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Abstract

Normal mixed models with different levels of heterogeneity in the residual variance
are fitted to pig litter size data. Exploratory analysis and model assessment is based
on examination of various posterior predictive distributions. Comparisons based on
Bayes factors and related criteria favour models with a genetically structured residual
variance heterogeneity. There is moreover strong evidence of a negative correlation
between the additive genetic values affecting litter size and those affecting residual
variance. The models are also compared according to the purposes for which they
might be used, such as prediction of “future” data, inference about response to
selection, and ranking candidates for selection. A brief discussion is given of some
implications for selection of the genetically structured residual variance model.

1 Introduction

The normal mixed linear model commonly used in quantitative genetics postulates that
the data and other random components are multivariate normally distributed and that
location parameters and data are linearly related. This basic structure is also a major
building block when modelling takes place at the level of unobserved quantities, such as
log frailties in log normal frailty models for the analysis of survival times (Korsgaard et al.,
1998), and liabilities in threshold models for the study of ordered categorical responses
(Sorensen et al., 1995). Typically, variance homogeneity is assumed but extensions that
considered rather simple systematically structured departures from variance homogeneity
were introduced in the nineties (Foulley et al., 1992; Gianola et al., 1992; San Cristobal
et al., 1993; Foulley and Quaas, 1995). In particular, Foulley and Quaas (1995) propose
models of heterogeneity for both residual and other components of variance. Recently a
significant extension of the model was suggested by San Cristobal-Gaudy et al. (1998) who
introduced additive genetic effects influencing the log residual variances of the observations
thereby producing a genetically structured variance heterogeneity.

The model described by San Cristobal-Gaudy et al. (1998) is interesting from an evo-
lutionary as well as from an animal breeding perspective. A model postulating that en-
vironmental sensitivity is partly under genetic control is relevant in studies of canalisa-
tion (Waddington, 1957; Rendel, 1977), genetic assimilation (Waddington, 1953), reaction
norms (Falconer and Mackay, 1996) and genotype by environment interaction. It can also
provide an explanation for the increased levels of phenotypic variation often observed in



experimental divergent lines selected for both higher and lower expressions of a trait (e.g.
Clayton and Robertson, 1957). From an animal breeding point of view, there are at least
two issues. First, if phenotypic variation is partly under genetic control, predictions of
selection response based on the classical model may be incorrect, and one may wish to
know under what conditions the possible error is important. Secondly, homogeneity of a
final product contributes often to economic efficiency. It is therefore relevant to under-
stand whether selection for a trait in a particular direction is likely to result in increased
or decreased levels of phenotypic variation.

From an inferential point of view, the San Cristobal-Gaudy et al. (1998) model in-
troduces considerable additional complexity. San Cristobal-Gaudy et al. (1998) use an
EM-algorithm for computing maximum likelihood estimates but several approximations
are used in order to overcome computational difficulties. Furthermore, the distributions
of maximum likelihood estimates and test statistics are hard to determine. Also model
checking based on residuals is complicated by the fact that usual standardised residuals
are far from being independent standard normal.

In this paper we present results of a case study where normal mixed models with het-
erogeneous residual variances are fitted to pig litter size data originating from a selection
experiment discussed in Sorensen et al. (2000). The paper has two main objectives. The
first is to investigate the presence of additive genetic effects influencing the log residual vari-
ance and their possible correlation with the genetic effects influencing the expected litter
sizes. Our second objective is to demonstrate that Bayesian methods provide an attractive
alternative to traditional frequentist methods for complex models like the San Cristobal-
Gaudy et al. (1998) model. Since conclusions concerning a genetically structured variance
heterogeneity may be highly sensitive to the choice of model we stress the importance of a
thorough model assesment. In particular we advocate the use of posterior predictive model
assessment. We fit four models with different levels of complexity in the residual variance
structure and where the simplest is the standard repeatability homogeneous variance ad-
ditive genetic model. Fitting first the simpler models allows initial explorative analyses
where features of the data can be examined using various plots. The fitting of several
models further enables the use of global measures of fit (Bayes factors and two related
criteria) for assessing the possible superiority of the complicated models. We also compare
the models in terms of performance for selection and prediction.

The paper is organised as follows. Section 2 provides a short description of the data,
presents the four models under consideration, and introduces statistics used for posterior
predictive model assessment. In Section 3 we show the results of the analyses of the litter
size data. Section 4 contains a discussion and conclusions.

The fitting of the highly parameterised Bayesian models via Markov chain Monte Carlo
(MCMC) (see Robert and Casella, 1999; Sorensen and Gianola, 2002) requires some re-
finements in the MCMC algorithm in order to achieve efficient mixing. Details are given in
the Appendix which also includes a brief review of posterior predictive model assessment
and of the three criteria of model comparison used in this study.



2 Material and Methods

2.1 The data

The data originate from a large scale selection experiment for total number of piglets
born per litter (referred to as litter size hereinafter) carried out in the beginning of the
nineties and described in Sorensen et al. (2000). Briefly, selection of high intensity in a
base population with 8, 988 litter size records was practiced only once, based on predicted
additive genetic values obtained from a repeatability additive genetic model that included
herd, season, type of insemination, and parity as classification variables. Sows with up to
nine parities from 82 registered breeding herds from the Danish pig breeding programme
contributed records on litter size that were used to compute the additive genetic values.
The selection experiment comprised one selected and one control line. Females in the
selected and control line produced two parities only. Animals from these lines were reared
contemporaneously in a common research farm and were randomly allocated to pens. The
complete data file consists of 10, 060 litter size records from 4,149 sows and the selected
and the control line include 1,072 litter size records. The pedigree file includes 6,437
individuals.

2.2 The models fitted

Four models of the form

y|b, p, a,(aiM)i:L___,n ~ N (Xb + Wp + Za, diag(aiM,i =1,...,n)), M=1,...,4,
(1)
with increasing levels of complexity at the level of the log residual variance are fitted
to the data vector y of length n. In (1), b is a vector containing the effects of four
categorical covariates: parity (9 levels), season (4 levels), herd (82 levels), and type of
insemination (natural or artificial), p is a vector of permanent environmental effects with
4,149 elements, a is a vector of additive genetic values with 6,437 elements, and ai A 1S
the residual variance for the ith observation under the Mth model. The matrices X, W,
and Z are known incidence matrices.
Model 1 is the standard repeatability additive genetic model with homogeneous variance
ol = exp(b) for some parameter b in R. Model 2 allows for different residual variances for
different levels of the categorical covariates so that o7, is of the form

022 = exp (i;B) (2)

where %/ is the ith row in an incidence matrix X and b is a parameter vector that includes
effects of parity and type of insemination. In the case of Model 3, the residual variance is
assumed to be partly under genetic control. Thus,

07y = 075 exp (z;8) (3)



where z; is the ith row of Z and a is a column vector with the 6,437 additive genetic
values affecting residual variation in litter size. Model 4 allows for an extra permanent

environmental effect p so that

01‘2,4 = 01'2,3 €xXp (W;f)) (4)

where W, is the ith row of W.

2.2.1 Prior distributions
The following prior distributions were assigned to the location parameters:
b~ N (0,1,10°), alo ~ N (0,AcZ), plo,~N(0,L0.). (5)

In (5), I} and I, are identity matrices and A is the known additive genetic relationship
matrix of dimension 6,437 x 6, 437. The scalars o2 and af, are the additive genetic variances
for litter size and the permanent environmental variance, respectively. For these, scaled
inverted vSy,? prior distributions were chosen with v = 4 and S = 0.45. This results in
a priori means of o2 and 012) equal to 0.90 (the sensitivity of the posterior results to the
choice of prior for o7 and o is studied in Section 3.2).

In case of Model 1 and Model 2 the parameters b and b are a priori N(0,10°) and

N(0,1510°), respectively. For Model 8 the vectors a and a are assumed to have the following
multivariate normal distribution:

(3))e-((2) <

where the 2 x 2 matrix G is
o2 0,05
G = [ . PO } | 7)

pO.0s 0%

In (7), the scalar o2 is the additive genetic variance for a and p is the coefficient of genetic
correlation in the joint distribution of a and a. For o2 the same scaled inverted x? prior
distribution is chosen as for o2, and p is a priori uniformly distributed in (—1,1). In case
of Model 4,

plo ~ N (0,L07) (8)
where 0123 is the component of variance due to permanent environmental effects affecting

residual variation in litter size. The scaled inverted y? prior distribution is also chosen for

2
O'ﬁ.

The parameters b, b, (or b), 02, 02, p, 02, and o7 are assumed to be a priori independent,

and given these parameters, also p, p, and (aT, éiT) are a priori independent.

2.2.2 Mean-variance relations

Model 3 and 4 allow for genetic dependence between the mean and the variance of the
sampling distribution. Define the random variable

u'=a' - E(3a)’,
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independent of a, where E (&la)" = (0zp/0,)a’. Then
ll|0'§,p ~ N(Oa O-Zzt(l - pz)A)v

and (a', (o0zp/0,)a’ +u') is distributed as (a',a"). If p = 1 we may write

02273 = 022 exp ((03/04)z;a)
so that a deterministic relation between the mean and the sampling variation is obtained,
given the model parameters. If p = 0,

075 = 075 exp (zj0)
which corresponds to a genetically structured variance homogeneity which is unrelated to
the mean.

Note finally that if the components of (czp/0,)a + u are small then

exp(z;((0ap/oa)a+ ) = 1+ (0ap/0a)z;a + z;u

so that the mean-variance relation is approximately linear.

2.3 Posterior predictive assessment of the models for the litter
size data

The adequacy of a given statistical model may be assessed by comparing the observed value
of some statistic with its sampling distribution under the model. This basic idea underlies
posterior predictive model assessment (reviewed in Appendix A) where a statistic possibly
depending on unknown parameters is compared with its posterior predictive distribution.
Below we use standardised residuals to construct certain discrepancy statistics targeted to
measure a specific putative structure in the data that the current model fails to address.
In our analysis we also consider various histograms and quantile plots based on posterior
predictive realisations of the standardised residuals to e.g. check the normality assumption
of our models. Posterior predictive assessment using the MCMC output is trivial and
allows a graphical investigation of properties of the data which can be very revealing. It
can also provide guidance regarding extensions of the model that are worth pursuing before
embarking on the time consuming programming work needed to implement an extension
of the model.

After fitting Model 1 possible variance heterogeneity associated with the four covariates
parity, season, herd and insemination is studied using discrepancy statistics

1 P — 1)’ .
T (y,6h) = Z ¢ 2#) — 1, j=sea,ins, par, her;l=1,...,n; 9)

. lor;
j7l L”:l Z,l

where j is an index for the four covariates, [ is an index for the n; levels of the jth
covariate, and L;; = [ if the i¢th record belongs to the ith level of the jth covariate.
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The vector 0; contains the parameters of Model 1, m;; is the number records with level [
for the jth covariate, p; is the ith element in Xb + Wp + Za, and (y; — p)?/07, is the
squared standardised residual associated with record ¢. Under Model 1 the terms under
the summation sign are independent, single degree of freedom chi-square random variables;
therefore the expected value of (9) is equal to zero, so large or small values of Tj; indicate
a possible variance heterogeneity associated with the jth covariate.

In order to study a possible association between residual variation and additive genetic
values, the following discrepancy statistics are constructed. For a partitioning —oo = t; <
ty < -+ < tp_1 <t = oo with corresponding intervals I; = [t;, ;41 we consider statistics

2
Tj(y,(%):F 1, =12,k (10)

where my, is the number of observations with zla €1, and 6, is the vector of parameters
associated with Model 2. The statistic T} is thus the average of squared standardised
residuals whose corresponding genetic value falls into the jth interval minus one. A possible
association between residual variation and additive genetic variation affecting litter size
can be studied by comparing the joint posterior distributions of (7 (y, 62),T; (¥rep, 02)),
J = 1,..., k. In Section 3.1 we summarise the joint posterior predictive distributions
using boxplots of posterior predictive realisations of T} (y, 82) — Tj (Yrep, 02) plotted against
interval number for each of k = 10 intervals, where ¢, = —1.6 + 0.4(k — 2),k = 2,...,9.
The length of the intervals were chosen to accommodate a similar number of observations
in each (approximately 1,000).

In Section 3.1 the plot based on the discrepancy statistics 7; defined in (10) gives
another form of insight concerning the relationship between residual variation and addi-
tive genetic values, than that derived by the estimate of the correlation coefficient alone.
However, in order to reveal a putative feature using a discrepancy statistic, the feature
under study must induce a sufficient degree of structure in the data. For example, it is
not obvious that posterior predictive model assessment is helpful for detection of variance
heterogeneity due to the environmental effects p since the small number of records per sow
implies that a possible pattern of variance heterogeneity is hard to separate from noise.

3 Results

The results reported in this section for each model are computed using MCMC samples
obtained from running 1,000,000 iterations of the MCMC algorithm described in the ap-
pendix. In Section 3.2 we report confidence intervals for the Monte Carlo estimates of
various posterior means in order to give an idea of the accuracy of the Monte Carlo com-
putations.



3.1 Model building using posterior predictive model assessment

After fitting Model 1 we perform an exploratory analysis using the discrepancy statistics
T}, to disclose possible variance heterogeneities associated with the categorical explanatory
variables. The posterior predictive distribution of (Tins 1 (¥, 01) —Tins 2 (¥ 61)s Tins g (Yrep, 01)—
Tins,2(Yreps 61)) is displayed using the left scatter plot in Figure 1. The plot indicates that a
higher variance is associated with artificial insemination (I = 1) than with natural insemi-
nation (I = 2) since all points fall below the identity line. The right plot in Figure 1 shows
pairs of boxplots based on posterior predictive samples of Tpar (¥, 601) — Tpari(Yreps 61),
I =1,...,9. The plot suggests that residual variances are lower for parity one than for
parities greater than one. Similar plots (not shown) do not indicate a pattern of variance
heterogeneity associated with season and herd.
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Figure 1: Left: plot of simulated posterior predictive realisations of (Tins1(y,601) —
Tins2(¥,01)s Tins 1 (Yreps 61) — Tins2(Yrep, 01)) (solid line is the identity). Right: boxplots
for posterior predictive realisations of Ty (¥, 01) — Tpari(Yreps 01), L =1,...,9.

Based on the exploratory analysis for Model 1 we obtain Model 2 by letting the log
residual variances depend on the insemination covariate and a parity covariate with 6 levels
obtained by grouping all records for parity greater than or equal to 6 (there are rather few
records with parity greater than 6 and our MCMC algorithm works best if the covariates
for the residual variance do not have too different numbers of records for each level). As
the next step in the model building process we explore under Model 2 the possibility of
a genetic association between residual variation and additive genetic variation for litter
size. This involves a considerable extension of the model and a posterior predictive model
assessment based on the discrepancy statistics T} is helpful to decide whether such an effort
is worth pursuing. A result of this explorative analysis is presented in Figure 2 where the



boxplots for posterior predictive realisations of T} (y,02) — T} (Yrep, 02) show a negative
association with additive genetic values for the trait, indicating that sows of high genetic
merit are likely to show less environmental variability.
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Figure 2: Left: Boxplots for posterior predictive realisations of T} (y, 02) — 1} (Yrep, 02) (see
Section 2.3) plotted against interval number j = 1,...,10. Right: estimated marginal
posterior distribution for p under Model 4 (see Section 3.2).

Figure 2 (left) motivates extending Model 2 to account for an association between
additive genetic values and residual variation. Figure 2 (left) highlights that, with the
exception of the first three intervals, the genetic association between residual variation and
additive genetic variation is fairly linear throughout the whole range of additive genetic
values.

Finally, Figure 3 shows quantile plots for posterior realisations of the standardised
residuals (y; — pi)/0i4, 1 =1,...,n, under Model 4 where each of the sets of residuals are
computed using approximately independent posterior realisations of the model parameters.
Figure 3 shows that the marginal distribution of each of the posterior realisations of the
residuals are fairly close to the standard normal distribution.

Figure 3: Quantiles of four posterior realisations of (y; — p;)/0i4, @ = 1,...,n against
quantiles of the standard normal distribution. The solid line is the identity.



3.2 Posterior distributions

Table 1 shows Monte Carlo estimates of posterior means and 95% posterior intervals for
chosen parameters based on Models 1, 2, 3, and 4. For Model 1 b is the log residual
variance, and for Models 2, 3, and 4 b is the log residual variance for a record with
parity one and natural insemination. The differences Sj = l;jg — l;jJ, J = ins, par, are the
effects on the log residual variance of moving from level one to two for insemination and
parity, respectively. The pattern of variance heterogeneity between artificial insemination
and natural insemination and parity two and parity one records as measured by Oins and
5par is similar across all four models. The posterior intervals for these differences are
bounded away from zero so there is strong evidence for variance heterogeneity associated
with insemination and parity. The posterior mean of heritability based on Model 1 is 0.16.
The posterior means of heritability based on Model 2 are 0.17, 0.20, 0.13, and 0.15 for

levels one one, one two, two one, and two two of parity and insemination, respectively.

Model o2 ag bo Oins Opar o2 0723 p

1 1.40 .60 2.00 — — — — —
1.02;1.81 .29:90 196:2.04  — - - - -

2 1.37 71 1.87 -.15 .34 — — —
97:1.81  .39:1.06 1.80:1.95 -.22-.08 .25.42  — - -

3 1.58 .60 1.78 -.16 .34 11 -.07
1.13;2.00 .31;.96 1.65;1.90 -.24:-09 .25.43 .08;.15 —  -72-41

4 1.62 .60 1.77 -.17 .35 .09 .06 -.62

1.20;2.05 .30:.92 1.65:1.89 -.25:-.09 .26;.44 .06:.13 .05.09 -.80:-.43

Table 1: Monte Carlo estimates of posterior means (first row for each model) and 95%
posterior intervals (second row for each model) of chosen parameters of Models 1, 2, 3 and
4. See Section 2 and Section 3.2 for explanation of symbols.

The Monte Carlo estimates of the posterior mean of the additive genetic variance o>
are of similar magnitude in the case of Models 1 and 2 and are a little larger for Models 3
and 4. Estimates of the permanent environmental variance af, are similar for Models 1, 3,
and 4.

Estimated marginal posterior distributions of o2, ag, o2, and ag based on Model 4 are
given in Figure 4. The dark lines superimposed in each of the four figures is the density
of the prior scaled inverted chi-square distribution with parameters v = 4 and S = 0.45
and a prior mode equal to 0.30. The estimated marginal distribution under Model 4 for
the correlation coefficient p is shown in the right plot in Figure 2. The posterior intervals
in Table 1 and the estimated marginal distributions for o2 and p which are bounded away
from zero provide strong evidence for the presence of additive genetic values which affect
the residual variance and are negatively correlated with the additive genetic values affecting
litter size. The posterior distribution of 0123 under Model 4 also provides evidence for the
existence of permanent environmental effects influencing residual variation.
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Figure 4: Left: Monte Carlo estimates of o, and ¢, (top) and ¢} and o7 (bottom). The

thick lines represent the prior scaled inverted y? densities with parameters v = 4 and
S = 0.45. Right: as left but with alternative choice of prior (v =4 and S = 0.10).

The estimates of the posterior characteristics are subject to Monte Carlo error. Es-
timates of the Monte Carlo error yield the following confidence intervals for the esti-
mated posterior means under Model 2 (1.35;1.39) (o72) (0.70;0.73) (07), (1.87;1.87) (bo),

(—0.16; —0.15) (ins), (0.33;0.34) (dpar). For Model 4 we obtain (1.55;1.68) (o2) (0.56;0.64)

(05), (1.77;1.78) (by), (—0.17; —0.16) (0ns), (0.34;0.35) (dpar), (0.09;0.10) (¢2), (0.06;0.07)
(02), and (—0.64; —0.61), (p). The conclusions above regarding the posterior means are
not changed by consideration of the Monte Carlo error.

In order to study the influence of the prior distribution on the inferences, a model
identical to Model 4 was fitted, except that the scale parameter S of the scaled inverted
chi-square prior distributions was set equal to 0.1 instead of 0.45. This results in a prior
mode equal to 0.067. The posterior means and 95% posterior intervals for o7, 02, 07, 03
and p with S = 0.1 are 1.64 (1.67;1.90), 0.54 (0.17;0.91), 0.07 (0.04;0.11), 0.03 (0.02;0.06),
and -0.60 (-0.78;-0.41). Except for 0123 only relatively small changes compared to Table 1

are observed; see also the right plot in Figure 4.

3.2.1 Further model assessment

One may argue that the strong evidence of a negative correlation between genetic val-
ues for litter size and residual variance is an artifact due to failure of the assumption of
normality for litter size which cannot exceed some minimum and maximum values. One
could therefore anticipate a right truncated distribution of litter sizes and consequently a
small variance for high producing sows. Moreover, it is not unlikely that sows producing
extremely low litter sizes have been temporarily exposed to conditions, such as disease,
that determined low productivity at a given parity. Once the condition is removed, the
sow reverts to some normal level. This mechanism, not accounted for by any of the four
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models, would generate large variation among low producing individuals.

Figure 5 shows histograms of litter sizes for high producing sows (left) and for low
producing sows (right). The left histogram is moderately skew but is on the other hand
based on the raw records where no correction is made for the effects of explanatory variables
and genetic values. More incisively we may consider the distribution of residuals for records
with high values of additive genetic values for litter size. Figure 6 shows histograms
based on posterior realisations of the standardised residuals (y; — p;)/0;4 for which the
associated posterior realisations of additive genetic values z,a were among the 200 largest
(this produces samples of residuals of average size around 500). A truncation effect is not
apparent in these histograms.

5 10 15 20 0 5 10 15

Figure 5: Histograms of litter sizes for sows with more than one litter, and that produced
at least one litter of size greater than or equal to 18 (left), or at least one litter of size one
or two (right).
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Figure 6: Histograms based on posterior realisations of standardised residuals (y; — pt;)/0i.4
with associated genetic value z;a among the 200 largest.
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Among low producing sows there is a relatively high frequency of litter sizes equal to
1 or 2, causing asymmetry (Figure 5, right). In order to study the influence of these low
records on the inferences, Model / was fitted to a reduced data set that did not include
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the 64 litter size records equal to 1 or 2. The posterior means and 95% posterior intervals
for 02, 02, and p based on the reduced data set are 1.41 (1.02;1.86), 0.08 (0.05;0.10), and
—0.49 (—0.71; —0.26). Naturally, the posterior means of the variances are smaller when
inferences are based on the truncated data set. However the decline is fairly small. Also
the posterior distribution of the correlation coefficient is only mildly affected by exclusion
of the low records.

The possibility of an artifact was investigated further by simulating data based on
Model 2 with parameters given by the posterior means in the second row in Table 1 and
on Model 3 with 02 = .11, p equal to —0.75, 0, or 0.75, and the other parameter values
as for Model 2. After discretizing the data to the nearest integer, data points larger than
21 were set equal to 21, and those smaller than 1 were set equal to 1. Plots simular to
the left plot in Figure 2 but obtained for the simulated datasets are shown in Figure 7.
The leftmost plot shows, correctly, the lack of association between the residuals defined by
(10) and additive genetic values, in data simulated using Model 2. So does the rightmost
plot, based on data generated with Model 3, p = 0. The second and third plots, based
on Model 3 with p = —0.75 and p = 0.75, respectively, show the expected negative and
positive associations.

-
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Figure 7: Boxplots for posterior predictive realisations of T} (y, 62) (see Section 2.3) plotted
against interval number 7 = 1,...,10. From left to right, data simulated under Model 2;
Model 3, p = —0.75; Model 3, p = 0.75; Model 3, p = 0.0

These results provide evidence against the conjecture that the inferred correlation is an
artifact. The model’s postulate of the presence of additive genetic values affecting residual
variation, correlated with additive genetic values influencing litter size, must be allowed to
stand until further.

3.3 Model comparison based on Bayes factors, posterior Bayes
factors and deviance information criterion

In this section we compare the models using Bayes factors, posterior Bayes factors and the
deviance criterion (DIC). These global criteria trade off model fit with model complexity
and are reviewed in Appendix B. The first and second row in Table 2 show logarithms of
the Bayes factors and of the posterior Bayes factors relative to Model 1. The third row
shows differences of DIC’s from the DIC of Model 1. The following conclusions can be
drawn: (i) The three criteria provide the same ranking of the models; (ii) Model 4 is by
far the most favoured in all cases. For any reasonable set of prior probabilities assigned

13



to the four models, the posterior probability for Model 4 is practically equal to one (even
assigning a prior probability to Model 4 equal to 1073 yields a posterior probability equal
to 0.999); (iii) the biggest difference is observed between Model 2 and Model 3, and this
is consistent for the three criteria. Thus, the presence of additive genetic values affecting
residual variation is given high credibility by all three methods.

Model 2 Model 3 Model 4

In BY, 149 478 561
DIC; - DIC; —154 —395 —450

Table 2: Natural logarithms of Bayes factors (first row), posterior Bayes factors (second
row), and DIC. All figures are expressed as differences from Model 1

As mentioned in Appendix B.1, the Monte Carlo estimator of the Bayes factor is known
to be numerically unstable (Newton and Raftery, 1994). This is disclosed in Figure 8 (left)
which shows Monte Carlo estimates of the likelihood prior mean under Model 4 computed
from samples that increase in size in steps of one, from 1 to 10,000 (the samples were
obtained by subsampling each 100th state of the MCMC output). Notice that despite
the downward jumps of the estimates, the ranking of the models quickly stabilises to a
consistent pattern. Also, the estimate of the logarithm of the likelihood posterior mean
(Figure 8, right) is influenced by occasional very large values in the posterior sample of the

likelihood.
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Figure 8: Estimates of the logarithms of the likelihood prior mean (left) and the likelihood
posterior mean (right) plotted against increasing sample size.
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3.4 Model comparison based on the models’ predictive ability

So far, the models have been used to understand a specific aspect of nature, namely, factors
affecting the residual variance. The fact that Model 4 is assigned high credibility using
posterior predictive model checking, or investigating the relevant posterior distributions,
or via comparisons based on Bayes factors and related quantities, does not necessarily
imply that it works much better than the simple models for prediction of “future data”,
or unobservables such as additive genetic values.

3.4.1 Prediction of “future data”

The ability of the models to predict “future data” is studied as follows. The 589 records
from the second generation in the selection and control line are excluded from the full data
set, and 95% posterior predictive intervals for these observations are computed using the
remaining (10,060 — 589) records. The proportion of excluded records falling into their
predictive intervals are 0.95, 0.931, 0.941 and 0.941 for Model 1, 2, 3, and 4, respectively.
Thus the models rank similarly in terms of the coverage properties of their predictive
intervals.

3.4.2 Prediction of additive genetic values

In quantitative genetic experiments one may use models for prediction of additive genetic
values, either to infer response to selection, or to select parents of the next generation.
Define response to selection as the difference in average additive genetic value of individuals
in the selected line and of unselected individuals and consider inferring selection response
by means of the four models. Because response to selection is an unobserved random
variable, it is not possible to define a discrepancy statistic that acts as a benchmark for
testing the models. However, we carry out an informal test, by defining “observed selection
response” as the difference between the raw averages of the records in the selected and in
the control line. This “observed selection response” is equal to 0.40 piglets per litter. The
means of the posterior distribution of response to selection and the 95% posterior intervals
for Model 1, 2, 3, and 4 are 0.47 (0.26;0.69), 0.43 (0.22;0.65), 0.37 (0.17;0.58), and 0.37
(0.15;0.57), respectively. The models provide a similar picture of the response to selection,
and the observed selection response falls comfortably within the 95% posterior intervals
for all the models.

One way of studying the consequences of using the different models on selection de-
cisions, is to look at the number of individuals that are selected in common by the four
models. Table 3 shows the number of individuals that overlap when the top 50 animals
are selected on the basis of the posterior mean E (a|y,M;) of the additive genetic values
computed with each of the four models. An interesting pattern emerges from the figures
in the table. The largest degree of overlap is observed in comparisons involving the two
models that do not include a (Models 1 and 2) and the two models that include a (Models
3 and 4). All the other comparisons where one of the models includes a and the other
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Model comparison 1wvs2 1lwvs3 lwsd 2vs3 2vs4d 3wvs4
QOverlap 43 35 34 38 38 A7

Table 3: Number of individuals that are selected in common by each pair of models.

does not, show smaller amounts of overlap. Thus, inclusion of a genetic term as a factor
influencing variance heterogeneity seems to have a bearing on selection decisions.

One may also wish to quantify the consequences of using the “wrong model”, on selec-
tion response. Assume that Model j is the “correct” model among those studied, and that
selection of parents on the basis of F (a|y,M;) takes place with Model 1, or 2, or 3. For
model M;, i = 1,2, 3, the selection response is estimated by the average of the E(a;|y,My)
where j is among the indices of the 50 animals selected using model M;. The overlap of 34,
38 and 47 individuals among the highest scoring 50 (see Table 3) translates into a decrease

in selection response relative to the selection response obtained with Model 4, of 5%, if
Model 1 is used, of 4% if Model 2 is used, and of 0% if Model 3 is used.

3.5 Model checking using “conventional” residuals

Our model assessment is based on the posterior predictive realisations of standardised resid-
uals and derived discrepancy statistics. A conceptually simpler approach is to consider one
single set of standardised residuals obtained by replacing u; and ‘7@'2, v Dby point estimates.
However in the complex models considered with a huge number of random effects such
residuals are far from being standard normal and are essentially useless for model assess-
ment. Figure 9 (left) shows a quantile plot of standardised residuals obtained by replacing
w; and log 0127 4 with their posterior means under Model 4. The standardised residuals are
far from being standard normal and an overfitting effect is apparent since the empirical
variance of the standardised residuals is only 0.82. The right plot in Figure 9 shows a plot
of statistics T} similar to the T} in Section 2.3 but with the unknown quantities replaced
by posterior expectations, i.e.

T = By Z (yi — E(pily, Ma))?

- 1, j=1,2,....10,
exp (E(logai272|y,M2))

mr.
b 2l E(aly)el;

where the intervals I; are those used for the discrepancy statistics T; and mjy; here denotes
the number of observations with z/E(aly) € I;. No pattern of genetically structured
variance heterogeneity is visible. Apparently, the subtle structures in the data are hidden
by the process of posterior averaging.

4 Discussion

In this work four models with increasingly complex residual variance structures are fitted to
pig litter size data in order to investigate sources of variance heterogeneity and in particular
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Figure 9: Left: quantiles of standardised residuals obtained using point estimates of u; and
cri% 4 against quantiles of the standard normal distribution. Right: the statistics T} plotted
against interval number 7 =1,...,10.

the possible presence of additive genetic effects influencing the log residual variance. The
models are compared using global criteria that trade off model fit with model complexity.
The three such criteria used in this study generate the same ranking of the models and all
give very strong evidence for a genetically structured variance heterogeneity. All criteria
favour in particular Model 4 which also includes variance heterogeneity due to permanent
environmental effects. In agreement with this, the posterior distributions for o2 and azg,
are bounded away from zero under Model 4. The posterior distribution of p under Model
4 further provides evidence of a strong negative correlation between the additive genetic
values influencing litter size and the additive genetic values affecting residual variation.
The models are also compared according to the purposes for which they might be used. It
is shown that models that rank very differently according to the global measures of fit, are
hardly distinguishable in terms of their ability to predict “future data” or to infer response
to selection. Yet a different result emerges when the models are used for selecting parents
for breeding for larger litter size. Therefore, depending on the context, a simple model
may be adequate even though it fails to address features of the data accounted for by the
more complex models. This thought was put forward by Rubin (1984); we agree.

In the remaining part of the discussion we provide introductory remarks about impli-
cations for selection of the above findings and alternative modelling approaches.
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4.1 TImplications for selection

Models with genetically structured variance heterogeneity may contribute to an under-
standing of the process affecting mean-variability relations in natural and domestic pop-
ulations. Previous work was based on a simple model (Lerner, 1954; Lewontin, 1964;
Zhivotovsky and Feldman, 1992) assuming that environmental sensitivity decreases with
the number of heterozygous loci. An extension postulates that pleiotropic effects at a fi-
nite number of loci act additively on the mean and variance (Gavrilets and Hastings, 1994;
Hill, 2002). San Cristobal-Gaudy et al. (1998) consider instead an infinitesimal model with
correlation between the additive genetic values affecting the mean and those affecting the
log residual variance and predict response to selection for canalisation. Here, drawing from
their work, we give a brief overview of changes of mean and variance due to selection on
an index designed to increase the mean of the trait and to reduce its variance.
Consider a simplified version

2

yla, @ ~ N(a,exp(b+ a)) and <a,a>\az,a§,p~N<<o,o>,[ Ta ”““5’6}) (11)

P0G lop

of the genetically structured heterogeneous variance model. The phenotypic variance (vari-
ance of the marginal distribution of y) is 0% = 02 + exp(b + 02/2). Consider selecting on
the index

I(y) =7+ kS5, (12)

where 7 is the average of the n records of an individual, S? = >7(y —7)*/(n — 1), the
sample variance of the records of the individual, and k is a relative weight in units of inverse
phenotypic standard deviations, assumed known. One may be interested in increasing the
phenotype and decreasing its variance, in which case k& would be negative. This index is
arrived at empirically and no claims are made about its optimality properties. Under the
model defined by (11), selection by truncation does not lead to mathematically tractable
expressions. Instead, following Gavrilets and Hastings (1994), it will be assumed that
directional selection can be described by the linear fitness function

w(y) =1+ sl(y), (13)

where s is a small quantity that defines the strength and direction of selection. The function
(13) holds for weak selection, since s can be made arbitrarily small so that w(y) is positive
with probability essentially equal to one. The expectation of (13) over the distribution of
Y is ,

FElw(y)]=w =1+ s[kexp(b+ %)] (14)

The fitness of genotype (a, a) is defined as
w(a,a) = E[(1+ sl(y)|la,a)] =1+ s{a+ kexp[b+ a]} (15)

Expression (15) depends on the mean and variance of the conditional distribution of y
given genotype (a, a) since the index (12) has a term that depends on the variance of the
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phenotypic records of the individual. If selection operates on (12), the mean value of a, or
response to selection, is

Ra://aw(a’&)p(a,d)dadd:%//a{l+s[a+kexp(b+d)]}dadd

w
=02+ ékpaaaa exp(b+02/2) = S h20? ékpaaaa(l — h*)o?, (16)
w w w w
where h? = 02/0?. The first term is the direct contribution from change in additive

genetic value a. It can be positive or negative, depending on the direction of selection,
which defines the sign of s. The second term is due to the correlation between a and a and
its sign depends on that of skp. With small 02/2, the influence of these terms depends on
the relative sizes of po,0; and 2. For the litter size data and using the posterior means
in Table 1 from Model 3, po,0; = —0.23 and 02 = 1.55 so the effect of the second term is
fairly small. Similarly, the mean of a with selection based on the index (12) is

Rz = //dwp(a, a)dada = %paaaa + %kaé(l N Lo (17)

w

The mean value of the residual variance before selection is given by exp(b+ ¢2/2). In
the selected group, the expected value of the residual variance is

/ / exp(b+ @) 22 Y (4, a)dada.

w

This integral can be obtained in closed form but a simpler expression results from a first
order Taylor series expansion about R;. This yields

Elexp(b+ a)] = exp(b+ Ra),

where the expectation is taken with respect to the distribution of (a,a) in the selected
group. The change in the mean residual variance is then, approximately,

exp(b)[exp(07/2) — exp(Ra)]. (18)

To gain a rough idea of the magnitude of the change in the mean residual variance, we
computed the average a among the 50 females with highest a. This yields R; = —0.30,
which again using the posterior mean of o2 from Model 3 in Table 1 results in a relative
decline of

exp(0.05) — exp(—0.30)
exp(0.05)

which is of the same order of magnitude as the decline of the additive genetic variance due
to the Bulmer effect (Bulmer, 1980) among selected parents, assuming the infinitesimal
model with homogeneous variance. Hill (2002) studied the effect of truncation selection
on phenotype on changes of mean and phenotypic variance. Hill (2002) worked with finite
number of loci and therefore the effect of selection is due to changes in gene frequencies.

= 0.29,
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The expressions for changes in mean and variance also include two terms as in (16) and
(17), one due to the effect of genes affecting the mean and the other due to the effect of
genes affecting the variance. Hill (2002) wonders whether terms such as o2 and po,0; are
of sufficient magnitude to matter in prediction equations. Here we provide evidence of
their relevance. It is important to study further the dynamics of the genetically structured
heterogeneous variance model under selection and to obtain a better understanding of the
different factors intervening in the changes of genetic parameters.

4.2 Extensions and alternative models

It has been suggested to us to extend the models (2), (3), and (4) for the residual variances
by adding independent terms e; to the log residual variances log 0127 v Whereby a different
variance for each record is obtained. If e.g. S7 = 07, exp(e;) is taken to be a7 y,vx, 7, a
scaled x;?, and we assume

Yilpi, SF~ N(pi, S7)
then, integrating over the distribution S¢2|0'z2, vV, by the mixture property of the ¢,-
distribution (see, for example, Sorensen and Gianola, 2002, pages 28, 595), we obtain

Yili, 0 ap ~ tu(ti, o ap)-
So the inclusion of e; in the log residual variance essentially corresponds to choosing a more
heavytailed sampling distribution. In the light of Figure 3 this does not seem relevant for
the litter size data.

Only normal sampling models are considered in this work. Perez-Enciso et al. (1993),
using approximate methods, compared the quality of fit of Poisson and normal models and
did not obtain clear differences. Due to underdispersion our data are in fact in conflict
with a Poisson sampling distribution. However, a biologically interesting alternative is to
assume that the ith sow has a “potential” n; for producing litters of a certain size and that
the litter size y;; for the jth parity is Binomial(n;, p;;). The variable n; could be assigned
a Poisson prior distribution and log[p;;/(1 — p;;)] could be modelled via a mixed linear
structure. Given the p;;, the y;; would then be marginally Poisson but the correlation due
to the common n; would lead to a smaller within sow variation among the y;; than if the
y;; had been independent. Inference about the binomial parameter n; has been discussed
for example in Draper and Guttman (1971) and Raftery (1988).

Acknowledgement We are grateful to Hal Stern, Steffen L. Lauritzen, and Magali San
Cristobal for useful discussions on posterior predictive model checking, on approaches to
modelling litter size data, and on genetic properties of the genetically structured residual
variance model.
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A Posterior predictive model assessment

A basic idea for assessing the fit of a model M with sampling density p(:|60rs, M) depending
on a known parameter ¢, is to compare the observed value of some univariate discrepancy
statistic T'(y, 057) with its sampling distribution under p(-|0,;, M). If the observed value is
atypical in the sense of being located in the extreme tails of its sampling distribution we
tend to reject the model. Equivalently, we might consider whether zero is an atypical value
in the distribution of the difference T'(y,0n) — T(Yrep, Oar) where y,, is replicate data
generated from the model p(+|6y;, M). When 6, is unknown a common plug-in approach
is to replace 0, by an estimate 6y and then proceed as if 8, was known and equal to Orr.
A Bayesian inference concerning 6,, is based on the posterior density

P (Only, M) o< p (Onr| M) p (y|0nr, M)

where p (05| M) is the prior. Each 0y, generated from the posterior density is a candidate
for the unknown value of the parameter so instead of considering just one fixed value of 0,
in the model assessment we should consider a range of 6,,’s generated from the posterior
density. This is the idea of posterior predictive model assessment (Rubin, 1984; Gelman
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et al., 1996) where one considers the joint posterior predictive distribution of T'(y,fx)
and T'(Yyep, Oar). That is, 0y is generated from the posterior of 6y, and given Oy, Yiep
is generated from p(:|0y, M). As above, one might for example check whether zero is
an extreme value in the posterior predictive distribution of T'(y, 0y — T'(Yrep, 0ar). The
marginal distribution of y,., is given by the so-called posterior predictive density

pcmwnzjéummmeMmman=EWMMmumMM» (19)

i.e. the posterior expectation of p(-|0y;, M). Realisations of y,., differ from the observed
data y by the inherent sampling variation of the distribution [y,,|6r, M] and the posterior
uncertainty of the parameters ), under model M, but differences may also occur due to
failure of M to fit data y.

In practice, we obtain MCMC draws 95\?, k=1,2,..., K, from the posterior distribu-
tion of 8y, and subsequently generate replicate data yﬁ’é}, given 95\?. The posterior predictive
distribution of 7' (y,00) —T (¥rep,0ar) can then be studied using a boxplot of the differences
T(y,ﬁj(\l;)) —T(y%) 6%). A less compact alternative is to consider a scatterplot of the pairs
(T(y,@ﬁ)),T(yﬁﬁgy,G%)). The observed value of the discrepancy statistic is then atypical

compared to its posterior predictive distribution if the points in the scatterplot are far
from the identity line.

B Global measures of fit

At the end of an exploratory exercise, a number of models may be available. Often, the best
fitting model has a relatively large number of parameters and it is relevant to study whether
the complexity of the model is supported by the available data. As a global measure of
fit of a model one may consider the prior mean of the likelihood, the posterior mean of
the likelihood evaluated at the observed data, or the posterior mean of the log likelihood.
Criteria for model comparison based on these quantities are, respectively, the Bayes factor,
the posterior Bayes factor (Aitkin, 1991) and the deviance information criterion, DIC,
(Spiegelhalter et al., 2002).

B.1 Bayes factors

The marginal or prior predictive density of the data given model M; is given by

pMM»:/p@mwmmmeszw@mwmy (20)

This density can be interpreted as the probability of obtaining the observed data under
model M;, before the data became available or as the prior mean of the likelihood. The
Bayes factor for two models is the ratio between the prior means of the likelihood under

each of the models
B _ p(y|M;)  Pr(Mly)/Pr(M;ly) _ posterior odds ratio 1)
Y p(y|M;)  Pr(M;)/Pr(M;)  prior odds ratio
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and provides a measure of whether the data have increased the odds on M; relative to M;.
Useful reviews can be found in O’Hagan (1994) and Kass and Raftery (1995). In contrast
with the two methods described below, Bayes factors have the advantage of building on a
set of logical foundations that provide coherence. However, results of model comparison
using the Bayes factor may be very influenced by the prior distribution. If the prior distri-
bution accurately represents the information about # available to the scientist prior to the
experiment, then for a Bayesian, this influence should not be a matter of concern. However,
the Bayes factor can give misleading inferences when vague proper prior distributions are
used. In particular, an improper prior distribution for [0;|M;]| leads to impropriety of (20)
and to pathologies of B;; in (21). Partly because of these reasons, several other criteria of
model comparison have been suggested in the literature and two of these, outlined beow,
are used in this work.

With the advent of MCMC, many methods for computing Bayes factors have been
proposed in the literature. A recent comparative review is in Han and Carlin (2001).
Here we use the Monte Carlo consistent estimator proposed in Newton and Raftery (1994)
which is easy to compute but not very stable numerically (the stability of the estimates
is studied in Section 3.3). Obtaining more stable Monte Carlo estimates is in general not
straightforward.

B.2 Posterior Bayes factors

The posterior Bayes factor (Aitkin, 1991) for comparison of two models M; and M; is given
by

BP — S p (y|6:, M;) p (0:ly,M;) db; _ pyly,Mi) (22)

o [ (yley, My)p (95ly.M;) do;  p(yly.M;)

i.e. the ratio of posterior predictive densities (19) under model M; and M, respectively,
evaluated at y. Aitkin (1991) studies the frequentist properties of (22) and shows that for
the case of nested models, it reduces to a general class of penalised likelihood ratio tests
which includes, among others, Akaike’s information criterion (Akaike, 1973). Aitkin (1991)
proposes to use and interpret Bf’j in the same way as the Bayes factor B;; (see Section B.1).
Computation of (22) from the MCMC output is immediate by simply averaging a posterior
sample of the likelihood.

B.3 Deviance information criterion

Instead of using the posterior expectation of the likelihood as for the posterior Bayes factor,
the deviance information criterion (DIC) (Spiegelhalter et al., 2002) uses the posterior
expectation of the log likelihood as a measure of model fit. For a particular model M, the
DIC is defined as

DIC =2D - D (0u) , (23)

where

D =2 [ logp (¥1630) p (Ourly. M) dbas = Enyaa (D 6u1).
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is the posterior expectation of the so-called deviance D (6);) = —2logp (y|0y). The second
term in the right hand side of (23) is the deviance evaluated at the posterior mean of the
parameter vector ;. The DIC is obtained by adding D which measures model fit and
D—-D @M) which according to Spiegelhalter et al. (2002) is a measure of model complexity.
Models having a smaller DIC should be favoured as this indicates a better fit and a lower

degree of model complexity. In common with ij, DIC is very easily calculated using the
MCMC output.

C MCMC algorithm

For a standard normal mixed model with homogeneous error variance and conjugate pri-
ors, a common choice of MCMC algorithm is a Gibbs sampler. In the extended model
with heterogeneous variances we cannot use Gibbs updates for B, a, and p. Instead we
use so-called Langevin-Hastings updates (Rossky et al., 1978; Besag, 1994; Roberts and
Tweedie, 1997; Christensen et al., 2001) combined with a reparameterisation for a and p.
Briefly, for a target density 7 and a state s the Langevin-Hastings proposal distribution
is N(s+ 2V(s),hI), where V(s) = 0/0s log(s) is the gradient of the log-target density
and h is a user specified proposal variance. Especially for high dimensional target dis-
tributions, the use of the gradient in the proposal distribution can lead to much better
convergence properties than, for example, when the simple random walk Metropolis pro-
posal distribution N (s, hI) is used. For ease of programming we also use Langevin-Hastings

(and a reparameterisation) for a and p. The reparameterisation employed for (aT,a’) is

(aT,a") = L @ TDY?(yT,47) where (77,47) has a standard multivariate normal distri-
bution, L¢ is the lower-triangular Cholesky factor of G, and T and D correspond to the
factorisation A =T DT of A (Henderson, 1976). For p and p we use p = 0,0 and p = aﬁg,
where also (07, ST) is a standard normal vector. With Langevin-Hastings updates it is eas-
ier to obtain a well-mixing MCMC algorithm for the posterior distribution of (y7,4T) and
(67,07) than for the original variables (a,aT"), p and p. Posterior samples of (a™,a"), p
and P are simply obtained by transforming the posterior samples of (v7,57) and (67,47).

The algorithm used for posterior sampling is a fixed scan hybrid Monte Carlo algo-
rithm (also known as Metropolis-within-Gibbs) where b, b, (v7,57), (67,67), (02,0%), and
(02,02, p) are updated in turn using Gibbs for b, Langevin-Hastings for b, (v7,4T), and
(67,07), random walk updates (on the log scale) for the variance parameters, and a random
walk update for p.

The Langevin-Hastings updates are straightforward to program but one disadvantage
is that suitable values of the proposal variances must be chosen from pilot runs of the
algorithm. It is further our experience that a Langevin-Hastings update is not suitable for

a multivariate full conditional distribution with very different marginal variances.
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