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Abstract

A complex multivariate spatial point pattern for a plant community with high

biodiversity is modelled using a hierarchical multivariate point process model. In

the model, interactions between plants with different post-fire regeneration strate-

gies are of key interest. We consider initially a maximum likelihood approach to

inference where problems arise due to unknown interaction radii for the plants. We

next demonstrate that a Bayesian approach provides a flexible framework for in-

corporating prior information concerning the interaction radii. From an ecological

perspective, we are able both to confirm existing knowledge on species’ interactions

and to generate new biological questions and hypotheses on species’ interactions.
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1 Introduction

1.1 A plant community with high biodiversity

This paper discusses a multivariate spatial point process model for spatial point patterns

formed by a natural plant community with a high degree of biodiversity. The data were

collected in Cataby, in the Mediterranean type shrub- and heathland of the south western

area of Western Australia (Beard, 1984), where the locations of 6378 plants from 67

species on a 22 m by 22 m plot have been recorded (Armstrong, 1991). To overcome the

problem of identifying individuals and their locations for strongly clonal plants, methods

as described in Magurran (1988) were applied.

Figure 1 shows the point patterns of the 24 most abundant and influential species. The

patterns are of varying nature, showing different patterns of inhomogeneity and clustering.

[Figure 1 about here.]

Our objective is to devise methodology suitable for modelling a multivariate spatial

point pattern dataset as complex as this. We also aim at emphasising the suitability

of spatial point process methods in the context of plant community ecology and the

applicability of the methodology to other, similar datasets. In particular, we demonstrate

that a Bayesian approach provides a flexible framework for incorporating prior information

concerning plant interactions.

1.2 Ecological perspective

The dataset considered here is only one example of a multivariate spatial point pattern

of high dimensionality. Similar large datasets are becoming increasingly available in the
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context of plant community ecology (Burslem et al., 2001). The ecological information

buried in these datasets has not yet been fully explored.

In view of the increasing impact of humans on plant ecosystems, often resulting in

the destruction of these and thus in a loss of biodiversity, ecologists seek to understand

the processes that organise ecological plant communities. Such knowledge may help the

re-naturation and subsequent conservation of disturbed ecosystems (Greig-Smith, 1983;

Herben et al., 2000). This aspect is further discussed in Section 2 for our specific dataset.

In particular, revealing the mechanisms that allow a large number of species to coexist

is of key interest within community ecology (Murrell et al., 2001; Loreau et al., 2001).

Species coexistence is directly linked to local inter- and intra-specific interactions in a

community (Durrett and Levin, 1998). Each plant has a dependence on local growing

conditions (Stoll and Weiner, 2000) and interacts mainly with its immediate neighbours,

as plants are non-motile organisms. As noted, the dataset considered here consists of as

many as 67 species, which manage to coexist in the same ancient community without out-

competing each other. We are interested in revealing the mechanisms that facilitate this

coexistence, i.e. in understanding the nature of the interaction structure in the community

in terms of the strength and direction of interaction (Law et al., 1997).

1.3 Statistical methodology

Non-statistical spatially explicit individual based models have become a very popular

approach in ecological modelling over the last ten years (Law et al., 2003). These mecha-

nistic models are built on equations capturing those properties of the individuals which are

believed to influence community dynamics. However, the individual based models yield

simulated realisations which do not necessarily capture overall spatial characteristics of

the entire community. Moreover, extending the mechanistic model to a statistical model
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which takes uncertainty into account would be a difficult task due to the high complexity

of the model and the limited data available when a plant community is only observed at

one instance in time.

We propose instead to analyse information on locations of individual plants using a

spatial point process model of the interaction structure in the plant community. So far,

most applications of spatial point processes in ecology have been either of a merely de-

scriptive nature using second order summary statistics such as Ripley’s K-function (Dale

et al., 2002; Liebhold and Gurevitch, 2002; Wiegand and Moloney, 2004) or the models

were restricted to a very small number of species, typically not more than two or three

(Mateu et al., 1998). A traditional spatial point process analysis involving the inspection

of first and second order summary statistics for each of the species as well as pairwise

cross species summary statistics (see e.g. Diggle, 2003; Møller and Waagepetersen, 2003)

becomes a very tedious task with high numbers of species.

For our data set (see Section 2) we are interested in studying the interactions between

5 seeders and 19 resprouters - hence one would need to interpret 95 plots of pairwise cross

statistics. It is very hard to get an overall understanding of the community dynamics from

these plots since all of them would then have to be considered simultaneously. Moreover,

using pairwise cross statistics for two different species it is not possible to adjust for the

effect of the remaining species. Instead, we develop a suitable hierarchical spatial point

process model where seeder locations are modelled conditional on the resprouter locations.

The parameters of this model provide a compact and more easily interpretable representa-

tion of the interactions between reseeders and resprouters (Figure 2 and Sections 4.1 and

5.2.1). Further, our approach may be widely applied in contexts other than the current

data set of seeders and resprouters. For instance, a similar modelling approach could

be envisaged for spatial patterns of annual and perennial plants in moderate climates
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with the perennials taking on the role of the resprouters and the annuals that of the

seeders. Another possible application is modelling of seedlings in the presence of adult

trees (Gratzer et al., 2006; Grabarnik and Särkkä, 2006).

1.4 Outline

Section 2 gives further information on the dataset, providing a justification for the hie-

rarchical model considered in Section 3. The hierarchical model exploits subject matter

knowledge concerning post-fire regeneration strategies of the species. Some model para-

meters reflect strength and direction of interaction between individuals while other model

parameters define circular regions around the individuals where interaction takes place.

Section 4 discusses maximum likelihood inference and points out various problems with

the estimation of interaction radii in the model. Section 5 considers a Bayesian approach

which incorporates prior information on the interaction radii and overcomes the estima-

tion problem. Section 6 contains concluding remarks.

2 Biological background to dataset

The flora in the sampled area is distinguished by its large number of species specific to

that area, the large number of rare flora and a high biodiversity; indeed the southwest

of Australia is one of the world’s biodiversity hot-spots (Crawley, 1997). Lying within a

mineral sand mining area, the study area was mined shortly after data collection in 1990

and will have to be re-naturated as soon as mining has ceased. Current efforts towards

re-naturation in neighbouring areas, however, have resulted in a very small survival rate

for some species. Nevertheless, re-naturation is a legal requirement in the area after large

scale mining and the modelling approach here seeks to inform that re-naturation process
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by identifying community dynamics.

The characteristic sandy soil in the area is extremely low in nutrients and water (Arm-

strong, 1991). Hence, individual plants may interact in various ways by inhibiting each

other’s growth while competing for the scarce resources (Richardson et al., 1995). This is

likely to reduce the number of plants in close proximity thus leading to an observed spatial

pattern with inhibition between plants. Attraction may, however, also occur if conditions

(shade, nutrients, water availability) in the micro habitat are made more suitable for a

plant by the presence of another plant. Except for small-scale local variations caused by

individual plants, the extremely low nutrient and water level in the soil can be regarded

as spatially homogeneous. The apparent inhomogeneity in Figure 1 e.g. for seeder 2 and

resprouters 8 and 15 is therefore likely to be due to a “patchy” growth behaviour typical

for the area rather than to inhomogeneity in the environment (Dixon, 2005).

The vegetation in the area is Banksia low woodland (Elkington, 1991), which is sus-

ceptible to regular natural fires occurring approximately every ten years. Plants have

adapted to this through the development of two different regeneration strategies. Re-

sprouting species survive the fire with the above soil part of the plant burning off and the

plant regrowing from sub-soil root stock. Seeding species, on the other hand, die in the

fire but the fire triggers the shedding of seeds, which have been stored since the previous

fire. The specific regeneration method used by a species will have an impact on the pat-

tern formed by the individual plants (Armstrong, 1991) and also on the structure of the

interaction between species with different regeneration strategies.

Since the resprouting plants have been at exactly the same location for a very long

time (some of them for hundreds or even thousands of years; Armstrong, 1991), the

seeders, which start anew after each fire, do so with the resprouters already present. We

thus assume that the growth and survival of reseeding plants will be influenced by the
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resprouting plants already present in the plot, whereas an influence of the seeders on the

resprouting plants is highly unlikely. To capture the asymmetric interaction, we model the

locations of the reseeding plants conditionally on the locations of the resprouting plants

in Section 3.

In the following, we consider the 24 point patterns in Figure 1, i.e. the 5 most abundant

species of seeders and the 19 species of resprouters suspected to be most influential either

as a result of their abundance (resprouters 1-13) or their size (resprouters 14-19) (Arm-

strong, 2005). We assume that each individual resprouter has a circular zone of influence

with the strength of influence decreasing with the distance from each plant. Beyond this

zone the influence is considered zero. The interaction can be positive (e.g. caused by

subcanopy soil enrichment; Callaway, 1995) or negative (e.g. caused by allelopathy; Arm-

strong, 1991). Prior information (Armstrong, 2005) available on the typical radii of the

influence zones is given in Table 1 which also shows the numbering we use for resprouter

species. The 5 species of seeders are 1. Andersonia heterophylla, 2. Astroloma xerophyl-

lum, 3. Conospermum crassinervium, 4. Leucopogon conostephioides and 5. Leucopogon

striatus.

[Table 1 about here.]

3 Likelihood

The observation model (i.e. the likelihood) presented below and the thinking behind it

resembles approaches derived from ecological field theory introduced in Wu et al. (1985)

that model competition using influence potentials based on distances between individ-

uals (Kuuluvainen and Pukkala, 1889; Økland et al., 1999; Miina and Pukkala, 2002;

Kühlmann-Berenzon et al., 2005).
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Denote W the 22 m by 22 m plot where the plants have been recorded, x1, . . . ,x19 the

observed point patterns for the 19 resprouters, y1, . . . ,y5 the observed point patterns for

the 5 seeders, and X1, . . . ,X19,Y1, . . . ,Y5 the corresponding spatial point processes, i.e.

here each Xj or Yi is considered to be a random finite subset of W ; for details on spatial

point processes, see Møller and Waagepetersen (2003) and the references therein. Since

we are mainly interested in the inter-species interactions between seeders and resprouters,

we leave the marginal distribution of the resprouters unspecified and restrict attention to

the conditional likelihood of the seeders given the resprouters.

Conditional on X1 = x1, . . . ,X19 = x19, we assume that Y1, . . . ,Y5 are independent

Poisson processes. For convenience we assume a log linear form of the intensity function

of Yi,

λ(ξ|x,θi) = exp
(

θis(ξ|x)T
)

, ξ ∈ W, (1)

where we use the following notation: x = (x1, . . . ,x19) is the collection of all 19 resprouter

point patterns; θi = (θi0, . . . , θi19) is a vector of parameters, where θi0 ∈ R is an intercept

and for j = 1, . . . , 19, we let θij ∈ R control the influence of the jth resprouter on the ith

seeder (a positive value of θij means a positive/attractive association; a negative value of

θij means a negative/repulsive association); s(ξ|x) = (1, s1(ξ|x), . . . , s19(ξ|x)) with

sj(ξ|x) =
∑

η∈xj

hη(‖ξ − η‖), j = 1, . . . , 19,

where ‖ · ‖ denotes Euclidean distance, and we have chosen a simple smooth interaction

function

hη(r) =











(1 − (r/Rη)
2)

2
if 0 < r ≤ Rη

0 else

for r ≥ 0, where Rη ≥ 0 defines the radii of interaction of a given resprouter at location

8



η, cf. Table 1.

Thus, given the resprouters x the number Ni of points in Yi is Poisson distributed

with mean value
∫

W
λ(ξ|x,θi)dξ, and if we also condition on Ni, the points in Yi are

independent and identically distributed with a density proportional to λ(ξ|x,θi). It fol-

lows that the conditional log likelihood function based on the 5 seeder point patterns

y = (y1, . . . ,y5) is

l(θ,R;y|x) =
5

∑

i=1

[

θi

∑

ξ∈yi

s(ξ|x)T −

∫

W

exp
(

θis(ξ|x)T
)

dξ
]

, (2)

where θ = (θ1, . . . ,θ5) is the vector of all 100 parameters θij and R is the vector of all

3168 radii Rη, η ∈ xj , j = 1, . . . , 19. In comparison, there are N1 + · · · + N5 = 1954

seeders.

A potential weakness of our model is the assumed conditional independence between

the seeders, see Sections 4.2 and 5.2.2 on model assessment.

4 Maximum likelihood estimation

4.1 Assumptions and results

For a fixed value of R, due to the log linear intensity (1), the log likelihood (2) can be

maximised relatively easily with respect to θ using the Berman and Turner (1992) device:

briefly, the log likelihood is then approximated by a weighted log likelihood of independent

Poisson variables which can be optimised using standard software, such as the function

glm in R, see also the R package spatstat (Baddeley and Turner, 2005). Maximisation

with respect to R on the other hand is difficult due to the high dimensionality of R and

since the Rη-values do not enter the likelihood function in a log linear fashion. In this
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section, we therefore make the simplifying assumption that for each resprouter species j,

all Rη with η ∈ xj are equal to a common interaction radius Rj, given by the midpoint

of the interval for the zone of influence in Table 1.

Given the chosen value of R, another problem is the existence of the maximum likeli-

hood estimate (MLE) of θ. By exponential family results (Barndorff-Nielsen, 1978), the

MLE for θi exists if and only if tj(yi) ≡
∑

ξ∈yi
sj(ξ|x) > 0, j = 1, . . . , 19. Depending

on the value of Rj it may well happen that tj(yi) = 0, and indeed this is sometimes the

case with our choice of the Rj. In Figure 2, the fields marked with NA correspond to

the 18 parameters where the MLE does not exist. We could choose to let θij = −∞ if

tj(yi) = 0. This corresponds to a hard core effect of the jth resprouter on the ith seeder,

i.e. the existence of a zone around each resprouter of type j in which no seeder of type i

can survive, cf. resprouter 2, 9, and 14. It may on the other hand also simply be the case

that the chosen interaction radii for these resprouters are too small.

To study the strengths and directions of interaction, we consider z-statistics for the

various θij, i.e. MLEs scaled by the associated estimated standard errors. The upper plot

in Figure 2 shows transformed z-statistics u = Φ(z), where Φ is the standard normal

distribution function. Dark shading corresponds to large u-values. Assuming that the

z-statistics are approximately standard normal (and hence that the us are approximately

uniform on [0, 1]), the starred fields correspond to parameters which are significantly

different from zero at the 5 % level. With 95 interaction parameters, there is obviously an

issue of multiple testing and hence we should be careful when interpreting the “starred”

parameters. Rather than looking at individual parameters it seems more appropriate to

look for resprouters or seeders with a consistent pattern of dark or light fields in Figure 2.

For example, it seems reasonable to conclude that resprouters 1 and 4 have a repulsive

effect on the seeders whereas there may be evidence that resprouters 15 and 18 have an

10



attractive effect on the seeders.

[Figure 2 about here.]

4.2 Model assessment

We assess the fitted model using the so-called L-function derived from the inhomogeneous

K-function by L(r) =
√

K(r)/π, (Baddeley et al., 2000). An estimate L̂(r;yi, θ̂i) for the

ith seeder is obtained by replacing K(r) with the estimate

K̂(r;yi, θ̂i) =
∑

ξ,η∈yi

1[0 < ‖ξ − η‖ ≤ r]

λ(ξ|x, θ̂i)λ(η|x, θ̂i)
eξ,η,

where 1[·] is the indicator function and eξ,η is an edge correction factor (Møller and

Waagepetersen, 2003). For a Poisson process, L(r) − r = 0. The estimated (L(r) − r)-

functions with 95% envelopes obtained by simulation under the fitted model (Møller and

Waagepetersen, 2003) are shown in Figure 3. For seeder 1, the estimated L-function

is clearly above the envelopes for distances up to about 40 cm, indicating that there is

clustering present in the point pattern that is not explained by the model. This clustering

might be a result of a reproduction mechanism where offspring are located in the vicinity

of the parent plant. For seeders 2 and 5, the estimated L-functions are below the envelopes

at larger distances which indicates the need for including a spatial trend term, see also

Section 2. The model yields a reasonably good fit for seeders 3 and 4, though at very small

distances there appears to be some intra-specific repulsion. This might be the effect of a

zone around each individual in which no conspecific individuals can survive. Note that

when estimated L-functions indicate a lack of fit, it is not possible to conclude decisively

whether this is due to a misspecified model for the intensity or due to failure of the Poisson

process independence assumptions. In a more elaborate model assessment in Section 5.2.2
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we supplement plots based on L-functions with residual plots for quadrat counts.

[Figure 3 about here.]

The results indicate that a more appropriate model would have to take intra-specific in-

teraction into account. Assuming known interaction radii, Högmander and Särkkä (1999)

consider a hierarchical model with interactions for a bivariate point pattern of ants’ nests.

However, in our situation, we believe that the assumption of known and equal interaction

radii for resprouters of the same type is highly unrealistic, since the plants vary in size,

and we choose to focus on this problem in the next section.

5 Bayesian inference

We now consider a more flexible Bayesian approach, allowing different interaction radii

for each resprouter plant, and where we elicit prior distributions based on the information

in Table 1.

5.1 Prior and posterior

The prior information concerning ranges of zones of influence in Table 1 is the result of

extensive and detailed discussions with the scientist who collected the data. We use this

prior information to elicit informative priors on the interaction radii. A priori the inter-

action radii Rη are assumed to be independent random variables and for each η ∈ xj, Rη

follows the restriction of N(µj, σ
2

j ) to [0,∞), where (µj, σ
2

j ) is chosen so that under the un-

restricted N(µj, σ
2

j ), the range of the zone of influence in Table 1 is a central 95% interval.

Moreover, given the Rη, the θij are assumed to be independent and identically distributed,

following a relatively non-informative N(0, σ2)-distribution, where the specification of σ

is discussed below.
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Our a priori independence assumptions above are essentially made, since we have no

prior knowledge on how to specify a correlation structure for all the Rη and all the θij.

For the same reason, (θ,R) and X are assumed to be independent. Hence the posterior

density for (θ,R) satisfies

π(θ,R|x,y) ∝ π(θ,R) exp (l(θ,R;y|x)) .

Combining the prior assumptions with the log likelihood (2) we obtain the posterior

density

π(θ,R|x,y) ∝ exp
(

−
5

∑

i=1

[

θ2

i0/(2σ2) −
19

∑

j=1

{

θ2

ij/(2σ2) +
∑

η∈xj

(Rη − µj)
2/(2σ2

j )
}])

× exp
(

5
∑

i=1

[

θi

∑

ξ∈yi

s(ξ|x)T −

∫

W

exp(θis(ξ|x)T)dξ
])

, θij ∈ R, Rη ≥ 0. (3)

The specification of the prior standard deviation σ for the θij’s is difficult. In regression

models with a design matrix of full rank, a common choice are flat improper priors, i.e.

σ2 = ∞. In our situation, however, with improper priors on the θi’s we cannot guarantee

a proper posterior, since the statistics tj(yi) have positive posterior probability of being

zero (Waagepetersen, 2005). It is also difficult to specify informative priors on the θi’s,

since we only have a qualitative understanding of these parameters. It turns out that

essentially the same posterior results are obtained with different values 2, 4, 8, . . . of σ. In

the following we restrict attention to the results for σ = 8.

Monte Carlo estimates of posterior distributions are calculated using simulations from

(3). We use a hybrid Markov chain Monte Carlo algorithm (see e.g. Robert and Casella,

1999), where θ1, . . . ,θ5 are updated in turn, using random walk Metropolis updates,

followed by a random walk Metropolis update of R. The proposal distributions for these
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random walk updates are multivariate normal with diagonal covariance matrices. The

vector of proposal standard deviations for θi is given by kσ̂i|y, where k is a user specified

parameter and σ̂i|y is an estimate of the vector of posterior standard deviations for θi

obtained from a pilot run. The value of k was chosen to give acceptance rates around

25 %. The vector of proposal standard deviations for R is given by the vector of prior

standard deviations divided by 2.

5.2 Results

5.2.1 Interaction parameters

The lower plot in Figure 2 is a grey scale plot of the posterior probabilities P (θij > 0|y)

where dark grey scales are associated with large values of these posterior probabilities.

The starred parameters are those for which 0 is outside the 95% posterior interval of θij

given by the 2.5% and 97.5 % quantiles. In comparison with the upper plot in Figure 2,

it is striking that the Bayesian approach seems to yield more clear-cut results than the

maximum likelihood inference, since the intermediate grey scales are less frequent in the

lower plot. Moreover, more θij’s have strong evidence for being different from zero if

‘strong evidence’ is interpreted as being significant at the 95% level or being outside the

95% posterior interval, respectively. Similar to the maximum likelihood results, resprouter

1 seems to have a clear repulsive effect on seeders, and this also seems to be the case for

resprouters 2, 4, 5, 8, 9, and 14 (again we should exercise caution with resprouters 2, 9,

and 14 where the prior may be concentrated on too small interaction radii). Resprouters

15 and 18 seem to have a distinct attractive effect on seeders. Looking at rows in the

lower plot in Figure 2, seeders 1 and 4, for example, seem to be repulsed by resprouters

1-5 and 8-11 and attracted by resprouters 12, 15, and 18. The Bayesian analysis shows
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that it may not be valid to interpret all the θij’s with NA’s in Figure 2 as corresponding

to hard cores, since a number of these θij’s do not have strong posterior evidence of being

different from zero.

The individual interaction radii are not of particular interest, so for resprouters j =

1, . . . , 19 we have just considered the posterior distributions of the empirical mean R̄j and

the empirical standard deviation sj for the Rη with η ∈ xj (not shown). Except for the

very sparse resprouters 16 and 19, there is very little difference between the prior mean or

standard deviation and the posterior mean of the empirical mean or standard deviation.

Hence the prior assumptions are not contradicted by the data.

5.2.2 Model assessment

In this section we follow the idea of posterior predictive model assessment (Gelman et al.,

1996) and compare various summary statistics with their posterior predictive distribu-

tions. The posterior predictive distribution of statistics depending possibly both on the

points Y and the parameters θ and R is obtained from simulations: we generate a pos-

terior sample (θi,1,R1), . . . , (θi,m,Rm), and for each (θi,k,Rk) new data yi,k from the

conditional distribution of Yi given (θi,k,Rk). We use m = 100 approximately indepen-

dent simulations obtained by subsampling a Markov chain of length 200, 000.

The grey scale plots in Figure 4 are ‘residual’ plots based on quadrat counts. We

divide the observation window into 100 equally sized quadrats and for each seeder count

the number of plants within each quadrat. The grey scales reflect the probabilities that

counts drawn from the posterior predictive distribution are less or equal to the observed

quadrat counts where dark means high probability. The posterior predictive distribution

of the quadrat counts is obtained from posterior predictive samples yi,k, k = 1, . . . , 100,

as mentioned above. The stars mark quadrats where the observed counts are ‘extreme’
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in the sense of being either below the 2.5% quantile or above the 97.5% quantile of the

posterior predictive distribution. The plot for seeder 1 indicate a lack of fit due to many

‘extreme’ counts. However, a ‘systematic’ discrepancy from the assumed model for the

intensity is not obvious and the lack of fit could be caused by clustering due to seed

dispersal around parent plants. The residual plots for the other seeders do not provide

obvious evidence against our model except perhaps for a small group of adjacent ‘extreme’

counts for seeder 5.

[Figure 4 about here.]

As in Section 4.2 we also consider plots based on L-functions. Denote by L(r;Yi,θ,R)

the estimate of the L function obtained from the point process Yi using the inten-

sity function corresponding to the interaction parameter vector θ and interaction radii

R. We then consider the posterior predictive distribution of the differences ∆i(r) =

L(r;y,θi,R) − L(r;Yi,θi,R), r > 0, i.e. the distribution obtained when (Yi,θi,R) are

generated under the posterior predictive distribution given the data y. If zero is an ex-

treme value in the posterior predictive distribution of ∆i(r) for a range of distances r,

we may question the fit of our model. As for the quadrat counts, the posterior pre-

dictive distribution is computed from a posterior predictive sample L(r;yi,θi,k,Rk) −

L(r;yi,k,θi,k,Rk), k = 1, . . . , 100.

Figure 5 presents estimated upper and lower boundaries of the 95 % posterior intervals

for the posterior predictive distributions of ∆i(r), r > 0, for the 5 seeder species (i =

1, . . . , 5). These intervals take into account the uncertainty of the model parameters θ and

R and are quite wide in comparison with the envelopes in Figure 3. The wide envelopes

probably arise because of the posterior uncertainty regarding the interaction radii; the

intensity function at a seeder location may a posteriori be very variable if it is highly

uncertain whether the seeder location falls within a resprouter influence zone or not. In
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accordance with the results in Section 4.2 and the posterior predictive residual plots, there

is evidence of clustering for seeder 1. In contrast with Section 4.2, the posterior predictive

intervals for seeder 2 indicate clustering. As for seeder 1, this may be explained by

offspring clustering around locations of parent plants. There is also evidence of clustering

for seeder 3. The posterior predictive intervals for seeder 5 do not provide evidence against

our model.

To look for interactions between the seeder species, we finally consider cross L func-

tions for the 10 pairs of seeders. The lower right posterior predictive plot for seeder 2 vs.

seeder 3 in Figure 5 indicates repulsion at small distances and otherwise positive associ-

ation between these seeders while the remaining plots (not shown) do not contradict the

assumptions of independence between the seeders.

[Figure 5 about here.]

5.2.3 Biological interpretation

Ecologists are particularly interested in revealing how individuals interact and whether

this interaction varies between species (Uriarte et al., 2004). Our results clearly indicate

that resprouter-seeder interaction may be both negative and positive and that the same

species can have both positive and negative inter-species interactions.

Some of the interactions revealed here can be explained from ecological background

knowledge. For instance, the negative interaction of the most abundant resprouter Alex-

geogia nitens might be a result of the dense root mat formed by this species making it

very difficult for plants from other species to establish themselves close to them. Simi-

larly, the strong positive interactions between the resprouters 15 or 18 and seeder 2 may

be explained by specific associations between soil fungi and the plant roots of the seeder.

These associations, termed ericoid mycorrhiza, facilitate nutrient uptake from the soil by
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plants from the Ericaceae family. They enable the seeder to use very complex organic

material produced, for example, by resprouters 15 and 18, which is normally impossible

to extract from the soil. As a result, individuals from seeder 2 find more nutrients close

to resprouters 15 and 18, leading to a positive interaction. As all seeder species in our

analysis are from the Ericaceae family, other positive interactions between the seeder

species and species from the Banksia family (resprouters 15 to 18) might be explained in

a similar way.

However, for a large number of interactions no biological explanation can be found.

There clearly is a need for further biological research to understand these aspects and to

yield a better understanding of the overall community dynamics.

6 Concluding remarks

From a statistical point of view, our analysis shows the difficulty of modelling spatial

interactions in a plant community which requires very complex models with a large num-

ber of parameters. In this situation, we found the Bayesian approach more useful than

the frequentist approach as it allowed a more flexible and realistic model. Furthermore,

taking biological background information into account in our analysis naturally lead to a

hierarchical model. However, we are aware that the model does not sufficiently capture

all interactions that may be present in the dataset. It does not consider an intra-species

interaction for each seeder type and, similarly, assumes that the seeder species are inde-

pendent given the resprouters. Incorporating all these aspects into a single model, though,

is computationally very hard. Note that ignoring intra-species clustering does not nec-

essarily invalidate estimates of intensity function parameters. Schoenberg (2004) and

Waagepetersen (2007), for example, suggest to estimate intensity functions for clustered
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point processes using estimating functions given by Poisson likelihood scores. However,

it is clear that ignoring clustering leads to too narrow confidence intervals/posterior cred-

ibility intervals. Hence the results regarding significant parameters in Sections 4.1 and

5.2.1 should be taken with a pitch of salt.

From an ecological perspective, we are able both to confirm existing knowledge on

species’ interactions and to generate new biological questions and hypotheses on species’

interactions. Finally note that modelling may benefit from including additional informa-

tion on the individual plants, i.e. a measure of their size or resource availability at the

specific location based on the directional distribution of competitors such as described in

Miina and Pukkala (2002) if such data were available. In the context discussed here this

would require a marked point process modelling approach using an interaction function

that takes the properties of each plant and its competitors into account.
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Figure 1: Observed point patterns for the 5 most abundant species of seeders and the 19
most dominant (influential) species of resprouters.
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Figure 2: Upper plot: Grey scale plot of u = Φ(z)-statistics for the interaction parameters
θij. Fields for parameters which are significantly different from zero at the 5 % level are
marked with a *. Fields marked with NA correspond to θij where the MLE does not exist.
Lower plot: Grey scale plot of posterior probabilities P (θij > 0|y). The starred fields are
those for which 0 is outside the central 95 % posterior interval for θij.
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Figure 3: Estimated inhomogeneous (L(r) − r)-functions for seeders 1-5 with 95% en-
velopes simulated from the model. Distance r > 0 is in cm.
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Figure 4: Residual plots based on quadrat counts. Quadrats with a ‘*’ are where the
observed counts fall below the 2.5% quantile (white ‘*’) or above the 97.5% quantile (black
‘*’) of the posterior predictive distribution. The grey scales reflect the probabilities that
counts drawn from the posterior predictive distribution are less or equal to the observed
quadrat counts (dark means small probability).
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Figure 5: Upper and lower boundaries (solid lines) of the 95% credibility interval for the
posterior predictive distribution of ∆i(r) for seeders i = 1, . . . , 5. Lower left plot is similar
to the other plots but based on the cross L-function between seeder 2 and 3. Distance
r > 0 is in cm.
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1. Alexgeorgia nitens: 10-40 11. Phlebocaria filifolia: 20-30
2. Conostylis canescens: 5-15 12. Restio sinuousus: 25-75
3. Dasypogon bromelifolius: 15-60 13. Scholtzia aff. involuc.: 30-50
4. Eremae astrocarpa: 25-75 14. Allocasuarina humilis: 50-130
5. Hibbertia crassifolia: 10-25 15. Banksia attenuata: 150-400
6. Hibbertia hypericoides: 10-20 16. Banksia grandis: 50-200
7. Hibbertia subvaginata: 10-25 17. Banksia ilicifolia: 50-200
8. Hypocalymma xantop.: 10-25 18. Banksia menziesii: 50-250
9. Lomandra sp.: 2-10 19. Eucalyptus todtiana: 10-250
10. Lyginia barbata: 20-100

Table 1: Range of zone of influence (in cm) for resprouters.
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