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Summary

The R package spatstat provides a very flexible and useful frame-

work for analyzing spatial point patterns. A fundamental feature is

a procedure for fitting spatial point process models depending on co-

variates. However, in practice one often faces incomplete observation

of the covariates and this leads to parameter estimation error which is

difficult to quantify. In this paper we introduce a Monte Carlo version

of the estimating function used in spatstat for fitting inhomogeneous

Poisson processes and certain inhomogeneous cluster processes. For

this modified estimating function it is feasible to obtain the asymp-

totic distribution of the parameter estimates in the case of incomplete

covariate information. This allows a study of the loss of efficiency due

to the missing covariate data.

Some key words: Asymptotic normality; Cluster process; Estimating func-
tion; Experimental design; Inhomogeneous point process; Missing covariate
data; Poisson process.

1 Introduction

The basic model for the relation between a spatial point process and spatial
covariates is an inhomogeneous Poisson process with intensity function λ(·;β)
depending on the spatial covariates and an unknown parameter β. In this
paper we focus on the log-linear model λ(u;β) = exp(z(u)βT) where z(u)
is the vector of non-random spatial covariates at the location u. A Poisson
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process with log-linear intensity function was coined a modulated Poisson
process in Cox (1972). Suppose the inhomogeneous Poisson point process X
is observed within a bounded observation window W . The score function for
β is then

u(β) =
∑

u∈X

z(u) −
∫

W

z(u)λ(u;β)du (1)

where the first term is a sum over the points in X (recall that X is a finite ran-
dom subset of W ). A spatial Poisson process is often not appropriate due to
clustering of points not explained by the covariates or repulsion between the
points. However, for non-Poisson processes with intensity function λ(·;β), (1)
may still be useful for estimating β, see Schoenberg (2005), Waagepetersen
(2007), Møller & Waagepetersen (2006), and Guan & Loh (2007).

In practice z(·) is often only observed at a finite set of locations so that
the integral in (1) cannot be evaluated exactly. Rathbun (1996) proposes
to substitute the missing covariate values by kriging predictions assuming
that {z(u)|u ∈ W} is a realization of a stochastic process. One disadvantage
of this approach is the need to specify a model for the covariate process
(typically involving new parameters to be estimated). A simpler approach is
to approximate the score function by an estimating function

uq(β) =
∑

u∈X

z(u) −
∑

u∈Q

z(u)λ(u;β)w(u) (2)

obtained using numerical quadrature with quadrature points u ∈ Q ⊂ W
and associated weights w(u) assuming that z(u) is observed for u both in X
and Q. Berman & Turner (1992) suggested quadrature schemes where for
computational reasons explained in Section 2, X ⊂ Q. The Berman-Turner
scheme and an extension of it to Markov point processes (Baddeley & Turner,
2000) is implemented in the R package spatstat (Baddeley & Turner, 2005).

It is in general not clear whether an approximate maximum likelihood
estimate (MLE) obtained from (2) is consistent and asymptotically normal
and how the variance matrix of the estimate differs from that of the MLE.
Rathbun et al. (2007) suggest to use instead an estimating function of the
form

ur(β) =
∑

u∈X

z(u) −
∑

u∈D

z(u)λ(u;β)

ρ(u)
(3)

where D is a point process on W with intensity function ρ(·). Rathbun et al.
(2007) demonstrate asymptotic normality of the estimate obtained using (3)
under suitable conditions satisfied e.g. if D is a simple random sample (i.e.
a binomial point process) independent of X.
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The package spatstat is by far the most versatile and popular software
for fitting spatial point process models. In this paper we build on the ideas
in Rathbun et al. (2007) and consider in Section 2 Monte Carlo versions
of the type of estimating equation used in spatstat. Asymptotic normal-
ity of the associated parameter estimates is discussed in Sections 3 and 4
for respectively inhomogeneous Poisson processes and inhomogeneous clus-
ter processes. Practical examples are considered in Section 5, and Section 6
contains some closing remarks.

2 The Berman-Turner scheme with random

dummy points

Consider the estimating function (2). Following Berman & Turner (1992),
suppose that the set of quadrature points Q is the union of the point process
X and a set of additional dummy points D chosen by the user. Then (2) can
be rewritten as

uq(β) =
∑

u∈X∪D

w(u)z(u)
(

yu − λ(u;β)
)

where the sum is over both the events in the point process X and the dummy
points in D, and yu = 1[u ∈ X]/w(u) is the indicator that a quadrature point
u is an event in X divided by the associated quadrature weight w(u). Hence
uq(β) is formally equivalent to the score of a weighted Poisson regression with
weights w(u) and ‘observations’ yu and the equation uq(β) = 0 can thus easily
be solved using standard software for generalized linear models. Discussions
and simulation studies of various dummy point and weight schemes can be
found in Berman & Turner (1992), Lawson (1992), Baddeley & Turner (2000),
and Wang & Lawson (2006).

The Berman-Turner scheme forms the basis of the estimation procedure
ppm in the R package spatstat (Baddeley & Turner, 2005). This proce-
dure allows any choice of dummy points D and quadrature weights w(u).
However, the most frequently used options for the weights are either grid

or dirichlet. For the grid option, the observation window is divided into
rectangular tiles. The quadrature weight for a quadrature point u ∈ Q falling
in a tile T is the area of T divided by the total number of quadrature points
falling in T (hence adjusting for the possible multiple occurrences of a tile T
in the quadrature sum). The advantage of this scheme is the easy calculation
of the quadrature weights. For the dirichlet option, the weights are the
areas of the tiles of the Dirichlet tesselation generated by the quadrature
points Q.
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In connection with grid weights, Baddeley & Turner (2000) discuss the
possibility of using random dummy points where each tile contains precisely
one dummy point picked at random in the tile. They, however, do not provide
a detailed study of the resulting estimating function specified by (4) in the
next section.

2.1 Random dummy points

In this section we define two Berman-Turner type estimating functions with
random dummy points D of constant intensity ρ. Two types of dummy
point processes are discussed in detail in Section 2.2. The weights are either
grid weights as in spatstat or inverse proportional to the intensity of the
quadrature point process Q = X ∪ D.

Following Baddeley & Turner (2000), Section 4.3, consider random strat-
ified dummy points where the observation window is divided into rectangular
tiles and one dummy point is placed at random in each tile. For a dummy
point v ∈ D, let Tv denote the tile containing v, and for any point u ∈ Q
let Nu = #(X ∩ Tv) denote the number of events in X falling in the tile Tv

containing u. We then obtain the estimating function

ug(β) =
∑

u∈X

z(u) −
∑

u∈X∪D

z(u)
λ(u;β)

ρNu + ρ
. (4)

Note that if the Tv are very small, then the events in X ∩ Tv essentially
become replicates of the dummy point v ∈ D and the last term in (4) is well
approximated by

∑

u∈D z(u)λ(u;β)/ρ as in (3).
An analogue of the spatstat estimating equation with dirichletweights

is obtained with

ud(β) =
∑

u∈X

z(u) −
∑

u∈X∪D

z(u)
λ(u;β)

λ(u;β) + ρ
(5)

where λ(u;β) + ρ is the intensity of X ∪ D. The analogy is based on two
considerations: first, as for the dirichlet option in spatstat all quadrature
points in X∪D are treated on an equal footing. Second, for a stationary point
process of intensity α, the expected area of the associated typical Dirichlet cell
is 1/α. Hence the weight (λ(u;β)+ρ)−1 may be viewed as an approximation
of the area of a Dirichlet cell in a region of constant intensity λ(u;β) +
ρ. Although intuitively appealing, (5) yields an asymptotically suboptimal
estimating function for certain choices of dummy point distributions, see
Section 3.1. Note that (5) does not completely fall within the Berman-Turner
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setup since the weights depend on the parameter β. However, as pointed out
by a referee, ud can be rewritten as

ud(β) =
∑

u∈X∪D

z(u)
(

ỹu −
exp(− log ρ + z(u)βT)

exp(− log ρ + z(u)βT) + 1

)

.

This is formally equivalent to the score of a logistic regression with ‘ob-
servations’ ỹu = 1[u ∈ X] and offset − log ρ. Thus, ud(β) = 0 too can
straightforwardly be solved using software for generalized linear models.

2.2 Dummy point distributions

To establish asymptotic results for the estimating functions (4) and (5) we
need a dummy point sampling design that ensures a central limit theorem for
the Monte Carlo integration error. In Section 3 we more specifically consider
sequences of dummy point processes Dn of increasing intensity ρn = nkρ,
ρ > 0, 0 < k ≤ 1, and require for integrable functions f : W → R

p,

n1/2

[

∑

u∈Dn

f(u)

nkρ
−

∫

W

f(u)du

]

→ N(0, Gf/ρ
1/k) (6)

where Gf is a positive definite matrix.
Suppose Dn is a simple random sample of nρ|W | independent uniform

points on W (i.e. Dn is a binomial point process of intensity nρ). Then (6)
holds with k = 1 and

Gf =

∫

W

f(u)Tf(u)du − 1

|W |

∫

W

f(u)Tdu

∫

W

f(u)du.

This is a special case of the type of dummy point distributions considered in
Rathbun et al. (2007). An immediate generalization is to use independent
binomial processes within regions of a fixed subdivision of W .

If the components of f = (f1, . . . , fp) are continuously differentiable we
may achieve k = 1/2 in (6) using a stratified sampling design where the
stratification depends on the number of dummy points. Suppose to be specific
that W = [0, a] × [0, b] is rectangular. Divide W in Mn = n1/2ρ|W | =
m1,nm2,n, m2,n = m1,nb/a, squares si,n, i = 1, . . . ,Mn, each of sidelength
a/m1,n. We then obtain stratified dummy points Dn = {u1,n, . . . , uMn,n}
where the points ui,n are independent with ui,n uniform on si,n. Generalizing
results in Okamoto (1976) to the multivariate case, (6) holds with

Gf =
1

12

∫

W

Af (u)du
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where

Af (u1, u2) =

[

∂fi

∂u1

∂fj

∂u1

+
∂fi

∂u2

∂fj

∂u2

]

. (7)

Note that when using (4) and stratified dummy points we naturally let
Tu,n = si,n if u ∈ Dn is generated in si,n. Stratified dummy points can easily
be generated with the spatstat procedure stratrand().

3 Asymptotic distribution of parameter esti-

mates in the case of a Poisson process

The asymptotic distribution of parameter estimates is in this paper obtained
using infill asymptotics where both the intensities of X and D tend to infinity.
This type of asymptotics is useful when we wish to investigate the effect of
increasing the number of dummy points within a fixed observation window.
More specifically we consider sequences of Poisson point processes Xn and
dummy point processes Dn with intensity functions

λn(u;β∗) = nλ(u;β∗), β∗ ∈ R
p and ρn = nkρ (8)

where ρ > 0, 0 < k ≤ 1, and Xn and Dn are independent for each n. Note
that k < 1 corresponds to the case where the intensity ρn of Dn tends to
infinity at a slower rate than the intensity of Xn. One may think of Xn as
representing the accumulation of points up to a certain ‘time’ point n and
the intensity of Xn is then proportional to n.

Considering first the case of maximum likelihood estimation using (1), it
is easy under infill asymptotics to show (see comments in Appendix B) that
the maximum likelihood estimate is asymptotically normal with asymptotic
covariance matrix

V =

[
∫

W

z(u)Tz(u)λ(u;β∗)du

]−1

. (9)

A similar expression is obtained using increasing domain asymptotics, see
Rathbun & Cressie (1994) and Kutoyants (1998). Assuming (6) and following
Rathbun et al. (2007), the solution of ur,n(β) = 0 with

ur,n(β) =
∑

u∈Xn

z(u) −
∑

u∈Dn

z(u)
λ(u;β)

nk−1ρ
(10)

is asymptotically normal with asymptotic covariance matrix

V r = V + V GgV/ρ1/k (11)
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with g(u) = z(u)λ(u;β∗), cf. (6). Note that this converges to V as ρ → ∞.
Consider next the grid type estimating function,

ug,n(β) =
∑

u∈Xn

z(u) −
∑

u∈Xn∪Dn

z(u)
nλ(u;β∗)

nkρNu,n + nkρ
(12)

where Tu,n is the square tile to which u belongs (cf. Section 2.2) and Nu,n is
the number of points in Xn ∩Tu,n. In the case of stratified dummy points we
assume continuously differentiable covariates zi(·) to apply (6) with k = 1/2.
The estimating function ug,n is then asymptotically equivalent to (10) (see
Appendix B) and the asymptotic covariance matrix V g is again given by (11).

3.1 The ‘Dirichlet type’ estimating function

For the ‘Dirichlet type’ estimating function, the estimate β̂n is the solution
of ud,n(β) = 0 where

ud,n(β) =
∑

u∈Xn

z(u) −
∑

u∈Xn∪Dn

z(u)
λ(u;β)

λ(u;β) + nk−1ρ
. (13)

The following result is verified in Appendix A.

Theorem 1. Assume that the matrices F and C given by

F =

∫

W

z(u)Tz(u)du and C =

∫

W

z(u)Tz(u)
1

λ(u;β∗)
du (k < 1)

or (k = 1)

F =

∫

W

z(u)Tz(u)
λ(u;β∗)

ρ + λ(u;β∗)
du and C =

∫

W

z(u)Tz(u)
λ(u;β∗)

(λ(u;β∗) + ρ)2
du

are positive definite and that (6) holds. Then with a probability tending to
one, a solution β̂n of (13) exists, and n1/2(β̂n − β∗) → N(0, V d) with

V d = F−1CF−1 + F−1GgF
−1/ρ1/k (14)

where

g(u) = z(u) (k < 1) or g(u) = z(u)
λ(u;β∗)

λ(u;β∗) + ρ
(k = 1).

Note that ρ controls the proportion of the asymptotic variance for β̂n

which is due to Monte Carlo integration error. Suppose k = 1 and ρ → ∞.
Then V d tends to the asymptotic covariance matrix V of the MLE. In the case
k < 1 we obtain in the limit F−1CF−1 6= V . The Dirichlet type estimating
function is thus suboptimal in the case k < 1 even when ρ → ∞.
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3.2 Estimation of asymptotic covariances

Suppose in practice that the first component in β is an intercept and that
an estimate β̂ is obtained using (4) or (5) with M dummy points. Then the
various integrals in the asymptotic covariance matrices may be estimated
using that for a function g(·;β), an estimate of

∫

W
g(u;β∗)du is given by

∑

u∈Xn∪Dn

g(u;β∗)

nλ(u;β∗) + nkρ

and plugging in X ∪ D for Xn ∪ Dn, exp(β̂1) for n exp(β∗
1), β̂2:p for β∗

2:p, and
M/|W | for nkρ.

The above equation may also be used to estimate the integrals for Gg in
the case of binomial dummy points. For stratified dummy points a consis-
tent estimate of the ijth entry of Gg may be obtained using an additional
set of dummy points D̃ = {v1, . . . , vM} distributed as and independent of
D = {u1, . . . , uM}. Extending Okamoto (1976) to the multivariate case, the
estimate is

1

2

M
∑

l=1

(gi(ul) − gi(vl))(gj(ul) − gj(vl)).

Of course, averaging Monte Carlo estimates of
∫

W
g(u)du based on the two

sets of dummy points, the variance is halved. Similarly, we can replace the
last term in (4) by

1

2

(

∑

u∈X∪D

z(u)
λ(u;β)

ρNu + ρ
+

∑

u∈X∪D̃

z(u)
λ(u;β)

ρNu + ρ

)

in which case we should replace the last term in (11) by V GgV/(2ρ1/k).

4 Asymptotic distribution of parameter es-

timates in the case of an inhomogeneous

cluster process

As an alternative to an inhomogeneous Poisson process, Waagepetersen (2007)
considers a cluster process X = ∪c∈Y Xc where the Xc are clusters of ‘off-
spring’ associated with ‘mother’ points c in a stationary Poisson point pro-
cess Y of intensity κ > 0. Given Y , the clusters Xc are independent Poisson
processes with intensity functions

λc(u) = α exp(z2:p(u)βT

2:p)h(u − c)
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where α > 0, z2:p(u) = (z2(u), . . . , zp(u)) is a vector of spatially varying
covariates, β2:p = (β2, . . . , βp) is a vector of regression parameters, and h is
a probability density determining the spread of offspring points around c.
Often h is given by a Gaussian density or a uniform distribution on a disc
in which case an inhomogeneneous version of the so-called modified Thomas
process or the Matérn cluster process is obtained.

The intensity function of X is of log-linear form exp(z(u)βT) where β1 =
log(κα) and z1(u) = 1. Waagepetersen (2007) suggests to estimate the re-
gression parameter β using the estimating function (1). In the following we
consider asymptotic results when (4) or (5) is used instead. Parameters of
the density h may as suggested in Waagepetersen (2007) be estimated using
a minimum contrast method based on the generalization of the K-function
to the inhomogeneous case (Baddeley et al., 2000).

4.1 Asymptotic results

To obtain asymptotic results in the case of inhomogeneous cluster processes
we consider a sequence of cluster processes Xn with increasing mother in-
tensities nκ∗ and dummy point processes Dn of intensities nkρ. The inten-
sity function of Xn is nλ(u;β∗) = n exp(z(u)β∗) with β∗

1 = log(κ∗α∗). The
asymptotic covariance matrix in the case of completely observed covariates
is (Waagepetersen, 2007)

V c = V + V AV/κ∗ (15)

where V is given by (9), the last term in (15) is due to the clustering, and

A =

∫

J(c)TJ(c)dc with J(c) =

∫

W

z(u)λ(u;β∗)h(u − c)du.

Consider first the grid type estimating function (12) with stratified dummy
points and continuously differentiable covariates. In analogy with the Poisson
process case we then obtain the asymptotic covariance matrix

V c,g = V c + V GgV/ρ1/k. (16)

For the Dirichlet type weights where β̂n is obtained by solving ud,n(β) = 0
with ud,n given by (13), the asymptotic distribution is given by the following
theorem.

Theorem 2. Define the matrices F and C as in Theorem 1 and suppose that
the conditions of Theorem 1 are satisfied. Moreover, let

B =

∫

H(c)TH(c)dc
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where (k < 1)

H(c) =

∫

W

z(u)h(u−c)du or H(c) =

∫

W

z(u)λ(u;β∗)

λ(u;β∗) + ρ
h(u−c)du (k = 1).

Then with a probability tending to one, a solution β̂n of (13) exists, and
n1/2(β̂n − β∗) → N(0, V c,d) with

V c,d = F−1CF−1 + F−1BF−1/κ∗ + F−1GgF
−1/ρ1/k (17)

where Gg is given as in Theorem 1.

A sketch of the proof is given in Appendix A. Note that (17) is obtained
from (14) by adding the term F−1BF−1/κ∗ due to the clustering.

5 Comparison of asymptotic variances in a

specific example

In this section we investigate the efficiency of the various estimating func-
tions by evaluating their corresponding asymptotic covariance matrices for a
specific example of spatial covariates. Figure 1 shows elevation z2(u) on a 5
by 5 m square grid covering a 500 × 1000 m2 rain forest research plot W at
Barro Colorado Island in Panama, see Condit et al. (1996); Condit (1998);
Hubbell & Foster (1983). The elevations are in fact interpolated from data
on a coarser grid but for sake of the example we here consider them as ‘true’
elevation observations.

In the following Section 5.1 we evaluate asymptotic variances in the case
of a Poisson process with covariate vector z(u) = (1, z2(u)) fixing β∗

1 =
0 and letting β∗

2 = 0.01, 0.1 or 1.0. In Section 5.2 a third covariate z3

is used where z3 is the norm of the gradient obtained from the elevation
map. In all the examples, asymptotic covariance matrices are computed by
approximating the integrals with Riemann sums corresponding to the 5 by
5 m grid. With stratified dummy points, numerical approximation of the
partial derivatives of g (cf. (7)) is used when computing Gg appearing in the
asymptotic covariance matrices.

5.1 Poisson process case

In the case where Dn is a binomial process of intensity nρ, we let ρ =
q
∫

W
exp(z(u)β∗)du/|W | for values of q = 0.25, 1, 10, or 100, so that the

number of dummy points nρ|W | is q times the expected number of observed
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Figure 1: Elevation.

points. For stratified dummy points where k = 1/2, the proportion of dummy
points in Xn ∪Dn depends on n. To consider realistic values of ρ we imagine
an n corresponding to an expected number N = 1000 = n

∫

W
exp(z(u)β∗)du

of observed points and for various values of q choose ρ = qN/(n1/2|W |) so
that the number of dummy points M = n1/2ρ|W | = qN .

Table 1 shows ratios of asymptotic standard errors for the estimate β̂2

obtained from ur, ug, ud or u given by (3), (4), (5), and (1), respectively. The
standard errors are extracted from V r, V d, and V given by (11), (14), and
(9), respectively. We consider ug only in the case of stratified dummy points
and recall that in this case the asymptotic covariance matrix V g coincides
with V r.

Table 1: Asymptotic standard errors for estimates of β2 obtained from either
(3), (4), or (5) divided by the asymptotic standard error for the MLE. The
numbers of either binomial or stratified dummy points is q times the expected
number of observed points and the ‘true’ parameter value β∗

2 is either 0.01,
0.1, or 1.0.

Binomial Stratified
β∗

2 \q 0.25 1 10 100 0.25 1 10 100
.01 ur 2.22 1.41 1.05 1.00 ug 1.06 1.00 1.00 1.00

ud 2.21 1.41 1.05 1.00 ud 1.06 1.01 1.01 1.01
0.1 ur 2.47 1.51 1.06 1.01 ug 1.08 1.01 1.00 1.00

ud 2.12 1.43 1.06 1.01 ud 1.56 1.53 1.53 1.53
1.0 ur 9.11 4.64 1.75 1.10 ug 5.33 1.65 1.01 1.00

ud 3.68 2.52 1.47 1.09 ud 6×106 6×106 6×106 6×106

When binomial dummy points are used, the Dirichlet type estimating
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function ud performs better than the Rathbun et al. (2007) type estimating
function ur. For stratified dummy points on the other hand, the performance
of ud quickly deteriorates as β∗

2 increases and already with β∗
2 = 0.1 the

standard errors become at least 53% larger than the MLE standard errors
regardless of the value of ρ. Hence, in the case of stratified dummy points
it is clearly preferable to use ug rather than ud. All of the Monte Carlo
estimating equations perform less well as β∗

2 and hence the variability of the
intensity function increases. Note the potentially substantial increase in the
standard errors which, depending on ρ and β∗

2 , may occur due to missing
covariate data.

5.2 Clustered rain forest trees

Waagepetersen (2007) fits an inhomogeneous cluster process with covariate
vector (1, z2(u), z3(u)) to the positions of 3604 rain forest trees observed in
the Barro Colorado Island research plot. The parameter estimates obtained
for β1, β2, and β3 are −4.99 (0.15), 0.02 (0.02), and 5.84 (2.53) (standard
errors given in the parantheses). The cluster density h is given by a Gaussian
density with standard deviation ω and the minimum contrast estimates of
the clustering parameters κ and ω are 8×10−5 and 20 (the asymptotic distri-
bution of these parameters is a topic of current research). Due to clustering,
the standard errors for β1, β2, and β3 obtained from (15) are upto 10 times
larger than the standard errors obtained from (9) assuming an inhomoge-
neous Poisson process.

We now investigate a hypothetical situation where the parameter estimate
is obtained using (3), (4), or (5) assuming that Figure 1 does represent the
true elevation map. We consider varying numbers M = 450, 800, 1800 of
either binomial or stratified dummy points. For the binomial dummy points
we consider (3) and (5) while (4) is used in the stratified case where the
asymptotic covariance matrices for (3) and (4) coincide. Table 2 shows ratios
between standard errors for estimates of β2 extracted from V c,r = V c,g, V c,d,
and V c given by (16), (17), and (15), respectively. A similar pattern is
obtained for β3 (not shown). In the computations, ρ = M/|W |, β∗ is the
estimate obtained in Waagepetersen (2007). Varying values of κ∗ given by
1, 10, or 100 times 8×10−5 are considered corresponding to decreasing degree
of clustering, and α∗ = exp(β∗

1)/κ
∗ to ensure a constant expected number of

points.
The results for the highly clustered case κ∗ = 8×10−5 indicate that the

increase in the parameter standard error due to the incompletely observed
covariates is rather small and less than 1 % if 1800 dummy points are used.
As the amount of clustering decreases, the incomplete observation of the
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Table 2: Asymptotic standard errors for estimates of β2 obtained with (3),
(5), or (4) divided by the asymptotic standard error for the estimated obtained
with (1). Binomial dummy points are used for (3) and (5) while (4) is used
with stratified dummy points. The number of dummy points is M and the
asymptotic variances are evaluated with β∗ = (−4.99, 0.02, 5.84) and κ∗ equal
to 1, 10, or 100 times κ̂ = 8×10−5 from Waagepetersen (2007).

κ∗ 8×10−5 8×10−4 8×10−3

M 450 800 1800 450 800 1800 450 800 1800
ur (bin.) 1.06 1.03 1.01 1.44 1.26 1.12 2.49 1.98 1.52
ud (bin.) 1.01 0.99 0.97 1.35 1.20 1.08 2.32 1.86 1.45
ug (str.) 1.00 1.00 1.00 1.04 1.01 1.00 1.17 1.06 1.01

covariates plays a relatively bigger role. For binomial dummy points, ud

again does better than ur and curiously, the standard errors obtained with
ud and M = 800 or M = 1800 are in fact a bit smaller than with completely
observed covariates. This is because the diagonal entries in the second term
(due to clustering) of V c,d are smaller than those of the second term in V c.
As one might expect, with binomial dummy points (for which the covariates
need not be continuously differentiable) we, for a given M , obtain larger
standard errors than with stratified dummy points.

6 Discussion

The Monte Carlo versions of the spatstat estimating function can be im-
plemented in much the same manner as the current spatstat estimating
function. At the same time it is feasible to derive the asymptotic distribu-
tion of the associated parameter estimates. If the assumption of continuously
differentiable covariates is tenable, the choice of stratified dummy points com-
bined with the grid type estimating function (4) is preferable. Otherwise one
may use the option of binomial dummy points and the Dirichlet type esti-
mating function (5). One concern is the loss of efficiency which occurs with
the Dirichlet type weights in the case k < 1 and ρ → ∞ in Theorem 1.
This may, however, also be an issue with the original spatstat estimating
function when the dirichlet weights are used.

The asymptotic results in Section 3 require an experimental design where
the distribution of the dummy points is chosen so that (6) holds. In Sec-
tion 2.2 we discuss binomial and stratified dummy points. Other possibilities
include vertices on a randomly translated lattice (see e.g. the review in Kiêu
& Mora, 2006) or so-called scrambled nets (Owen, 1997). A central limit
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theorem is currently not available in the case of a randomly translated lat-
tice whereas Loh (2003) establishes a central limit theorem for scrambled
nets. From a theoretical point of view, scrambled nets offer better conver-
gence rates than stratified dummy points but the implementation is much
less straightforward. The description of scrambled nets is moreover quite
technical and omitted here for brevity.
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A Proof of Theorem 1

Recalling the notation introduced in Section 2 and 3 we here give a proof of
Theorem 1 and sketch a proof of Theorem 2.

Proof of Theorem 1:

In the following identify Xn with a union of n independent Poisson processes
X i each of intensity λ(·;β∗). Let

jd,n(β) = − d

dβ
ud,n(β) = nk

∑

u∈Xn∪Dn

z(u)Tz(u)
ρnλ(u;β)

(nλ(u;β) + nkρ)2
.

We consider first the case k < 1 and verify the conditions 1-3 in Appendix C
with an = n1−k; the case k = 1 follows along similar lines but with an = 1.

Turning to condition 1, note that

n−kjd,n(β∗) =
1

n

∑

u∈Xn

z(u)Tz(u)ρλ(u;β∗)

(λ(u;β∗) + nk−1ρ)2
+

1

n

∑

u∈Dn

z(u)Tz(u)ρλ(u;β∗)

(λ(u;β∗) + nk−1ρ)2

The last term has mean value of order nk−1 and hence converges to zero in
probability by Markovs inequality. The first term converges to ρF by the
strong law of large numbers replacing

∑

u∈Xn
by

∑n
i=1

∑

u∈Xi . Condition 2
follows by continuity and Markovs inequality. Hence the main task is to
verify condition 3.
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Rewrite

ud,n(β∗) = Vn − Wn =

(

Vn−nk

∫

W

z(u)
ρλ(u;β∗)

λ(u;β∗) + nk−1ρ
du

)

−
(

Wn−nk

∫

W

z(u)
ρλ(u;β∗)

λ(u;β∗) + nk−1ρ
du

)

where the two terms

Vn =
∑

u∈Xn

z(u)
nk−1ρ

λ(u;β∗) + nk−1ρ
and Wn =

∑

u∈Dn

z(u)
λ(u;β∗)

λ(u;β∗) + nk−1ρ

are independent. Note

Vn ∼
n

∑

i=1

Yi,n where Yi,n =
∑

u∈Xi

z(u)
nk−1ρ

λ(u;β∗) + nk−1ρ
.

Let µn = EYi,n = nk−1
∫

W
z(u)ρλ(u;β∗)/(λ(u;β∗) + nk−1ρ)du and

σ2
n = VarYi,n = n2k−2

∫

W

z(u)Tz(u)
ρ2λ(u;β∗)

(λ(u;β∗) + nk−1ρ)2
du.

Then by the Lindeberg-Feller central limit theorem (e.g. Proposition 2.27
in Van der Vaart, 1998), n−1/2σ−1

n

∑n
i=1(Yi,n − µn) converges to a standard

multivariate normal distribution. Note that limn→∞ σ2
n/n

2k−2 = ρ2C =
ρ2

∫

W
z(u)Tz(u)/λ(u;β∗)du. Hence

n−k+1/2

n
∑

i=1

(Yi,n − µn) = n−k+1/2(Vn − nk

∫

W

z(u)
ρλ(u;β∗)

λ(u;β∗) + nk−1ρ
du)

converges to N(0, ρ2C).
Considering Wn,

n−k+1/2Wn =n−k+1/2
∑

u∈Dn

z(u)
λ(u;β∗)

λ(u;β∗) + nk−1ρ
=

n1/2
∑

u∈Dn

z(u)ρ

nkρ
− n1/2

∑

u∈Dn

z(u)nk−1ρ2

(λ(u;β∗) + nk−1ρ)nkρ

where the last term converges to zero in probability since

lim
n→∞

Var n1/2
∑

u∈Dn

z(u)nk−1ρ2

(λ(u;β∗) + nk−1ρ)nkρ
=

lim
n→∞

n2k−2
Var n1/2

∑

u∈Dn

z(u)ρ2

λ(u;β∗)nkρ
= 0
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as Var n1/2
∑

u∈Dn
z(u)ρ2/(λ(u;β∗)nkρ) converges to a constant.

Hence n−k+1/2
(

Wn − nk
∫

W
z(u) ρλ(u;β∗)

λ(u;β∗)+nk−1ρ
du

)

is asymptotically normal

with covariance matrix ρ2−1/kGz and we obtain that n−k+1/2ud,n(β∗) con-
verges to N(0, ρ2C) + N(0, ρ2−1/kGz). Theorem 1, case k < 1, thus follows
from the results in Appendix C. The proof for k = 1 proceeds in a similar
manner.

Proof of Theorem 2:

The proof of Theorem 2 is analogous to the proof of Theorem 1 except that
we obtain a different asymptotic covariance matrix for ud,n(β∗) identifying
Xn with a superposition of independent cluster processes X i where X i has
intensity function λ(·;β∗) and consists of offspring for mothers in a stationary
Poisson process Y i of intensity κ∗.

Assume k < 1. The variance Var
∑

u∈Xi z(u)nk−1ρ/(λ(u;β) + nk−1ρ) is
computed using conditioning on Y i,

σ2
n =Var

∑

u∈Xi

z(u)nk−1ρ

λ(u;β∗) + nk−1ρ
=

EVar[
∑

u∈Xi

z(u)nk−1ρ

λ(u;β∗) + nk−1ρ
|Y i] + VarE[

∑

u∈Xi

z(u)nk−1ρ

λ(u;β∗) + nk−1ρ
|Y i] =

n2k−2

∫

W

z(u)Tz(u)
ρ2λ(u;β∗)

(λ(u;β∗) + nk−1ρ)2
du + n2k−2ρ2

∫

Hn(c)THn(c)dc/κ∗

where

Hn(c) =

∫

W

z(u)
λ(u;β∗)

λ(u;β∗) + nk−1ρ
h(u − c)du

Following the proof of Theorem 1 it follows that n−k+1/2ud,n(β∗) is asymp-
totically zero mean normal with covariance matrix

ρ2C + ρ2

∫

H(c)TH(c)dc/κ∗ + ρ2−1/kGg.

The asymptotic variance in the case k = 1 is obtained in a similar manner.

B Asymptotic equivalence of estimating func-

tions

The asymptotic distribution of parameter estimates obtained with the esti-
mating functions (1) and (3) can be derived along the lines of the proofs in
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Appendix A using the general results in Appendix C. The basic steps are
to establish asymptotic normality of n−1/2 times the estimating function and
convergence of n−1 times minus the derivative of the estimating function.

Consider now ur,n and ug,n given by (10) and (12). Assuming that the co-
variates zi(u) are continuously differentiable and since the sidelength of Tu,n is
a constant times n−k/2, it follows that n−1/2(ug,n(β∗)−ur,n(β∗)) tends to zero
in probability and the two terms thus have the same weak limit. Similarly,
jg,n(β∗)/n has the same limit in probability as jr,n(β∗)/n where jg,n and jr,n

denote the derivatives of −ug,n and −ur,n. Hence, the parameter estimates
obtained from ug,n and ur,n are identically distributed asymptotically.

C Some general asymptotic results for esti-

mating functions

Consider a parametrized family of probability measures Pθ, θ ∈ R
p, and

a sequence of estimating functions un : R
p → R

p, n ≥ 1, with negated
derivatives jn. The ‘true’ parameter value is denoted θ∗ and for a matrix
A = [aij ], ‖A‖2 =

∑

i,j a2
ij. Suppose that there exist a sequence an 6= 0, n ≥ 1,

and positive definite matrices F and Σ so that

1. ‖anjn(θ∗)/n − F‖ → 0 in probability,

2. for all c > 0, supθ:
√

n‖θ−θ∗‖≤c ‖anjn(θ)/n − anjn(θ∗)/n‖ → 0 in proba-
bility, and

3. the normalized score function anun(θ∗)/
√

n is asymptotically zero-mean
normal with covariance matrix Σ.

It then follows from Corollary 2.5 and Theorem 2.8 in Sørensen (1999) that
with a probability tending to one, there exists a solution θ̂n of un(θ) = 0,
and √

n(θ̂n − θ∗) → N(0, F−1ΣF−1).
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