)|Λ)] =
∫

B

Λ(u)du

is the minimum mean square error predictor of N(B) given Λ and I|Λ(B) = N(B)−
N̂|Λ(B) is an innovation process in the terminology of Baddeley et al. (2005). Then

I|Λ(B) and N̂|Λ(B) are uncorrelated processes with

EI|Λ(B) = 0, Cov[I|Λ(A), I|Λ(B)] =

∫

A∩B

ρ(u)du

and

Cov[N̂|Λ(A), N̂|Λ(B)] =

∫

A

∫

B

ρ(u)ρ(v)[g(u, v)− 1]dudv
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since Cov[Λ(u),Λ(v)] = ρ(u)ρ(v)[g(u, v) − 1]. The process I|Λ may be viewed as

a ‘nugget’ process in geostatistical terminology since I|Λ(A) and I|Λ(B) are uncor-

related when A and B are disjoint. The spatially correlated sources of variation

causing the extra-Poisson variance in (1) enters via N̂|Λ.

In Section 4 we model Λ in terms of a random covariate process Z. To quantify

how much of the spatially structured variation is due to Z we further decompose

N̂|Λ(B) = I|Λ,Z(B) + N̂|Λ,Z into uncorrelated components

N̂|Λ,Z = E[N̂|Λ(B)|Z] =
∫

B

E[Λ(u)|Z]du

and

I|Λ,Z(B) = N̂|Λ(B)− N̂|Λ,Z(B) =

∫

B

{
Λ(u)− E[Λ(u)|Z]

}
du.

If all random variation in Λ is due to Z then VarI|Λ,Z(B) = 0. Further, VarN̂|Λ,Z(B) =

0 if Λ is independent of Z. The quantity

R2(B) =
VarN̂|Λ,Z(B)

VarN̂|Λ(B)
=

Var
∫
B
E[Λ(u)|Z]du

Var[
∫
B
Λ(u)du]

(2)

thus describes the proportion of the variance of
∫
B
Λ(u)du explained by Z. For

sufficiently small B, R2(B) may be approximated by

R2 =
VarE[Λ(uB)|Z]

VarΛ(uB)
, uB ∈ B (3)

which in the stationary case does not depend on B. The quantity R2 can also be

viewed as an analogue of the R2 statistic for linear regression. To see this connection,

we define the expected ‘sums of squares’

SSR = E

∫

S

I2R(u)du, SSE = E

∫

S

I2E(u)du

and

SST = SSR + SSE

where IR(u) = Λ̂|Z(u) − ρ(u), IE(u) = Λ(u) − Λ̂|Z(u), and Λ̂|Z(u) = E[Λ(u)|Z].
Then, in the case of a stationary random intensity function Λ, the ratio SSR/SST

(known as R2 for linear regression) coincides with (3). We discuss our R2 criterion

in relation to specific models in Section 4. Note that R2 is not a goodness-of-fit

criterion. In particular, R2 = 0 whenever Λ is independent of Z.
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4 Models for rain forest data

Let X be the process that generates the point pattern of locations for a particu-

lar tree species. We assume that X is a Cox process driven by a random inten-

sity function Λ where Λ depends on a stationary process Z =
{
Z(u) : u ∈ S

}
,

Z(u) = [Z1(u), . . . , Zp(u)], of p observed covariates and a non-negative process

Λ0 =
{
Λ0(u) : u ∈ S

}
representing unobserved sources of variation. We as-

sume that Λ depends on Z through Z̃ =
{
β0 + β1:pZ(u)

T
}
u∈S

for some parame-

ter β = (β0, β1:p) = (β0, β1, . . . , βp) ∈ Rp+1 and that Z̃ and Λ0 are independent

second-order stationary processes.

We further let ρ0 = EΛ0(u) and g0(u − v) = E[Λ0(u)Λ0(v)]/ρ
2
0. Then ρ0 and g0

become respectively the intensity and the pair correlation function of a Cox process

driven by the random intensity function Λ0. Note that

g0(u− v) = c0(u− v)/ρ20 + 1 (4)

where c0 is the covariance function for Λ0. Moreover σ2
0 = Var[Λ0(u)] is equal to

ρ20[g0(0)− 1]. In Section 5 we discuss parametric models for g0 or equivalently c0.

To quantify how much variation is due to Z, it is appropriate to model Z as a

random field. However, since Z is observed, it is often convenient to base parameter

estimation on X|Z where Z is then treated as a fixed quantity, see Section 6.

4.1 An additive model

Variance decomposition is straightforward for the following additive model:

Λ(u) = Z̃(u) + Λ0(u) = β0 + β1:pZ(u)
T + Λ0(u). (5)

Thus, X can be considered as a superposition of two independent Cox processes with

random intensity functions Z̃(u) and Λ0. A drawback of this model is that Λ is not

positive for all values of β and Z. This is probably why (5) has not attracted much

interest in the point process literature; Best et al. (2000) is one notable exception.

In Section 4.2 we discuss an alternative log linear model for which positivity of Λ is

guaranteed.
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Conditional on Z, the intensity function of X becomes

ρ(u|Z; β) = ρ0 + β0 + β1:pZ(u)
T.

In practice, a negative estimate of the intensity function may be obtained. This

did, however, not happen in our data examples (Section 7). Possible problems with

fitted negative intensity functions may be mitigated by enforcing linear constraints

of the type ρ0 + β0 + β1:pZ(ui)
T ≥ 0 for a finite set of locations ui e.g. including X .

This is for instance possible with the R procedure constrOptim().

Further, given Z, the second-order product density and the pair correlation func-

tion become

ρ(2)(u, v|Z; β) = ρ(u|Z; β)ρ(v|Z; β) + c0(u− v)

and g(u, v|Z; β) = 1 + c0(u− v)/[ρ(u|Z; β)ρ(v|Z; β)].
For (5) we obtain a straightforward decomposition of the variance of Λ(u) into

the sum of σ2
Z̃
= VarZ̃(u) and σ2

0 = VarΛ0(u). Hence (3) becomes

R2 =
σ2
Z̃

σ2
Z̃
+ σ2

0

.

4.2 A log linear model

The multiplicative log linear random intensity function

Λ(u) = exp[Z̃(u) + log Λ0(u)] = Λ0(u) exp[β0 + β1:pZ(u)
T] (6)

is always non-negative. This model has an appealing interpretation in terms of

location dependent thinning (Waagepetersen, 2007) where X is obtained by inde-

pendent thinning of a Cox process driven by Λ0 and the probability of retaining a

point at u is proportional to exp[Z̃(u)]. Hence in the tropical rain forest context,

the covariates may be regarded as influencing the survival of plants in a stationary

process of seedlings.

4.2.1 Intensity and pair correlation

Without loss of generality we assume in case of (6) that ρ0 = EΛ0(u) = 1. Condi-

tional on Z, the intensity function of X is

ρ(u|Z; β) = E[Λ(u)|Z] = exp[Z̃(u)],
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the pair correlation function g(u− v|Z) = g0(u− v) coincides with g0, and

ρ(2)(u, v|Z) = ρ(u|Z; β)ρ(v|Z; β) + ρ(u|Z; β)ρ(v|Z; β)c0(u− v).

Unconditionally, the intensity and the pair correlation function become

ρ(u) = ρexp Z̃ = E exp[Z̃(u)] and g(u− v) = g0(u− v)gexp Z̃(u− v)

where ρexp Z̃ and gexp Z̃ are the intensity and the pair correlation function of a Cox

process with random intensity function exp[Z̃(·)].

4.2.2 Decomposition of variance

For a Cox process with random intensity function (6),

Var[Λ(u)] = σ2
exp Z̃

+ σ2
0

[
σ2
exp Z̃

+ ρ2
exp Z̃

]

where

σ2
exp Z̃

= VarE[Λ(u)|Z] = Var exp[Z̃(u)].

According to (3), R2 becomes

R2 =
σ2
exp Z̃

σ2
exp Z̃

+ σ2
0

[
σ2
exp Z̃

+ ρ2
exp Z̃

] =
gexp Z̃(0)− 1

gexp Z̃(0)g0(0)− 1
.

A related approach is to consider the proportion of variance of log Λ explained

by Z̃. If both Z̃ and log Λ0 are Gaussian then (Møller et al., 1998)

Var log Λ(u) = VarZ̃(u) + Var log Λ0(u) = log g0(0) + log gexp Z̃(0).

The proportion of variance for log Λ explained by Z then becomes

log gexp Z̃(0)

log g0(0) + log gexp Z̃(0)

which is related to R2 by the approximation log(x) ≈ x− 1.
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5 Models for g0

Our estimation procedure in Section 6 requires the specification of parametric mod-

els for the intensity function and the second-order product density of X|Z. Hence it
remains to specify a parametric model for the pair correlation function g0, or equiva-

lently (cf. (4)), for the covariance function c0 of Λ0. A given covariance function c0 is

not necessarily a covariance function of a non-negative random field and g0 = c0− 1

hence might not be a pair correlation function of a Cox process. In the literature on

Cox processes, pair correlation models have therefore been obtained from explicit

constructions of non-negative random fields. The two most popular constructions

are log Gaussian and shot-noise fields leading to log Gaussian Cox processes (Møller

et al., 1998) and shot-noise Cox processes (Møller, 2003). On the other hand, the

most common examples of Neyman-Scott and Poisson-cluster processes are special

cases of shot-noise Cox processes.

5.1 Log Gaussian Cox processes

A log Gaussian random field is obtained by exponentiating a Gaussian random field

Y and the pair correlation function for the corresponding Cox process is simply the

exponentiated covariance function of Y , i.e.

g0(u− v) = exp[c(u− v)] (7)

where c(u− v) = Cov[Y (u), Y (v)] (Møller et al., 1998).

5.2 Shot-noise Cox and cluster processes

A shot-noise field is in the simplest form obtained by a sum of positive kernel

functions k(· − u) scaled by a parameter ξ > 0 and centered around points u of

a homogeneous Poisson point process with intensity κ > 0. A Cox process driven by

a shot-noise field can equivalently be considered as a Poisson-cluster process given

by a superposition of clusters where for each parent point u, a Poisson number of

offspring is dispersed independently around u according to the density k(·−u). The
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resulting pair correlation function becomes

g0(r) = 1 + κξ2
∫

R2

k(u)k(u+ r)du. (8)

Suppose g0 is a function so that c0(·) = g0(·) − 1 is an absolutely integrable

covariance function. Further, let k̃ denote the inverse Fourier transform of the

square root of the spectral density for c0. Then g0 has a representation of the form

(8) (see e.g. page 65 and 489 in Chilès and Delfiner, 1999) with k = k̃. However, g0 is

not a pair correlation function of a shot-noise Cox process unless k̃ is non-negative.

In general for a given g0, this property of k̃ is not easy to verify.

The usual approach in the literature on Poisson-cluster and shot-noise Cox pro-

cesses (e.g. Stoyan et al., 1995; Diggle, 2003; Møller, 2003; Illian et al., 2008; Hell-

mund et al., 2008) is in fact to specify first k and then obtain g0 rather than the

other way around. It is, however, remarkable that in the literature on Poisson-

cluster/shot-noise Cox processes essentially only two specific examples of k are con-

sidered. For the so-called modified Thomas process, k is a Gaussian density with

standard deviation ω in which case c0 is a Gaussian covariance function

c0(r) = σ2
0 exp

[
− (‖r‖/η)2

]
(9)

where σ2
0 = κξ2/(πη2) and η = 2ω. For the Matérn cluster process, k is the density

of a uniform distribution on a disc of radius rM , say. For a Matérn process, c0

has a less simple expression (e.g. Stoyan and Stoyan, 1995) than for the modified

Thomas process but an important feature is that c0(r) = 0 for r > rM . Hence,

the modified Thomas process and the Matérn cluster model can only produce light

tailed or extremely light tailed covariance functions and this is often not appropriate

e.g. for tropical rain forest data. In Wiegand et al. (2007) and Tanaka et al. (2008)

more general processes are constructed using modified Thomas processes as building

blocks but again only light tailed correlation structures are obtained. Tanaka et al.

(2008) also consider an inverse-power type kernel k but this does not admit a closed

form expression for the pair correlation function.

In the next Section 5.3 we consider a more flexible class of normal variance

mixture shot-noise fields where the kernel k and the pair correlation function is given
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in terms of a normal variance mixture. These normal variance mixtures provide

flexibility for modeling of both shape at the origin and tail behavior of the pair

correlation function.

5.3 Normal variance mixtures

Our starting point for obtaining flexible kernel functions k for shot-noise Cox pro-

cesses are normal variance mixtures

f(r) =

∫ ∞

0

φ(r; s)h(s)ds (10)

where φ(·; s) is the density of a zero-mean two-dimensional Gaussian vector with

covariance matrix sI and h is some probability density on R+. Any function of the

form (10) is a positive definite function on R2 (e.g. Schlather, 1999). If anisotropy

is required, the identity matrix I may be replaced by a suitable non-diagonal corre-

lation matrix.

One can easily verify that if h is a convolution h = h̃ ∗ h̃ then so is f , f = k ∗ k
where

k(u) =

∫ ∞

0

φ(u; s)h̃(s)ds (11)

which is non-negative. Hence, for the shot-noise field with kernel k we obtain

c0(r) = κξ2f(r). A wide class of covariance functions are obtained by choosing h in

the class of generalized inverse Gaussian distributions (e.g. Jørgensen, 1982) which

includes both gamma, inverse gamma and inverse Gaussian distributions as special

cases. The resulting class of normal variance mixtures is the class of generalized

hyperbolic distributions (Barndorff-Nielsen, 1977, 1978). By Barndorff-Nielsen and

Halgreen (1977) any generalized inverse Gaussian distribution is infinitely divisible

and hence any generalized hyperbolic density can be represented as a convolution.

However, for a generalized inverse Gaussian density h it is not always easy to iden-

tify the convolution density h̃. We discuss below some special cases of generalized

hyperbolic distributions where h̃ and hence k is explicitly known. A concise overview

of multivariate generalized hyperbolic distributions is given in Sections 2.1-2.2 of Hu

(2005).
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5.3.1 Variance gamma/Bessel

A gamma density

h(s;α, β) = βαsα−1 exp(−βs)/Γ(α), s > 0,

with parameters α, β > 0 is a convolution of h(·;α/2, β) with itself. The densities f

and k given by (10) and (11) become so-called variance gamma or Bessel densities

(in the one-dimensional case an early reference is McKay, 1932). Specifically k is of

the form

k(u) =
1

π2ν′+1η2Γ(ν ′ + 1)
(‖u‖/η)ν′Kν′(‖u‖/η) (12)

where ν ′ = α/2 − 1, η = (2β)−1/2, and Kν′ is a modified Bessel function of the

second kind. The covariance function for the corresponding shot-noise field becomes

c0(r) = σ2
0

(‖r‖/η)νKν(‖r‖/η)
2ν−1Γ(ν)

(13)

where ν = α − 1 and σ2
0 = κξ2/(4πη2ν). The resulting Matérn pair correlation

function is

g0(r) = 1 + σ2
0

(‖r‖/η)νKν(‖r‖/η)
2ν−1Γ(ν)ρ20

where ρ0 = κξ.

The smoothness parameter ν controls the shape of the pair correlation function

and gives additional flexibility in the modeling. For instance, ν = 1/2 yields the

exponential model

g0(r) = 1 + σ2
0 exp(−‖r‖/η)/ρ20 (14)

which offers more slowly decaying correlations than the Thomas pair correlation

function obtained with (9). The Gaussian covariance function (9) may be viewed as

a limiting case of a Matérn covariance function when ν → ∞ (Stein, 1999, page 50).

For any fixed ν (9.7.2. in Abramowitz and Stegun, 1965)

Kν(x) =
exp(−x)√

2x/π
(1 +O(1/x)), (15)

so in the tails ‖r‖ → ∞, the Matérn covariance function behaves as ‖r‖ν−1/2 exp(−‖r‖).
By Corollary 2 in Yu (2011) the Matérn covariance function is log concave for

ν ≥ 1/2. Moreover, by the same corollary, c0(tr0) is log convex as a function of

t > 0 for any r0 ∈ R2 when ν ≤ 1/2.
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5.3.2 Cauchy

An inverse gamma density with parameters α, β > 0 is of the form

h(s;α, β) = βαs−α−1 exp(−β/s)/Γ(α), s > 0.

It is in general not easy to identify the corresponding convolution density h̃ but the

case α = 1/2 is an exception. With α = 1/2 the Laplace transform of h is simply

L(t) = exp(−2
√
−βt), t ≤ 0, so that h(·; 1/2, β) is a convolution of h(·; 1/2, β/4)

with itself. The corresponding kernel function becomes a Cauchy density

k(u) =
1

2πω2

[
1 + (‖u‖/ω)2

]−3/2

with ω =
√
β/2 and the covariance function becomes

c0(r) = σ2
0

[
1 + (‖r‖/η)2

]−3/2
(16)

with σ2
0 = κξ2/(2πη2), and η = 2ω. The Cauchy covariance function is polynomially

decreasing and hence more suitable than the Matérn model for modeling of a slowly

decaying covariance. The Cauchy covariance is log concave in a neighbourhood

around the origin.

5.3.3 Normal inverse Gauss

The density of an inverse Gauss distribution is given by

h(s;µ, λ) =
( λ

2πs3

)1/2

exp
[
− λ(s− µ)2

2µ2s

]

with µ, λ > 0. The inverse Gauss density h(·;µ, λ) is the convolution of h(·;µ/2, λ/4)
with itself. The resulting normal inverse Gauss kernel is

k(u) =
(γ/4)1/2 exp(

√
γ/4)K3/2(

√
γ/4 + (‖u‖/η)2)

η2π3/2
√
2
[
γ/4 + (‖u‖/η)2

]3/4

where γ = (λ/µ)2 and η = µ/
√
λ and

c0(r) = σ2
0

K3/2(
√
γ + (‖r‖/η)2)γ3/4

K3/2(
√
γ)
[
γ + (‖r‖/η)2

]3/4



Variance decomposition for Cox processes 14

where σ2
0 = κξ2γ1/2 exp(

√
γ)K3/2(

√
γ)/(η2π3/2

√
2γ3/4). By the asymptotic formula

(15), the normal inverse Gauss covariance behaves as exp(−‖r‖)/‖r‖2 in the tails.

The parameter γ may be viewed as a kind of ‘offset’ parameter for the squared dis-

tance ‖r‖2.

Remark The convolution representations of the Matérn and Cauchy covariance func-

tions above are not new and were found using Fourier transforms in Matérn (1986)

(see Table 1, page 30 - a detailed derivation for the Matérn class is moreover pro-

vided in Jonsdottir et al., 2011). However, these representations and the shot-

noise/Poisson-cluster processes with the corresponding kernels have not been con-

sidered previously in the point process literature. Moreover, the normal variance

mixture perspective leads to straightforward simulation of offspring locations when

the resulting shot-noise Cox process is viewed as a Poisson-cluster process. The

Matérn and the normal inverse Gauss covariance functions both have three param-

eters. However, the Matérn class may seem preferable since the parameter ν allows

for modeling of a range of kernel and covariance shapes varying from log convex to

log concave.

6 Parameter estimation

In practice we consider a parametric model c0(·;ψ) for the covariance function of

Λ0 where c0 could for instance be the Matérn covariance function (13) with ψ =

(σ2
0, η, ν). Given (X,Z) observed within W ⊆ R

2, we then obtain a plug-in estimate

for R2 in (3) after estimating the three parameters β, ψ, and σ2
Z̃
(or σ2

exp Z̃
).

6.1 Composite likelihood estimation

The inference about β and ψ is based on X|Z. The regression parameter β can be

estimated by the first-order composite log likelihood function (CL1) (Schoenberg,

2005; Waagepetersen, 2007)

CL1(β) =
∑

u∈X

log ρ(u|Z; β)−
∫

W

ρ(u|Z; β)du. (17)
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This is the log likelihood function in the case where X is a Poisson process with

intensity function ρ(·|Z; β). The Berman-Turner quadrature scheme can be used to

approximate the integral in (17) both for the log linear and the additive model, see

e.g. Baddeley and Turner (2000).

For a Cox process specified by the log linear random intensity function (6) one

may subsequently estimate ψ using minimum contrast estimation based on the K-

function, see Waagepetersen (2007) and Waagepetersen and Guan (2009). However,

for the additive model the K-function is not well-defined since the pair correlation

function is not translation invariant (Baddeley et al., 2000). As suggested by Guan

(2006) and Waagepetersen (2007), ψ can instead be estimated using a second-order

composite likelihood function

CL2(ψ|β) =
6=∑

u,v∈X

w(u, v) log ρ(2)(u, v|Z; β, ψ)

−
∫∫

W 2

w(u, v)ρ(2)(u, v|Z; β, ψ)dudv (18)

based on the second-order product density where w is a weight function, see e.g. (20)

and (21) below. The integral term in (18) can also be approximated by a variant of

the Berman-Turner scheme. The second-order composite likelihood can be evaluated

for both the log linear model and the additive model and the maximized CL2 can

be used as a criterion for model selection, see Section 7.

Instead of maximizing the right-hand side of (18) with respect to both β and ψ,

a computationally simpler approach is to obtain β̂ by maximizing (17) and then ψ̂

by maximizing CL2(·|β̂). Moreover, an equivalent version of CL2(ψ|β̂) is given by

CL∗
2(ψ|β̂) =

6=∑

u,v∈X

w(u, v) log g(u, v|Z; β̂, ψ)

−
∫∫

W 2

w(u, v)Cov[Λ(u),Λ(v)|Z; β̂, ψ]dudv (19)

which is obtained from CL2(ψ|β̂) by subtracting the second-order composite likeli-

hood of a Poisson process with intensity function ρ(·|Z; β̂). More stable convergence

results were obtained using (19) instead of (18) when using a standard implemen-
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tation of the Nelder-Mead algorithm for maximizing the second-order composite

likelihood.

In simulation studies and applications to real data we discovered that the second-

order composite likelihood estimates can be quite sensitive to the accuracy of the

Berman-Turner quadrature scheme used to approximate the double integral in (19).

This is especially the case when c0 is steep at zero like for (13) with a small ν or

small η. Regarding the weight function w,

w(u, v) = 1[‖u− v‖ ≤ t]/[πt2] (20)

is the standard choice which ensures that only t-close pairs of points are used in the

composite likelihood. In the data example in Section 7 we also considered

w(u, v) = 1[‖u− v‖ ≤ t]/[πt2ρ(u|Z, β̂)ρ(u|Z, β̂)]. (21)

For log linear models, this w implies a simplification of the double integral since the

intensity function is eliminated from the integrand.

6.2 Estimation of environmental variances

In practice Z is observed on a grid G = {ui}i=1,...,M covering W . Since we assume

that Z is a stationary process, simple estimators of σ2
Z̃
and σ2

exp Z̃
are given by

σ̂2
Z̃
=

1

M

∑

u∈G

[̂̃
Z(u)− ρ̂Z̃

]2
(22)

and

σ̂2
exp Z̃

=
1

M

∑

u∈G

{
exp

[̂̃
Z(u)

]
− ρ̂exp Z̃

}2

(23)

where

ρ̂Z̃ =
1

M

∑

u∈G

̂̃
Z(u), ρ̂exp Z̃ =

1

M

∑

u∈G

exp
[̂̃
Z(u)

]
, (24)

and
̂̃
Z(u) = β̂Z(u)T.
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6.3 Discussion of theoretical properties of estimates

One may be concerned about the joint properties of the composite likelihood es-

timates and (22)-(24). A fully detailed asymptotic analysis is outside the scope

of this paper and we here only outline the essential arguments. We may view the

estimate θ̂ = (β̂, ψ̂) as a solution of an estimating equation u(θ) = 0 where u

is obtained by concatenating the gradients of the log composite likelihoods (17)

and (18). Note that u is conditionally unbiased, Eθ[u(θ)|Z] = 0. Moreover the

estimates (22)-(24) are obtained in a simple manner from spatial averages of the

form A(β̂) =
∑

u∈M f(Z(u), β̂) where f(z, β) is either βzT, (βzT)2, exp(βzT) or

exp(2βzT).

Under appropriate mixing conditions for Λ0 and Z one may verify using tech-

niques as in Waagepetersen and Guan (2009) that asymptotically (increasing window

size |W |), |W |1/2(θ̂−θ) is distributed as u(θ)S−1 for a matrix S = −Edu(β)/dβ and

that u(θ) is asymptotically normal. Hence |W |1/2(θ̂−θ) is asymptotically zero-mean

normal. Moreover,

|W |1/2(A(β̂)− EA(β)) = |W |1/2(A(β)− EA(β)) + |W |1/2(β̂ − β)E
d

dβ
A(β) + oP (1).

By mixing the first term on the right hand side converges in distribution to a normal

distribution. It thus follows that the spatial average A(β̂) is a |W |1/2 consistent

estimate of EA(β) but the replacement of β with β̂ introduces additional error in

the estimation quantified by the second term in the right hand side of the above

equation. This error is asymptotically independent of the error given by the first

term since

Covθ[A(β), u(θ)] = EθCovθ[A(β), u(θ)|Z] + Covθ{Eθ[A(β)|Z],Eθ[u(θ)|Z]} = 0

by the unbiasedness of u(·) given Z and since A(β) is constant given Z.

To summarize, under appropriate mixing conditions, the composite likelihood

estimates and the estimates (22)-(24) all become consistent and asymptotically nor-

mal.
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7 Decomposition of variance for tropical rain for-

est data example

In this section we return to the data example in Section 1.1. Waagepetersen and

Guan (2009) fitted inhomogeneous Thomas models with random intensity functions

of the form (6) and a Gaussian covariance function (9) for Λ0. Using the same

covariates as in Waagepetersen and Guan (2009), we fit for each of the species the

additive model (5) and the log linear model (6) with c0 being the Gaussian covari-

ance function (9), the Matérn covariance function (13), and the Cauchy covariance

function (16). Note that these covariance functions have very distinct behaviors

both at the origin and in the tails, see also Figure 3. As in Myllymäki and Pentti-

nen (2009) we also consider a pair correlation function of the form (7) where Y is

a Gaussian random field with a Matérn covariance function. We denote this covari-

ance function LG-Matérn since it corresponds to the case of a log Gaussian random

intensity function Λ0. In this case σ2
0 = exp[VarY (u)] − 1. As measures of fit for

these models, we use the maximal values of the composite likelihoods CL1 and CL2.

Regarding the weight function w we tried both (20) and (21) with t = 125 in

(18). The integrals in the composite likelihoods CL1 and CL2 were approximated

using a Berman-Turner quadrature scheme consisting of data points and 200× 100

dummy points over the observation window W = [0, 1000]× [0, 500]. The ranking

of the models according to CL2 did not depend on the choice of w-function (except

for a single swap of ranks between Cauchy and Matérn in case of the additive

model for Lonchocarpus). However, for the log linear models we in general obtained

somewhat smaller estimates of σ2
0 with (20) than with (21) and vice versa for the

additive models. According to a model check for the best fitting log linear models

(see below) the estimates obtained with (21) gave the best fit. In the following we

restrict attention to the results obtained with (21).

Table 1 shows the parameter estimates, the maximal composite likelihood values,

and the estimated R2 for each species and model.

[Table 1 about here.]

Considering first β1:2 for each species, the regression parameters have similar
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signs and relative magnitudes for the log linear model and the additive model.

However, the maximal first-order composite likelihood CL1 is always largest for

the log linear model. The fitted Z̃ are shown in Figure 2 for each species.

[Figure 2 about here.]

Considering CL2 and comparing log linear and additive models for each species,

the log linear models always yield the largest CL2 values. Regarding the choice of

covariance function, the best fit for Acalypha is obtained with the Cauchy covariance

function while for Lonchocarpus and Capparis, the LG-Matérn covariance function

performs better, followed by the Matérn covariance function. Both for the log linear

and the additive models, the smallest CL2 is obtained with the Gaussian covariance

function. This suggests that the fast decaying pair correlation function obtained

with the Gaussian covariance function is not suitable for the tropical rain forest

data. For the additive model, the LG-Matérn and the Matérn covariance functions

are almost identical because in this case σ̂2
0 is small and exp(x)−1 ≈ x when x ≈ 0.

Regarding R2, the estimates vary considerably across models. However, the

overall qualititative conclusion is stable: the contribution of the environment is

smallest for Acalypha and largest for Capparis. This may be linked to the different

modes of seed dispersal of the species, see Waagepetersen and Guan (2009). The

R2 obtained with the best fitting models are 0.01, 0.06, and 0.11 for Acalypha,

Lonchocarpus, and Capparis.

The fitted covariance functions for the log linear models and for all species are

shown in Figure 3. For all species, the Gaussian covariance function differ much

from the other three covariance functions both a the origin and in the tail. For

Lonchocarpus and Capparis, the fitted Matérn and LG-Matérn covariance functions

appear rather similar.

[Figure 3 about here.]

We used a non-parametric estimate of the g0-function (see e.g. Chapter 4 in

Møller and Waagepetersen, 2004) as a summary statistic for model assessment and

computed pointwise 90% confidence bands for this statistic using simulations from

the best fitting log linear models according to CL2. The non-parametric estimates
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of c0(·) = g0(·)− 1 and 90% pointwise confidence bands are shown in Figure 4 and

do not provide evidence against the fitted models.

[Figure 4 about here.]

8 Discussion

In this paper we introduced a method for decomposing variance for spatial Cox

processes. As can be seen from our data analysis, the results can be sensitive to

the choice of the pair correlation function. Fortunately, the flexible class of normal

variance mixture pair correlation functions allow us to compare results from a wide

range of pair correlation functions. We can then report results obtained with the

best fitting model according to the second-order composite likelihood criterion.

Concerning the second-order composite likelihood estimation, further studies

regarding numerical implementation and choice of w-function seem needed. For the

Matérn model, the joint estimation of (σ2
0 , η, ν) is computationally demanding and

simulation studies indicate that the statistical properties of the estimates can be

poor. For routine use, a more feasible approach is to maximize only with respect to

σ2
0 and η for each ν in a moderate collection of ν values.

The Thomas process has enjoyed much popularity in the point process literature.

However, at least for the tropical rain forest data considered in this paper, it seems

inferior to models with a more slowly decaying pair correlation function. For all

the data examples considered, the log linear model provided a better fit than the

additive model. This is perhaps not so surprising since the log linear model has

an appealing interpretation in terms of survival of seedlings. On the other hand,

variance decomposition is more straightforward for the additive model than for the

log linear model.

Our proposed variance decomposition procedure assumes a stationary random

environment. This may e.g. not be tenable for Acalypha because the fitted Z̃ in W

shows a trend from right to left. Although this does not necessarily invalidate the

stationarity assumption for Z̃, it at least implies that W may be too small to allow

a precise estimate of the variance for Z̃. Further research is required to handle the
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case where Z̃ is not stationary but perhaps satisfies a weaker assumption of intrinsic

stationarity.
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processes. Adv. in Appl. Probab. 40, 603–629.

Hu, W. (2005). Calibration of multivariate generalized hyperbolic distributions using

the EM algorithm, with applications in risk management, portfolio optimization

and portfolio credit risk. PhD thesis, Florida State University, Tallahassee, FL,

USA.

Hubbell, S. P. and Foster, R. B. (1983). Diversity of canopy trees in a neotropical

forest and implications for conservation. In Sutton, S. L., Whitmore, T. C., and

Chadwick, A. C., editors, Tropical Rain Forest: Ecology and Management, pages

25–41. Blackwell Scientific Publications, Oxford.

Illian, J., Penttinen, A., Stoyan, H., and Stoyan, D. (2008). Statistical analysis and

modelling of spatial point patterns. Statistics in Practice. Wiley.

Jonsdottir, K. Y., Rønn-Nielsen, A., Mouridsen, K., and Jensen, E. B. V. (2011).
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Figure 1: Locations of Acalypha, Lonchocarpus, and Capparis trees and image of
interpolated potassium content in the surface soil (from top to bottom).
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Figure 2: The fitted regression term,
̂̃
Z, for Acalypha under the additive model and

the log linear model, and for Lonchocarpus and Capparis under the log linear model
(from top to bottom).
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Figure 3: The various fitted covariance functions c0 in case of the log linear model
for Acalypha (top left), Lonchocarpus (top right), and Capparis (bottom left).
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Figure 4: Non-parametric estimates of c0 (solid line) and 90% pointwise confidence
bands (gray area) obtained from 100 simulations under best fitting models. The
red dashed line shows mean of simulated non-parametric estimates and the blue
dotted line shows the parametric estimate of c0. Top left: Acalypha, top right:
Lonchocarpus, and bottom left: Capparis.
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Table 1: Estimates of β, ψ and R2 and maximal values of the composite likelihoods
CL1 and CL2. For each species, the first four rows in the last three columns cor-
respond to the log linear model with Gaussian, Cauchy, Matérn and LG-Matérn
covariance functions. The next four rows are for the additive model with the same
covariance models. For LG-Matérn, abusing notation, ψ̂ denotes the parameter es-
timate for the covariance function of the Gaussian field Y . In the first column, the
estimate ρ̂ is given by N(W )/|W |. The second column also shows estimates of σ̂2

expZ̃

and σ̂2
Z̃
.

Species β̂1:2 / CL1(β̂) ψ̂ = (σ̂2
0 , η̂, ν̂) CL2(ψ̂|β̂)− C R2

(0.02, 0.005)
(13.7, 4.4, ∞) 27438.39 0.01
(11.9, 4.9, −) 28744.97 0.01

-4117.7 (8.5, 4.7, 0.69) 28507.05 0.01
Acalypha σ̂2

expZ̃
= 0.13× 10−6 (2.4, 5.6, 1.02) 28675.13 0.01

(15.5, 4.9)×10−6 (11.6×10−6, 4.1, ∞) 0 0.01
(8.1×10−6, 5.2, −) 1724.32 0.01

ρ̂ = 1056×10−6 -4119.7 (6.1×10−6, 5.8, 0.56) 1128.50 0.02
C = −6291053.0 σ̂2

Z̃
= 0.11× 10−6 (6.1×10−6, 5.8, 0.56) 1128.50 0.02

(-0.03, -0.16)
(1.1, 28.4, ∞) 82006.98 0.11
(1.8, 18.4, −) 82174.76 0.07

-6117.6 (2.0, 14.0, 0.65) 82326.85 0.06
Lonchocarpus σ̂2

expZ̃
= 0.45× 10−6 (1.1, 14.8, 0.86) 82344.08 0.06

(-38.2, -193.3)×10−6 (1.5×10−6, 36.6, ∞) 0 0.17
(2.1×10−6, 27.4, −) 934.78 0.12

ρ̂ = 1672×10−6 -6121.9 (2.8×10−6, 23.1, 0.41) 702.26 0.09
C = −6168628.5 σ̂2

Z̃
= 0.29× 10−6 (2.8×10−6, 23.1, 0.41) 702.26 0.09

(0.03, 0.004)
(0.25, 69.8, ∞) 5012.70 0.28
(0.43, 43.1, −) 5223.48 0.18

-19693.0 (0.76, 48.2, 0.22) 5342.78 0.11
Capparis σ̂2

expZ̃
= 4.84× 10−6 (0.59, 49.7, 0.26) 5361.99 0.11

(193.2, 24.8)×10−6 (10.0×10−6, 70.2, ∞) 0 0.29
(15.0×10−6, 48.7, −) 285.51 0.21

ρ̂ = 6598×10−6 -19700.1 (28.8×10−6, 51.6, 0.21) 466.02 0.12
C = −5089810.54 σ̂2

Z̃
= 4.06× 10−6 (28.8×10−6, 51.6, 0.21) 466.02 0.12


