Propriety of posteriors for Poisson processes

Rasmus Waagepetersen

Institute of Mathematical Sciences, Aalborg University Fredrik Bajersvej 7G, DK-9220 Aalborg

February 10, 2005

Posterior propriety

Lemma. Consider a Poisson process on a bounded region W with intensity function

$$\lambda(\xi;\theta) = \exp(h(\xi)\theta^{\mathsf{T}}), \ \xi \in W,$$

where $\theta \in \mathbb{R}^p$ and $h(\xi) = (h_1(\xi), \ldots, h_p(\xi))$ are row vectors with $h_i : W \to \mathbb{R}$. Let $y = \{\xi_1, \ldots, \xi_n\}$ denote an observed point pattern from this Poisson process and let H be the matrix with rows $h(\xi_i)$, $i = 1, \ldots, n$. Assume that H has full rank $p \leq n$, that $h(\cdot)$ is continuous at the observed points ξ_1, \ldots, ξ_n , and that the prior density p for θ is bounded but not necessarily proper. Then the posterior for θ given y is proper.

Proof. The posterior is proper provided

$$\int L(\theta) \mathrm{d}\theta < \infty$$

where

$$L(\theta) = \exp\left(-\int_{W} \lambda(\eta; \theta) \mathrm{d}\eta\right) \prod_{\xi \in y} \lambda(\xi; \theta)$$

is the likelihood function. Consider a partition $\mathcal{P} = \{C_l\}_{l=1}^L$ of W into disjoint cells C_l so that $\operatorname{card}(C_l \cap y) \leq 1$, and for $\xi \in y$, denote by C^{ξ} the cell which

contains ξ . Then

$$\int_{W} \exp(h(\eta)\theta^{\mathsf{T}}) \mathrm{d}\eta \ge \sum_{\xi \in y} |C^{\xi}| \exp\left(\inf_{\eta \in C^{\xi}} h(\eta)\theta^{\mathsf{T}}\right)$$
$$\ge \sum_{\xi \in y} |C^{\xi}| \exp\left(\sum_{i=1}^{p} \theta_{i}\left(\inf_{\eta \in C^{\xi}} h_{i}(\eta)1[\theta_{i} > 0] + \sup_{\eta \in C^{\xi}} h_{i}(\eta)1[\theta_{i} \le 0]\right)\right).$$

Let $\epsilon = \max_{\xi \in y, i=1,...,p} \sup_{\eta \in C^{\xi}} |h_i(\eta) - h_i(\xi)|, \ \tilde{\epsilon} = \epsilon \left(\operatorname{sign}(\theta_1), \ldots, \operatorname{sign}(\theta_p) \right),$ and $\tilde{h} = h - \tilde{\epsilon}$. Then

$$\sum_{i=1}^{p} \theta_i \Big(\inf_{\eta \in C^{\xi}} h_i(\eta) \mathbb{1}[\theta_i > 0] + \sup_{\eta \in C^{\xi}} h_i(\eta) \mathbb{1}[\theta_i \le 0] \Big) \ge \tilde{h}(\xi) \theta^{\mathsf{T}},$$

 \mathbf{SO}

$$\int_{W} \lambda(\eta; \theta) \mathrm{d}\eta \ge \sum_{\xi \in y} |C^{\xi}| \exp(\tilde{h}(\xi) \theta^{\mathsf{T}}).$$

Let \tilde{H} have rows $\tilde{h}(\xi_i)$, i = 1, ..., n. By continuity of h, we can choose the partition \mathcal{P} so that ϵ becomes arbitrarily small. Hence we choose the partition so that \tilde{H} has full rank p and denote by \tilde{H}^{-1} a left inverse of \tilde{H} . Let $\eta^{\mathsf{T}} = \tilde{H}\theta^{\mathsf{T}}$. Then $\tilde{\epsilon}\theta^{\mathsf{T}} = k\eta^{\mathsf{T}}$ where $k = \tilde{\epsilon}\tilde{H}^{-1}$, and so

$$\log(L(\theta)) \leq \sum_{y \in \xi} [\tilde{\epsilon}\theta^{\mathsf{T}} + \tilde{h}(\xi)\theta^{\mathsf{T}} - |C^{\xi}| \exp(\tilde{h}(\xi)\theta^{\mathsf{T}})] = \sum_{i=1}^{n} [\eta_i(nk_i + 1) - |C^{\xi_i}| \exp(\eta_i)].$$

If ϵ is small enough, each of the terms $\exp(\eta_i(nk_i+1) - |C^{\xi_i}|\exp(\eta_i))$ is both bounded by a constant K and integrable as a function of η_i . We can assume that the partition is chosen so that this is the case, and without loss of generality we can assume that the first p rows in \tilde{H} are linearly independent. Then

$$\int L(\theta) d\theta \leq \frac{K^{(n-p)}}{\det \tilde{H}_1} \int \exp\left(\sum_{i=1}^p [\eta_i(nk_i+1) - |C^{\xi_i}| \exp(\eta_i)]\right) d\eta_1 \cdots d\eta_p < \infty$$

where \tilde{H}_1 consists of the first p rows in \tilde{H} .